
Computing with Words: Towards a New
Tuple-Based Formalization

Olga Kosheleva, Vladik Kreinovich,
Ariel Garcia, Felipe Jovel, Luis A. Torres Escobedo

University of Texas at El Paso
500 W. University

El Paso, Texas 79968, USA
vladik@utep.edu, olgak@utep.edu,

adgarcia11@miners.utep.edu, fjovel@miners.utep.edu,
latorresescobedo@utep.edu

Thavatchai Ngamsantivong
Computer and Information Science

Faculty of Applied Sciences
King Mongkut’s Univ. of Technology North Bangkok

1518 Piboonsongkhram Road, Bangsue
Bangkok 10800 Thailand

tvc@kmutnb.ac.th

Abstract—An expert opinion describes his or her opinion about
a quantity by using imprecise (“fuzzy”) words from a natural
language, such as “small”, “medium”, “large”, etc. Each of these
words provides a rather crude description of the corresponding
quantity. A natural way to refine this description is to assign
degrees to which the observed quantity fits each of the selected
words. For example, an expert can say that the value is reasonable
small, but to some extent it is medium. In this refined description,
we represent each quantity by a tuple of the corresponding
degrees.

Once we have such a tuple-based information about several
quantities x1, . . . , xm, and we know that another quantity y
is related to xi by a known relation y = f(x1, . . . , xm), it is
desirable to come up with a resulting tuple-based description of
y. In this paper, we describe why a seemingly natural idea for
computing such a tuple does not work, and we show how to
modify this idea so that it can be used.

Index Terms—computing with words, fuzzy logic

I. COMPUTING WITH WORDS: FORMULATION OF THE
PROBLEM

Need to use words. Often, to describe a quantity such as
temperature, height, etc., we use words such as “small”,
“medium”, “high”, etc.

Need to go beyond simple words. If we only use the selected
words, we get a rather crude description of the quantity.

To get a more accurate description, we can say, e.g., that
someone is rather short, but closer to medium height. In this
case, to a large extent, this person is short, but to some degree,
this person is of medium height.

How to go beyond simple words: a natural idea. In general,
an accurate description of the quantity may include not just one
word, but several words, with degrees associated with different
words. A similar description can be used to describe situations
when we are uncertain: e.g., if we do not know whether a
person is short, medium, or tall, we assign, e.g., the same
degree 1 to the possible degree to which this person is short,
medium, and tall.

Once we fix the words w1, . . . , wn, each quantity is then
represented by the corresponding tuple of degrees

d = (d1, . . . , dn).

Need for data processing. In many practical situations, we
are interested in the value of a quantity y which is difficult (or
even impossible) to measure or estimate directly. For example,
we are often interested in the future value y of some quantity
(e.g., tomorrow’s weather), and it is not possible to directly
measure a future value of a quantity.

In such situations, a usual approach is:
• to estimate easier-to-estimate auxiliary quantities

x1, . . . , xm which are related to y by a known
dependence y = f(x1, . . . , xn), and

• to use the estimates of xi to compute the estimate for y.
This computation of y based on x1, . . . , xn (or, to be more
precise, computation of an estimate for y from the estimates
for xi) is known as data processing.

Need for the corresponding computing with words. When
the estimates for xi are given in the form of tuples d, we face
the following problem:

• we know the tuple d(1) =
(
d
(1)
1 , . . . , d

(1)
n

)
which de-

scribes our knowledge about the input x1;
• . . .
• we know the tuple d(j) =

(
d
(j)
1 , . . . , d

(j)
n

)
which de-

scribes our knowledge about the input xj ;
• . . .
• we know the tuple d(m) =

(
d
(m)
1 , . . . , d

(m)
n

)
which

describes our knowledge about the input xm;
• we know the dependence y = f(x1, . . . , xm) between the

inputs xi and the desired quantity y;
• we want to describe the resulting knowledge about y in

a similar tuple form.
In particular, in the simplest case when we have only two

inputs x1 and x2, and data processing consists of applying

a simple arithmetic operation, e.g., f(x1, x2) = x1 + x2,
f(x1, x2) = x1 − x2, or f(x1, x2) = x1 · x2, we face the
following problem:

• if we have one quantity x1 which is characterized by the
tuple d(1) and

• we have another quantity x2 which is characterized by
the tuple d(2),

• then we should be able to produce a tuple characterizing
the sum x1+x2 of these quantities, a tuple characterizing
their difference x1 − x2, their product x1 · x2, etc.

In general, instead of computing with numbers, we should
be able to compute with words. The need for such computing
with words was first emphasized by L. Zadeh; see, e.g., [9].

II. ANALYSIS OF THE PROBLEM

How to represent the original words: general idea. A nat-
ural way to represent the original words in the computer-
understandable form is to use fuzzy logic [2], [3], [8], i.e.,
to assign, to each word wi, a function µi(x) that describes,
for each value x, the degree to which this value satisfies
the corresponding property. The corresponding function µi(x)
is known as the membership function corresponding to the
word wi.

Comment.
• The degree µi(x) can be obtained, e.g., by polling experts;

in this case, if m out of n experts think that x satisfies
the property wi, then we take µi(x) = m/n.

• Alternatively, we can ask a single expert to mark the
desired degree by a value on a scale from 0 to n; if the
expert marks the value m, we take µi(x) = m/n.

How to represent the original words: details. Usually, the
corresponding membership functions are triangular, i.e., first
linearly increase from 0 to 1, then linearly decrease from 1 to
0 at the same rate. Different functions µi(x) usually differ by
a shift, so for some some starting point s and step h, we have

µi(x) = max

(
0, 1− |x− (s+ i · h)|

h

)
. (1)

µi(x)

x
-

6

�
�
�

�
�

�
�
�
�
�

�
�
�
�

�

�
�
�

�
�@

@
@

@
@

@
@
@
@
@

@
@
@
@

@

@
@
@

@
@

From a words-related tuple representation to a member-
ship function. A tuple d = (d1, . . . , dn) represents a value x
if one of the following conditions hold:

• the corresponding quantity q is characterized by the first
word w1, and x satisfies the property described by this
word;

• the corresponding quantity q is characterized by the
second word w2, and x satisfies the property described
by this word;

• . . .
• the corresponding quantity q is characterized by the n-th

word wn, and x satisfies the property described by this
word.

Here:
• the degree to which q is characterized by the first word

is d1, and

d1

x
-

6

• the degree to which x satisfies the property described by
this word is µ1(x).

µ1(x)

x
-

6

�
�

�
�
�@

@
@
@
@

The simplest way to describe “and” in fuzzy logic is to use
minimum, so the degree to which q is characterized by the first
word w1 and x satisfies the property described by this word
can be described as min(d1, µ1(x)).

d1, µ1(x))

x
-

6

�
�

�
�
�@

@
@
@
@

min(d1, µ1(x))

x
-

6

�
�

�� @
@
@@

Similarly:
• the degree to which q is characterized by the second word

w2 and x satisfies the property described by this word can
be described as min(d2, µ2(x));

d2, µ2(x))

x
-

6

�
�
�
�
�@

@
@

@
@

min(d2, µ2(x))

x
-

6

�
� @

@

• . . .
• the degree to which q is characterized by the n-th word

wn and x satisfies the property described by this word
can be described as min(dn, µn(x)).

The simplest way to describe “or” in fuzzy logic is to use
maximum, so the degree to which one of these conditions is
satisfied is equal to

µd(x) =

max(min(d1, µ1(x)), . . . ,min(dn, µn(x))). (2)

min(d1, µ1(x)), min(d2, µ2(x))

x
-

6

�
�
�� @

@
@@�

� @
@

µd(x) = max
i

min(di, µi(x))

x
-

6

�
�
�� @@

@
@

Resulting fuzzy-based formalization of computing with
words: a natural idea. We know the tuples d(1) and d(2)

describing the two quantities x1 and x2, and we want to find
a tuple d corresponding to the value y = f(x1, x2) for some
known function f(x1, x2). A natural idea to do it is as follows:

• first, we use the formula (1) to generate membership
functions µ(1)(x1) and µ(2)(x2) corresponding to the
tuples d(1) and d(2);

• then, by applying Zadeh’s extension principle to these
membership functions, we compute the membership func-
tion µ(x) corresponding to y = f(x1, x2);

• finally, we need to generate the tuple d corresponding to
the resulting membership function µ(x).

What is necessary to implement the above idea. To imple-
ment the above idea, we need to be able to generate a tuple
corresponding to a given membership function.

III. A SEEMINGLY NATURAL IDEA AND ITS LIMITATIONS

How to transform a membership function into a tuple: a
seemingly natural idea. At first glance, we have a natural
way of computing the degree di to which it is possible that
a quantity described by the new membership function µ(x)

satisfies the property described by the word wi. There are
several possible value x, so the quantity corresponds to wi if
one of the following statements hold:

• for one possible value x, this value is in agreement with
the new membership function and with the word wi;

• for another possible value x, this value is in agreement
with the new membership function and with the word wi;

• . . .
For each number x:

• the degree to which this number is in agreement with the
new membership function is equal to µ(x),

µ(x)

x
-

6

����������HHHHHHHHHH

• the degree to which this number is consistent with the
word wi is equal to µi(x).

µi(x)

x
-

6

�
�

�
�
�@

@
@
@
@

Thus, the degree to which this number x is in agreement
with the new membership function and in agreement with the
word wi is equal to min(µ(x), µi(x)):

µi(x), µ(x)

x
-

6

����������HHHHHHHHHH�
�

�
�
�@

@
@
@
@

min(µ(x), µi(x))

x
-

6

�������@
@

@@

The degree to which one of the conditions corresponding
to different value x hold is equal to the maximum of all such
values, i.e., to

Ai
def
= max

x
(min(µ(x), µi(x))). (3)

Comment. In deriving the formula (3), we used max for “or”
and min for “and”. If we use sum for “or” and product for

“and”, we get F-transform instead of the formula (2); see,
e.g., [1], [4], [5], [6], [7].

How to transform a membership function into a tuple: a
reasonable requirement. It is reasonable to require that:

• if we start with the word wi itself, i.e., with the tuple
d = (0, . . . , 0, 1, 0, . . . , 0) in which di = 1 and dj = 0
for all j ̸= i, and

• we perform no operations at all, i.e., use the function
f(x) = x,

• then we would like to get back the same tuple

d = (0, . . . , 0, 1, 0, . . . , 0).

How to transform a membership function into a tuple:
limitations of a seemingly natural idea. Unfortunately, the
above seemingly reasonable approach does not satisfy this
requirement. Specifically, when we apply this approach to the
word wi, then:

• for this index i, we do get Ai = 1 = di;
• however, instead of the desired di−1 = di+1 = 0, we get

Ai−1 = Ai+1 = 0.5.

µi(x), µi+1(x)

x
-

6

�
�
�

�
�@

@
@
@
@�

�
�
�
�@

@
@
@

@

min(µi(x), µi+1(x))

x
-

6

@
@@�

��
Ai+1 = 0.5

Thus, we do not get the original tuple back.

What is needed. We therefore need to modify the above
seemingly natural procedure, to make sure that it returns the
original tuple if no operation is performed.

How can we do this? The main problem with the above idea is
that the neighboring membership functions overlap. This leads
us to the natural idea.

IV. MAIN IDEA, RESULTING DEFINITION, AND
PRELIMINARY RESULTS

Main idea. Since intersection is a problem, let us remove
the intersecting parts from the membership function before
applying a formula of type (3). We still want to compute
the i-th coefficient di corresponding to the membership func-
tion µ(x) by comparing this membership function with the
membership function µi(x) representing the i-th word wi.
However, instead of directly comparing these functions, let
us first cut off, from both of them, parts intersecting with the

neighboring membership functions. In other words, we first
compute “reduced” functions

µ′
i(x) = max(0, µi(x)−max(µi−1(x), µi+1(x))) (4)

µ′
i(x)

x
-

6

�
�

�
�
�

�
�
�
�
�

�
�
�

�
�@

@
@
@
@

@
@
@

@
@

@
@

@
@
@�

�
�
�
�A
A
A
A
A

and

µ′(x) = max(0, µ(x)−max(µi−1(x), µi+1(x))), (5)

and then compute the degrees based on these reduced func-
tions, as

Ai = max
x

(min(µ′(x), µ′
i(x))). (6)

Here, the reduced functions µ′
i(x) no longer overlap:

µ′
1(x), µ

′
2(x), . . .

x
-

6

�
�
�
�
�A
A
A
A
A�

�
�
�
�A

A
A
A
A �

�
�
�
�A
A
A
A
A�
�
�
�
�A

A
A
A
A

Resulting definition of a membership function-to-tuple
transformation. Thus, we arrive at the following definitions.

Definition 1.
• Let µi(x) be a sequence of membership functions de-

scribed by the formula (1), and
• let µ(x) be a membership function.

By a tuple d = (d1, . . . , dn) corresponding to the membership
function µ(x), means a sequence of values obtained by using
formulas (4)-(6).

The following easy-to-prove result shows that this modifica-
tion of the original formula (3) indeed enables us to reconstruct
the original degrees di:

Proposition 1.
• Let µi(x) be a sequence of triangular functions (1),
• let d = (d1, . . . , dn) be a tuple of a numbers di ∈ [0, 1],

and
• let µd(x) be described by the formula (2).

For this function µd(x), formulas (4)–(6) lead to Ai = di for
all i.

Proof.

1◦. We are interested in the maximum of the function
min(µ′

d(x), µ
′
i(x)). Let us first show that this maximum is

always attained on the interval [ti−1, ti+1], where we denoted

ti
def
= s+ i ·h, because outside this interval, the above function

is equal to 0.

Indeed, the minimum function is always non-negative. The
function µi(x) (as defined by the formula (1)) is only different
from 0 on the interval [ti−1, ti+1]. By definition of a reduced
function(formula (4)), µ′

i(x) ≤ µi(x) and thus, the reduced
function µ′

i(x) can only be different from 0 on the interval
[ti−1, ti+1]. By definition (4) of the reduced function, we have
µ′
i(x) ≤ µi(x), hence min(µ′

d(x), µ
′
i(x)) ≤ µ′

i(x) ≤ µi(x).
Since outside the interval [ti−1, ti+1], we have µi(x) = 0,

the minimum min(µ′
d(x), µ

′
i(x)) is also equal to 0 for

x ̸∈ [ti−1, ti+1].

2◦. We want to prove that the largest value of
min(µ′

d(x), µ
′
i(x)) is equal to di. To prove this, we will prove

two auxiliary statements:
• that min(µ′

d(ti), µ
′
i(ti)) = di, and

• that min(µ′
d(x), µ

′
i(x)) ≤ di for all other values

x ∈ [ti−1, ti+1].

2.1◦. Let us first prove that min(µ′
d(ti), µ

′
i(ti)) = di. To prove

this equality, we will:
• first compute µ′

d(ti),
• then compute µ′

i(ti),
• and finally compute the minimum of these two values.

2.1.1◦. Let us first compute µ′
i(ti).

From the formula (1), we can conclude that for x = ti, we have
µi(ti) = 1 and µj(ti) = 0 for all j ̸= i. Thus, by definition
(4) of the reduced function µ′

i(x), we have

µ′
i(ti) = max(0, µi(ti)−max(µi−1(ti), µi+1(ti))) =

max(0, 1−max(0, 0)) = max(0, 1) = 1.

2.1.2◦. Let us now compute µ′
d(ti).

From the fact that µi(ti) = 1 and µj(ti) = 0 for all j ̸= i,
we conclude that min(di, µi(ti)) = min(di, 1) = di and
min(dj , µj(ti)) = min(dj , 0) = 0 for all j ̸= i. Thus,
the value µd(ti) (as defined by the formula (2)) is equal to
µd(ti) = max(di, 0, . . . , 0) = di. Hence,

µ′
d(ti) = max(0, µd(ti)−max(µi−1(ti), µi+1(ti))) =

max(0, di −max(0, 0)) = max(0, di) = di.

2.1.3◦. We have computed µ′
i(ti) = 1 and µ′

d(ti) = di; thus,
min(µ′

d(ti), µ
′
i(ti)) = min(di, 1) = di.

The first auxiliary statement is proven.

2.2◦. Let us now prove that min(µ′
d(x), µ

′
i(x)) ≤ di for all

x ∈ [ti−1, ti+1].

On this interval, only the function µi(x) and two neighboring
membership functions µi−1(x) and µi+1(x) are different from
0, all the other are equal to 0. Thus, for these x, the value µd(x)
(as defined by the formula (2)) is equal to the largest of the
three values:

• the value min(µi−1(x), di−1),
• the value min(µi(x), di), and
• the value min(µi+1(x), di+1)).

The maximum of the three numbers is equal to one of them.
Let us consider these three cases one by one and show that in
all three cases, we have min(µ′

d(x), µ
′
i(x)) ≤ di.

2.2.1◦. When µd(x) = min(µi−1(x), di−1), then

µd(x) ≤ µi−1(x)

and thus, µd(x) ≤ max(µi−1(x), µi+1(x)). Hence,

µ′
d(x) = max(0, µd(x)−maxµi−1(x), µi+1(x))) = 0,

and so, min(µ′
d(x), µ

′
i(x)) = 0 ≤ di.

2.2.2◦. When µd(x) = min(µi(x), di), then µd(x) ≤ di and
thus,

µ′
d(x) = max(0, µd(x)−maxµi−1(x), µi+1(x))) ≤

µd(x) ≤ di.

Hence, min(µ′
d(x), µ

′
i(x)) ≤ µ′

d(x) ≤ di.

2.2.3◦. When µd(x) = min(µi+1(x), di+1), then

µd(x) ≤ µi+1(x)

and thus, µd(x) ≤ maxµi−1(x), µi+1(x)). Hence,

µ′
d(x) = max(0, µd(x)−maxµi−1(x), µi+1(x))) = 0,

and so, min(µ′
d(x), µ

′
i(x)) = 0 ≤ di.

2.2.4◦. In all three cases, we have the desired inequality. Thus,
the inequality always holds, and the proposition is proven.

!!! check re q and x

Comment. As we can see from the proof, Proposition is valid
not only for the triangular functions, but also for any set of
membership functions µi(x) for which, for some sequence of
values ti:

• µi(ti) = 1, and
• µi(x) is only different from 0 for x ∈ [ti−1, ti+1].

Resulting definition of an operation with tuples. Now that
we know that our idea enables us to recover the original de-
grees, we can formalize what it means to perform computations
with words.

Definition 2.
• Let µi(x) be a family of membership functions described

by the formula (1),
• let y = f(x1, . . . , xm) be a function of n real numbers,

and
• let d(j) = (d

(j)
1 , . . . , d

(j)
n), j = 1, . . . ,m, be tuples.

By the result f
(
d(1), . . . , d(m)

)
of applying the function

f(x1, . . . , xm) to the tuples d(1), . . . , d(m), we mean the tuple
obtained by using the following three-stage procedure:

• first, we use the formula (2) to compute the membership
functions µ(j)(xj) corresponding to the given tuples

d(1), . . . , d(m);

• then, we apply Zadeh’s extension principle to the mem-
bership functions µ(j)(xj), producing a new membership
function

µ(y) = sup
xi:f(x1,...,xm)=y

min
(
µ(1)(x1), . . . , µ

(m)(xm)
)
;

• finally, we use the formulas (4)–(6) to transform the
resulting membership function µ(y) into a tuple d.

Examples. Let us consider triangular membership functions
starting with s = 0. Each original word wi is described by a
tuple d = (d1, . . . , dn) in which di = 1 and dj = 0 for all
j ̸= i.

Let us first consider the case when we add two words wi′

and wi′′ . In this case, one can show that we get a tuple with
di′+i′′ = 1, d(i′+i′′)−1 = d(i′+i′′)+1 = 0.5, and dj = 0 for all
other j. Indeed, here, Zadeh’s extension principle leads to the
following membership function:

µ(x)

x
-

6

����������HHHHHHHHHH

For i = i′ + i′′, the reduced function has the form

µ′(x)

x
-

6

J

J
J
J
J

The reduced function µ′
i(x) has the form:

µ′
i(x)

x
-

6

�
�
�
�
�A

A
A
A
A

µ′(x), µ′
i(x)

x
-

6

J

J
J
J
J�

�
�
�
�A

A
A
A
A

Here, min(µ′(x), µ′
i(x)) = µ′

i(x):

max(µ′(x)µ′
i(x))

x
-

6

1

�
�
�
�
�A
A
A
A
A

Thus, the maximum di = max
x

min(µ′(x), µ′
i(x)) is equal to 1.

For i = i′ + i′′ − 1, the reduced function has the form

µ′(x)

x
-

6

HHHHH

0.5

The reduced function µ′
i(x) has the form:

µ′
i(x)

x
-

6

�
�
�
�
�A

A
A
A
A

Thus, the minimum has the form

µ′(x), µ′
i(x)

x
-

6

HHHHH�
�
�
�
�A

A
A
A
A

min(µ′(x), µ′
i(x))

x
-

6

HH
A
A

0.5

Thus, the maximum di−1 = max
x

min(µ′(x), µ′
i−1(x)) is equal

to 0.5. Similarly, we get di+1 = 0.5.

For subtracting two words wi′ and wi′′ , we similarly get a
tuple with di′−i′′ = 1 and d(i′−i′′)−1 = d(i′−i′′)+1 = 0.5.

A shift of a word wi, i.e., the result of applying a function
f(x) = x + a · h with 0 < a < 1 to the word wi, leads to
di = 1− a and di+1 = a.

In all three examples, we get reasonable results.

Need for extending these results. The fact that we get rea-
sonable results for simple examples shows that this approach
is worth pursuing. To make this approach useful, we need
to come up with similar explicit formulas for the result of
applying other functions f(x1, . . . , xm) to tuples.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721, by Grants 1
T36 GM078000-01 and 1R43TR000173-01 from the National
Institutes of Health, and by a grant N62909-12-1-7039 from
the Office of Naval Research.

REFERENCES

[1] M. Holčapek and T. Tichý, “A smoothing filter based on fuzzy trans-
form”, Fuzzy Sets and Systems, 2011, Vol. 180, pp. 69–97.

[2] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[3] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[4] V. Novák, M. Štěpnička, A. Dvořák, I. Perfilieva, V. Pavliska, and
L. Vavřı́cková, “Analysis of seasonal time series using fuzzy approach”,
International Journal of General Systems, 2010, Vol. 39, No. 3, pp. 305–
328.

[5] V. Novák, M. Štěpnička, I. Perfilieva, and V. Pavliska, “Analysis of
periodical time series using soft computing techniques”, Proceedings of
the 8th International FLINS Conference on Computational Intelligence
in Decision and Control FLINS’2008, Madrid, Spain, September 21–24,
2008.

[6] I. Perfilieva, “Fuzzy transforms: theory and applications”, Fuzzy Sets and
Systems, 2006, Vol. 157, pp. 993–1023.

[7] I. Perfilieva, V. Novák, V. Pavliska, A. Dvořák, and M. Štěpnička, “Anal-
ysis and prediction of time series using fuzzy transform”, Proceedings of
IEEE World Congress on Computational Intelligence WCCI’2008, 2008,
pp. 3875–3879.

[8] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.

[9] L. A. Zadeh, “From computing with numbers to computing with words
– from manipulation of measurements to manipulation of perceptions”,
Int. J. Appl. Math. Comput. Sci., 2002, Vol. 12, No. 3, pp. 307–324.

