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Abstract According to the traditional formulas of chemical kinetics, the rate is pro-
portional to the product of concentrations of reagents. This formula leads to a rea-
sonable description of interactions both in chemistry and in other disciplines (e.g.,
in ecology). However, in many cases, these formulas are only approximate. Sev-
eral semi-empirical formulas have been designed to more accurately describe the
interaction rate. The problem is that most of these formulas are purely empirical,
they lack a convincing theoretical explanation. In this paper, we show that a group-
theoretic approach — taking into account natural symmetries of the systems — leads
to the desired theoretical explanation for these empirical formulas.

1 Formulation of the Problem

Traditional formulas of chemical kinetics. According to the traditional chemical
kinetics formulas, the reaction rate is proportional to the product of the concentra-
tions of all the inputs. In particular, for a reaction A+ B — X, the rate is proportional

d
to the product of the concentrations a and b of the substances A and B: ditl =g(a,b)
db
and 5= gla,b), where g(a,b) = —k-a-b.

Chemical kinetics formulas are used to describe interactions beyond chemistry.
Similar formulas are used to describe interactions in other areas as well. For exam-
ple, in the standard Lotka-Volterra model of predator-prey interactions, the presence

of predators P causes the decrease of the prey population N which is proportional to

dN
N-P: o =—k-N-P;see, e.g., [10].
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Need to go beyond traditional formulas of chemical kinetics. In the first approxi-
mation, chemical formulas accurately describe interaction in chemistry and in other
disciplines. However, more accurate measurements revealed that the actual reaction
rate is somewhat different from the results obtains by the traditional formulas.

Traditional chemical kinetic formulas describe one-step reactions, when, e.g.,
the substances A and B directly interact and this interaction immediately leads to
the quantity X. In practice, many chemical reactions are multi-step reactions. In
such reactions, a direct reaction between the input substances A and B first leads to
some intermediate substances, and only after several additional reactions involving
this intermediate substance and/or A and B, we get the final quantity X. In such
situations, even when each of the elementary reactions can be described by the tra-
ditional chemical kinetic formulas, the resulting dependence of the rate of change
in A, B, and X on the initial concentrations of A and B becomes much more com-
plex. Examples of complex functions describing such dependence are given in [6]
(and references therein). In [5], it has been proven that any continuous function can
be represented as a reaction rate for an appropriate multi-step chemical reaction
system.

For many reactions, the dependence of the observed reaction rate on the initial
concentrations is individual — in the sense that it is characteristic for this particular
chemical reaction. For such reactions, the observed deviations from simple collision
theory provide clues to the reaction mechanism that leads to the observed depen-
dence; see, e.g., [6].

In addition to such individualized deviations from the simple chemical kinetic
formulas, there are also general types of deviations, i.e., deviations which have
the same form for many different chemical reactions. For example, Michaelis and
Menten shows that for enzyme kinetics, the reaction rate is equal to g(a,b) =

co-a-b
1+cp-b
nutrient b as a function of the bacterial biomass a [7] and the decrease of prey b as
a function of the predator concentration a [4].

This formula is also, in turn, only approximate; a more accurate description is
provided by a more complex formula

, for some constants ¢y and c;,. A similar formula describes the decrease of

co-a-b
bh)y=—--—— 1
slab) = (1)

for some constants ¢y, ¢4, and cp; see, e.g., [1, 2, 3, 9].

Problem. The problem with the general formulas describing non-standard chemical
kinetics is that many of them — including the above formula (1) — are purely empiri-
cal, they lack a convincing theoretical explanation and thus, we are not sure whether
(and why) they are indeed good approximations.

What we plan to do. In this paper, we use group-theoretic approach to provide a
possible theoretical explanation for the above empirical formula (1).
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2 Group-Theoretic Approach to the Problem: Main Idea

Different scales: general description. For many physical quantities, there are many
different ways to describe their values. For example, temperature can be measured in
degrees Fahrenheit, in degrees Celsius, or in degrees Kelvin; length can be measured
in centimeters or in inches; time can be measured in seconds or in years; earthquakes
can be measured by their energy or by a Richter scale (which is, in effect, a logarithm
of this energy), etc.

Numerical values x and x” of the same quantity in different scales can be obtained
from each other by an appropriate re-scaling x' = f(x). For example, if we know the
temperature ¢ in Celsius, then we can compute the temperature 77 in Fahrenheit as
tr = f(tc), where f(x) =32+1.8-x.

In general, if we have a scale x and a reasonable re-scaling transformation f(x),
then the values x' = f(x) also form a reasonable scale for measuring the same quan-
tity.

Reasonable re-scalings form a group. If a transition f(x) from the scale x to a new
scale x' = f(x) is reasonable, then it seems natural that the inverse transformation
from x’ to x should also be reasonable. In other words, the class T of all reasonable
transformations should contain, with each function f(x), its inverse function f~!(x).

Similarly, if we start with a reasonable scale x, apply a reasonable transformation
x' = f(x), and then apply another reasonable transformation x” = g(x') = g(f(x)),
then the transformation h(x) = f(g(x)) should also be reasonable. In other words,

the class T of all reasonable transformations should contain, for every two transfor-

mations f(x) and g(x), their composition & = f o g which is defined as (f o g)(x) &

f(g(x)).

It is well known that the composition operation is associative, that the identity
mapping i(x) = x has the property foi=io f = f for all f, and that (fog)~! =
g~ 'of~!. In mathematical terms, this means that the class T of all reasonable trans-
formations forms a group under composition.

Which groups are possible as groups of reasonable rescalings: physics-motivated
requirements. In most cases, linear transformations are reasonable — they corre-
spond to changing the measuring unit and the starting point. Thus, we are interested
in groups which contain all linear transformations.

While non-linear transformations are physically possible, not all mathematical
transformations are physically reasonable. For example, from the physical view-
point, the transformations should be smooth (differentiable): indeed, smoothness is
an important physical characteristics, and it should not depend on our choice of a
scale.

An additional property is that if we have a sequence of reasonable transforma-
tions f,(x) that tend to a limit f,(x) — f(x), this the limit f(x) should also be a
reasonable transformation. In mathematics, sets with such a property are known as
closed. To be more precise, a set S is closed if for every sequence s, of elements of
the set S which tends to a limit s, — s, this limit s also belongs to the set S. In these
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terms, the above property means that the set 7 of all reasonable transformations
should be closed.

Indeed, by definition of the limit, for any given accuracy, there exists an n for
which f(x) is (within this accuracy) indistinguishable from f;,(x). From the physical
viewpoint, if the limit transformation f(x) cannot be distinguished from a reason-
able one, no matter how accurately we measure, this means that the transformation
f(x) is also reasonable.

Finally, from the physical viewpoint, not all smooth mathematical functions de-
scribe physically reasonable transformations. Thus, it is reasonable to require that
the class T differ from the class of all possible smooth functions from real numbers
to real numbers.

Summarizing: we are looking for closed groups 7 of smooth functions which
contain all linear transformations and which differ from the group of all smooth
functions.

Which groups are possible as groups of reasonable rescalings: result. The com-
plete description of all such groups T is known (see, e.g., [8]): each transformation
€0 “+c1-x

f(x) from each such group is fractionally linear, i.e., has the form f(x) = T+
CyX

for some contants c;.

From a general description to our specific problem. Let us apply the above gen-
eral ideas to our problem.

In chemical reactions and in other types of interaction, it is reasonable to measure
a concentration of a by the effect it has for some fixed b. For example, on scales,
weight is measured by the pressure that a body with this weight makes on the given
weighting scales.

In the interaction case, this means that while we can measure a directly, we can
also measure it by the effect g(a,b) that a has for a fixed value b. Thus, we have
two reasonable scales a and g(a,b). Therefore, the transformation a — g(a,b) be-
tween these two scales should be a reasonable transformation. We already know that
reasonable transformations are fractionally linear; so, we conclude that for each b,
the function g(a, b) is a fractionally-linear function of a. Similarly, we can conclude
that for each a, the function g(a,b) is a fractionally-linear function of b.

In our case, we have two additional specific requirements:

* by the physical meaning of inferaction between a and b, both substances need to
be present for the interaction to occur; thus, if a =0 or b = 0, we get g(a,b) = 0;

 if we increase both concentrations, the reaction rate should also correspondingly
increase, i.e., we should have g(a,b) — 4o if @ — +o0 and b — +oo.

Let us now describe all functions g(a,b) which satisfy these requirements.
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3 Main Result

Proposition. Ler g(a,b) be a function of two real variables which satisfies the fol-
lowing properties:

* for every b, the expression g(a,b) is a fractionally linear function of a;
 for every a, the expression g(a,b) is a fractionally linear function of b;
e ifa=00rb=0, then g(a,b) = 0; and

o gla,b) > o ifa— o and b — co.

Then, the function g(a,b) has the form

co-a-b
b = 1
g(a? ) 1+Ca'a+Cb‘b ()

for some constants cy, cq, and cp.

Comment. It is easy to check that the specified conditions are satisfied if g(a,b) has
the given form (1). What needs to be proven is that the given form (1) of the function
g(a,b) is the only expression which satisfies these conditions.

Thus, this result indeed provides a group-theoretic justification of the above em-
pirical formula for the reaction rate.

Mathematical comment. The first condition means that, when b is treated as a fixed
parameter and a is treated as a variable, then g(a,b) has the form

co(a)+ci(a)-b

gla,b) = l+c(a)-b

(2a)

for appropriate functions c;(a). Similarly, the second condition means that when b
is treated as a fixed parameter and a is treated as a variable, then g(a, b) has the form

_ d()(b) +d (b) -a

8@ = T ) a (20)

for appropriate functions d;(a).
Proof.

1°. As we have mentioned, the first condition means that for every a, the expres-
sion g(a,b) is a fractionally linear function of b, i.e., that it has the form (2a) for
appropriate functions ¢;(a).

2°. The condition that g(a,b) = 0 for b = 0 implies that ¢o(a) = 0, i.e., that

ci(a)-b

@) = @b

(3)

3°. Similarly, the second condition for » = 1 and for b = 2 means that the expression
g(a,b) is a fractionally-linear function of a, i.e., that
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(4)

for appropriate linear functions Nj(a) = do(b) +d (b) -a and Dy(a) = 1+dz(b) - a.

4°. The condition that g(0,1) = g(0,2) = 0 means that each linear function N;(a) is
simply proportional to a, i.e., has the form N;(a) = n; - a for some real number n;.

5°. Substituting the expression (3) into the formulas (4), we get

ci(a) Ni(a)

l+cy(a) Di(a) )
2¢q(a) M (@) (6)
142c(a)  Ds(a) '
Multiplying each equation by the denominator of its left-hand side, we get

_ Ni(a)  Ni(a),

ci(a) =cz(a) Di(a) + Dia)’ (7)
N,

261(a) = 262(a) - 221 | Ma(@) (8)

Ds(a) " Ds(a)
If we subtract, from the second equation (8), the first one (7) multiplied by 2, we get

Nz(a) N1 (a) Nz(a) 2N1 (a) o
2e2(a)- (Dz(a) - Dl<a>> * (Dz(a) " Dila) ) =0 ©)

Multiplying both sides of this equation by D1 (a) - D (a), we get

2¢(a) - (N2(a)-Dy(a) —Ni(a)-Dy(a)) + (Na(a) - D1 (a) — 2Ny (a) - Da(a)) = 0.
(10)
We can now take into account that N;(a) = n; - a; thus, all the terms in (10) are
proportional to a. So, we can divide both sides of the formula (10) by a and get

2¢2(a) - (na-Dy(a) —ny -Dy(a)) + (n2-Di(a) —2ny - Da(a)) = 0. (11)
Thus, we conclude that

2n1 -Dz(a) —ny ~D1(cl)
“(n2-Di1(a) —ny-Da(a))’

c2(a) = (12)
2

Both the numerator and the denominator of this formula are linear combinations of

linear functions and are, thus, linear themselves. Therefore, the function c¢;(a) is

fractionally linear, i.e., has the form

ea(a) = T2 d (13)

14+cxp-a
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for appropriate coefficients c;.

D
7°. Similarly, if we multiply both sides of the equation (7) by 2N1 Ea)) and both sides
1la
D
of the equation (8) by 2(a) , we get
N>(a)
Di(a)
2- . =2 2 14
M@ ci(a) =2c2(a) +2, (14)
D2 (a)
2- . =2 1. 15
Nl 1@ =202(@)+ (1)
Substracting the second equation (15) from the first one (14), we conclude that
D D
2-c1(a)~< a) _ 2(")>:1. (16)
Ni(a)  Nx(a)
Multiplying both sides by Nj(a) - N2(a), we conclude that
2-ci(a)- (Di(a)-No(a) = Da(a) - Ni(a)) = Ni(a) - Na(a). (17)

Taking into account that N;(a) = n; - a and dividing both sides of (17) by a, we
conclude that
2-ci(a)-(Di1(a) -ny—Dy(a)-n1) =ny-ny-a, (18)
hence
ni-ny-a
2-(Dy(a)-ny—Da(a) )’

Both numerator and denominator are linear functions (and the numerator has no free
term), so the function c¢;(a) is also fractionally linear and has the form

ci(a) = (19)

Cl11-a
al@) =1 a (20)
for appropriate coefficients cy;.

8°. Substituting expressions (20) for ¢y (a) and (13) for c3(a) into the formula (3),
we conclude that

ci1-a- b
o l14+cip-a
g(a7b)_ C20+C21‘a ° (21)
14
14+c¢pn-a
. cr/ciz
9°. When a,b — oo, then for ¢ # 0, we would have g(a,b) — ] = oo, Thus,
1/

the requirement that g(a,b) — e implies that ¢p; = 0. Hence, the formula (21) takes
a simpler form
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ci1-a- b
l14cip-a
20
I+ ——
14cxp-a

10°. By adding the fractions in the denominator of the formula (22) and performing
the division of the resulting fractions, we conclude that

(6‘11 -a-b)-(1+022-a)

,b) = . 23
g(a ) (1+c12-a)-(1+sz-a—|—czo-b) ( )
In particular, for b = 1, we get
ca)- (1 .
g(d, 1) _ (Cll Cl) ( +c2 Cl) (24)

(14+cpp-a) - (14+cp)+cxn-a)

11°. The expression (24) must be fractionally linear; thus, two linear forms in the
numerator and in the denominator must cancel each other — by being either equal or
proportional (differing by a multiplicative constant).

The expression ¢y - a does not have a free term, while both factors in the denom-
inator do. Thus, the only expression in the numerator which can cancel with some
expression in the denominator is the expression 1+ c¢7; - a.

There are two possibilities, let us consider them one by one.

11.1°. If the expression 1 4¢3, - a cancels with the first factor 1 4¢3 - a, then ¢y; =
c12, and after canceling, we get

c“-a~b
b)= —— 25
g(d, ) 1+C22‘(1+C20'b7 ( )

i.e., the desired expression (1).

11.2°. If the expression 1 + ¢, - a cancels with the second factor (14 ¢z9) + ¢22 - @,
this means that c¢y9 = 0. In this case, the formula (23) takes the form

cii-a-b

gla,b) = (26)

1 +c12 -a’
which is also a particular case of the desired expression (1).
In both cases, the have the desired expression (1). The proposition is proven.

Comment. Our proof is somewhat complicated. We believe that eventually, a simpler
and clearer proof will be found.
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