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Abstract. Measurements are never absolutely accurate; so, it is impor-
tant to estimate how the measurement uncertainty affects the result of
data processing. Traditionally, this problem is solved under the assump-
tion that the probability distributions of measurement errors are normal
– or at least are concentrated, with high certainty, on a reasonably small
interval. In practice, the distribution of measurement errors is sometimes
heavy-tailed, when very large values have a reasonable probability. In this
paper, we analyze the corresponding problem of estimating the tail of the
result of data processing in such situations.

1 Formulation of the Problem

Need for data processing. In many practical situations, we are interested in the
values of a quantity y which is not easy (or even impossible) to measure directly:
for example, we may be interested in tomorrow’s weather, in the distance to a
faraway planet, in the amount of oil in an oil well, etc. In such situations in
which we cannot measure y directly, we can often measure y indirectly, i.e.:

– measure the values of auxiliary quantities x1, . . . , xn which are related to the
desired quantity y by a known relation y = f(x1, . . . , xn), and then

– use the results x̃1, . . . , x̃n of measuring the quantities xi and the known
dependence to compute the estimate ỹ = f(x̃1, . . . , x̃n) for y.

The process of computing ỹ = f(x̃1, . . . , x̃n) is known as data processing.

Need to estimating uncertainty of the result of data processing. Measurements
are never 100% accurate; so, in general, the measurement results x̃i are somewhat
different from the actual values xi of the corresponding quantities. Because of
these measurement errors, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different
from the desired value y = f(x1, . . . , xn) (often, there is an additional difference
cause by the fact that the dependence between y and xi is only approximately



known). It is therefore important not just to generate an estimate ỹ, but also to
gauge how much the actual value y can differ from this estimate, i.e., what is
the uncertainty of the result of data processing; see, e.g., [7].

Estimating uncertainty of the result of data processing: traditional statistical ap-
proach. Usually, there are many different (and independent) factors which con-
tribute to the measurement error. In many such situations, it is possible to apply
the Central Limit Theorem (see, e.g., [9]), according to which, under reasonable
conditions, the distribution of the joint effect of numerous independent factors
is close to normal. In such situations, it is therefore reasonable to assume that

all the measurement errors ∆xi
def
= x̃i − xi are independent and normally dis-

tributed.
To describe a normal distribution, it is sufficient to know the mean µ and

the standard deviation σ. Thus, under the normality assumption, to gauge the
distribution of each measurement error ∆xi, we must know the mean µi and the
standard deviation σi of this measurement error. If the known mean is different
from 0, this means that this measuring instrument has a bias; we can always
compensate for this bias by subtracting the value µi from all the measured
values. After this subtraction, the mean error will become 0. Thus, without losing
generality, we can assume that each measurement error is normally distributed
with mean 0 and known standard deviation σi.

The traditional way of estimating the resulting uncertainty ∆y
def
= ỹ− y in y

is based on this assumption. Specifically, since the measurement errors ∆xi are
usually relatively small, we can expand the expression

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series in ∆xi, ignore quadratic and higher order terms, and keep only
terms in ∆xi in this dependence. As a result, we get an expression

∆y =
n∑

i=1

ci ·∆xi,

where ci
def
=

∂f

∂xi
. Based on this expression, we conclude that the linear combina-

tion ∆y of n independent normally distributed random variables is also normally

distributed, its mean value of is 0, and its variance σ2 is equal to: σ2 =
n∑

i=1

c2i ·σ2
i

(see, e.g., [7]).

Heavy-tailed distributions. There are many practical situations in which the
probability distribution for the measurement error is drastically different from
normal. In many such situations, the variance is infinite; such distributions are
called heavy-tailed. Since then, similar heavy-tailed distributions have been em-
pirically found in many other application areas; see, e.g., [1, 8].



These distributions surfaced in the 1960s, when Benoit Mandelbrot, the au-
thor of fractal theory, empirically studied the fluctuations and showed [4] that
large-scale fluctuations follow the Pareto power-law distribution, where for some
x0, for all x ≥ x0, the probability density function has the form ρ(x) = A · x−α,
for some empirical constants A > 0 and α ≈ 2.7. For this empirical value α,
variance is infinite. The above empirical result, together with similar empirical
discovery of heavy-tailed laws in other application areas, has led to the formu-
lation of fractal theory; see, e.g., [5, 6].

Comments.

– Please note that Mandelbrot’s empirical observations only describe the prob-
ability density ρ(x) for values x ≥ x0; the values ρ(x) for x < x0 can be
different.

– In general, the condition that
∫
ρ(x) dx = 1 implies that α > 1.

– One can easily check that the variance
∫
x2 · ρ(x) dx is infinite when α ≤ 3.

Problem. If the measurement errors ∆xi of the inputs xi are distributed accord-
ing to the heavy-tailed distributions, then what can we conclude about ∆y?

What we do in this paper. In this paper, we provide an answer to the above
question for the simplest cases when data processing consists of applying a single
arithmetic operation: addition, subtraction, multiplication, or division.

2 Main Results

Case of addition y = f(x1, x2) = x1 + x2. For addition, ∆y = ∆x1 + ∆x2.
When the measurement error ∆x1 of the first input has a tail with asymptotics
ρ1(∆x1) ∼ A1 · |∆x1|−α1 and the measurement error ∆x1 of the first input has
a tail with asymptotics ρ2(∆x2) ∼ A2 · |∆x2|−α2 , then the tail for ∆y has the
asymptotics ρ(∆y) ∼ A · |∆y|−α with α = min(α1, α2).

Proof for the case of addition y = f(x1, x2) = x1 + x2. We know that ρ(∆y) =∫
ρ1(∆x1)·ρ2(∆y−∆x1) d(∆x1). Asymptotics mean that for any given accuracy,

for sufficiently large values ∆x1 and ∆x2, we have ρ1(∆x1) ≈ A1 · |∆x1|−α1 and
ρ2(∆x2) ≈ A2 · |∆x2|−α2 . What is the asymptotic expression for the probability
density ρ(∆y) for large values ∆y?

A large value of ∆y = ∆x1 +∆x2 can come from three different situations:

1) when ∆x1 is large (i.e., the asymptotic expression for ρ1(∆x1) holds) and
∆x2 is not large in this sense;

2) when ∆x2 is large (i.e., the asymptotic expression for ρ2(∆x2) holds) and
∆x1 is not large in this sense; and

3) when both ∆x1 and ∆x2 are large in this sense.



The first situation leads to terms proportional to |∆x1|−α1 = |∆y − ∆x2|−α1 .
Since in this case, ∆x2 is limited by the threshold after which the values become
large, we have ∆x2/∆y → 0 as ∆y → ∞ and thus, |∆y −∆x2|−α1 ∼ |∆y|−α1 .
The second situation similarly leads to terms asymptotically equal to |∆y|−α2 .

In the third case, for some K > 1, the integral which describes ρ(∆y) (over
the whole real line) can be represented as a sum of the integral Iin(∆y) over
[−K · |∆y|,K · |∆y|] and the integral Iout(∆y) over the outside of this interval.

The inner integral Iin(∆) is bounded by M · (2K · |∆y|), where M is the
maximum of the the product

ρ1(∆x1) · ρ2(∆y −∆x1) = A1 · (∆x1)
−α1 ·A2 · (∆y −∆x1)

−α2 .

Differentiating this expression w.r.t. ∆x1 and equating derivative to 0, we con-

clude that ∆x1 =
α1

α1 + α2
·∆y, hence the corresponding maximum is equal to

const · |∆y|−(α1+α2). Thus,

Iin(∆y) ≤ M · (2K · |∆y|) = const · |∆y|−(α1+α2−1)

for some positive constant.

Outside the interval, |∆y| ≤ 1

K
· |∆x1|, thus, |∆y−∆x1| ≤

(
1 +

1

K

)
· |∆x1|

and so,

ρ1(∆x1) · ρ2(∆y −∆x1) = A1 · |∆x1|−α1 ·A2 · |∆y −∆x1|−α2 ≤

A1 ·A2 ·
(
1 +

1

K

)−α2

· |∆x1|−α1 · |∆x1|−α2 = const · |∆x1|−(α1+α2)

for some positive constant. Integrating both sides of the resulting inequality, we
conclude that

Iout ≤
∫ −K·|∆y|

−∞
const · |∆x1|−(α1+α2) d(∆x1)+∫ ∞

K·|∆y|
const · |∆x1|−(α1+α2) d(∆x1) = const · |∆y|−(α1+α2−1)

for some positive constant.
Both Iin(∆y) and Iout(∆y) are bounded by const · |∆y|−(α1+α2−1), so their

sum ρ(∆y) is also bounded by a similar expression.
Summarizing: the asymptotic expression for ρ(∆y) is the sum of three pos-

itive terms of the type |∆y|−α: a term corresponding to α = α1, a term corre-
sponding to α = α2, and a term bounded by α = α1 + α2 − 1. Since αi > 1, we
have α1 + α2 − 1 > αi.

In general, when α < α′, then for large z, the ratio
z−α′

z−α
tends to 0. This

means in the sum of power-law asymptotic expressions, the term with the small-
est value of α dominates, in the sense that the asymptotics of the sum fol-
lows the power law with the smallest possible exponent α. In our case, since
α1 + α2 − 1 > αi, this smallest exponent is min(α1, α2).



Case of a general linear combination. One can check that a similar formula
holds for the difference y = x1 − x2 and, more generally, for an arbitrary linear

combination y = a0 +
m∑
i=1

ai · xi. Namely, when the measurement error ∆xi of

the the i-th input has a tail with asymptotics ρi(∆xi) ∼ Ai · |∆xi|−αi , then the
tail for ∆y has the asymptotics ρ(∆y) ∼ A · |∆y|−α with α = min(α1, . . . , αm).

Case of product y = f(x1, x2) = x1 ·x2: analysis of the problem. For the product,
from y = x1 ·x2 and y+∆y = ỹ = x̃1 · x̃2 = (x1+∆x1) · (x2+∆x2), we conclude
that ∆y = ∆x1 · x2 + x1 ·∆x2 +∆x1 ·∆x2.

We know the asymptotics of the probability distribution for ∆x1 and ∆x2,
so ∆x1 · x2 and x1 ·∆x2 should have asymptotics with the same exponents α1

and α2. Let us find the asymptotics for the product r
def
= ∆x1 ·∆x2. Similarly

to the case of addition, the corresponding terms come from three cases:

– when ∆x1 is large and ∆x2 is not large; this leads to terms ∼ |r|−α1 ;

– when ∆x2 is large and ∆x1 is not large; this leads to term ∼ |r|−α2 ;

– when both ∆x1 and ∆x2 are large; this leads to the term ∼ |r|−(α1+α2−1),
which (similarly to the case of addition) can be asymptotically ignored in
comparison with terms ∼ |r|−αi .

Thus, similarly to the case of addition, we have terms with exponent α1, we have
terms with exponent α2, and we have other terms which can be asymptotically
ignored. Hence, we arrive at the following conclusion.

Case of product y = f(x1, x2) = x1 · x2: result. When the measurement error
∆x1 of the first input has a tail with asymptotics ρ1(∆x1) ∼ A1 · |∆x1|−α1

and the measurement error ∆x2 of the second input has a tail with asymptotics
ρ2(∆x2) ∼ A2 · |∆x2|−α2 , then ρ(∆y) ∼ A · |∆y|−α with α = min(α1, α2).

Case of product or ratio of several terms. One can check that a similar formula
holds for the ratio y = x1/x2 and, more generally, for an arbitrary combination

y = a0 ·
m∏
i=1

xai
i . Namely, when the measurement error ∆xi of the the i-th input

has a tail with asymptotics ρi(∆xi) ∼ Ai · |∆xi|−αi , then the tail for ∆y has the
asymptotics ρ(∆y) ∼ A · |∆y|−α with α = min(α1, . . . , αm).

Comment. The main objective of this paper is to deal with measurement (epis-
temic) uncertainty. However, the same formula can be used if we have aleatory
uncertainty. For example, we can use these formulas to analyze what happens if:

– we have a population of two-job individuals with first-salary distribution
ρ1(x1) and second-salary distribution ρ2(x2),

– we know that these distributions are independent, and

– we want to find the distribution of the total salary y = x1 + x2.



3 Future Work: From Asymptotics to a Complete
Description of the Corresponding Probability
Distributions

Need for a complete description. In the above text, we only find the exponent α
corresponding to the asymptotics of the probability distribution for the approx-
imation error ∆y = ỹ − y. It is desirable to find the whole distribution for ∆y.
For that, in addition to the exponent α, we also need to find the following:

– the coefficient A at the asymptotic expression ρ(∆y) ∼ A · |∆y|−α;
– the threshold∆0 after which this asymptotic expression provides an accurate

description of the probability density, and
– the probability density ρ(∆y) on the interval [−∆0,∆0] on which the asymp-

totic expression is not applicable.

Once we know a similar information for the input measurement errors ∆x1 and
∆x2, we can use the formula (3) (or similar formulas corresponding to other data
processing algorithms) to estimate the corresponding characteristics for ∆y.

What if we only have partial information about the distribution of errors of
direct measurements. In practice, we only have partial information about the
probability distributions ρi(∆xi) of the errors ∆xi of direct measurements.

Usually, we consider situations in which we know an interval on which the ran-
dom variable is located with certainty. For example, for normal distribution with
mean µ and standard deviation σ, we can safely conclude that all possible values
are located within the six-sigma interval [µ − 6σ, µ + 6σ], since the probability
to be outside this interval is ≤ 10−8. For such distributions, uncertainty means,
e.g., that instead of the exact values of the corresponding cumulative distribu-

tion functions F (x)
def
= Prob(X ≤ x), we only know an interval [F (x), F (x)] of

possible values of F (x). The corresponding interval-valued function [F (x), F (x)]
is known as a probability box, or p-box, for short; see, e.g., [2, 3].

Several algorithms are known for propagating p-boxes via data processing,
i.e., for transforming the p-boxes corresponding to the input uncertainty ∆xi to
the p-box for the output uncertainty ∆y. It is desirable to extend these algo-
rithms so hat they will be able to also cover a similar interval uncertainty about
the values A, α, and ∆0 describing the heavy-tailed distributions.
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