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Abstract. In many practical situations, the dependence between the
quantities is linear or approximately linear. Knowing that the depen-
dence is linear simplifies computations; so, is is desirable to detect linear
dependencies. If we know the joint probability distribution, we can de-
tect linear dependence by computing Pearson’s correlation coefficient. In
practice, we often have a copula instead of a full distribution; in this
case, we face a problem of detecting linear dependence based on the cop-
ula. Also, distributions are often heavy-tailed, with infinite variances, in
which case Pearson’s formulas cannot be applied. In this paper, we show
how to modify Pearson’s formula so that it can be applied to copulas
and to heavy-tailed distributions.

1 Detecting Linear Dependence: Formulation of the
Problem

Locally, linear dependencies are ubiquitous. Dependencies between quantities
are often described by smooth (even analytical) functions y = f(x1, . . . , xn). An
analytical function can be expanded in Taylor series around each point x(0) =

(x
(0)
1 , . . . , x

(0)
n ):

y = f(x(0)) +
n∑

i=1

ci · (xi − x
(0)
i ) +

n∑
i=1

n∑
j=1

cij · (xi − x
(0)
i ) · (xj − x

(0)
j ) + . . . (1)

For values xi close to x
(0)
i , we can safely ignore terms which are quadratic in

xi −x
(0)
i (or of higher order), and thus, approximate the dependence by a linear

function y ≈ f(x(0)) +
n∑

i=1

ci · (xi − x
(0)
i ).

Linear dependencies are often global. In many practical situations, linear depen-
dencies extend beyond local, they hold even for situations in which differences

xi − x
(0)
i are reasonably large.
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It is important to know if we have a linear dependence. Linear dependencies
make computations easier. For example, there are efficient algorithms for solving
systems of linear equations, while a solution to the system of non-linear equations
is, in general, NP-hard; see, e.g., [12].

An exact linear dependence is easy to detect. Let us first consider the ideal
case, when estimation and measurement errors can be safely ignored, and the
dependence is exactly linear. In this case, if we have K situations in which
we measured all the values xi and y, then, based on the corresponding values

(x
(k)
1 , . . . , x

(k)
n , y(k)), k = 1, 2, . . . ,K, we can check the dependence is linear by

checking whether the corresponding system of linear equations with unknowns
ci has a solution:

y(k) = f(x(0)) +
n∑

i=1

ci ·
(
x
(k)
i − x

(0)
i

)
, k = 1, . . . ,K. (2)

As we have mentioned, there exist efficient algorithms for checking solvability of
such a linear system.

How the presence of an approximate linear dependence is detected now. Since
linear dependencies make computations easier, it is desirable to detect them even
when we only have an approximate linear dependence: e.g., due to measurement
or approximation errors, or due to actual non-linear terms in the dependence, or
due to the fact that the value of the quantity y is only approximately determined
by the values x1, . . . , xn.

In the case of the exact linear dependence, possible values of the tuple

(x1, . . . , xn, y) form a linear surface y = f(x(0)) +
n∑

i=1

ci · (xi − x
(0)
i ). When

we observe the frequency with which different tuples occur, we get a probability
distribution on this surface.

In the case of an approximate linear dependence, tuples can deviate from the
surface corresponding to the exact linear equation. In this case, the probability
distribution is no longer limited to this surface. Instead, we have a probability
distribution on the (n + 1)-dimensional space. Let ρ(x1, . . . , xn, y) denote the
probability density of this probability distribution.

In traditional statistics, in the simplest case n = 1, the linearity of the cor-
responding dependence can be gauged by computing the Pearson’s correlation
coefficient (see, e.g., [25]):

r =
CXY

σX · σY
, (3)

where

CXY
def
= E[(X − E[X]) · (Y − E[Y ])] = E[X · Y ]− E[X] · E[Y ] =∫

x · y · ρ(x, y) dxdy − E[X] · E[Y ], (4)
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E[X]
def
=

∫
x · ρ(x, y) dxdy, E[Y ]

def
=

∫
y · ρ(x, y) dx, (5)

σX
def
=

√
VX , σY

def
=

√
VY , (6)

VX
def
= E[(X − E[X])2] = E[X2]− (E[X])2 =∫

x2 · ρ(x, y) dx dy −
(∫

x · ρ(x, y) dx dy
)2

, (7)

VY
def
= E[(Y − E[Y ])2] = E[Y 2]− (E[Y ])2 =∫

y2 · ρ(x, y) dx dy −
(∫

y · ρ(x, y) dx dy
)2

. (8)

In the case of an exact linear dependence y = c0 + c1 · x, this coefficient is equal
to 1 if c1 > 0 and to −1 if c1 < 0. In general, values r ̸= 0 indicate that there is
an approximate linear dependence – and the closer |r| to 1, the closer is to the
actual dependence to a linear one.

Limitations of the existing techniques for detecting linear dependence. There are
two major limitations of this technique:

– first, often, instead of the full joint probability distribution ρ(x, y), we only
know the corresponding copula (see below);

– second, the above formula only works when the variances are finite; in many
practical situations, we have heavy-tailed distributions, in which variances
are infinite.

What we do in this paper. In this paper, we show how to detect a linear de-
pendence based on the copula, and we also show what to do when we have a
heavy-tailed distribution.

2 Detecting Linear Dependence Based on a Copula:
Formulation of the Problem

What is a copula: a brief reminder. Before we start analyzing how to detect
linear dependence based on a copula, let us recall what is a copula.

In the general case, a distribution of a random variableX can be described by

the cumulative distribution function FX(x)
def
= Prob(X ≤ x), and a joint distri-

bution of two variables X and Y can be described by the cumulative distribution

function F (x, y)
def
= Prob(X ≤ x&Y ≤ y).

A problem with this description is that it depends on the units in which we
describe x and y. For example, if we use meters instead of feet to describe x,
or if we use a logarithmic scale of decibels instead of a linear scale of energy to
describe noise, we get different cumulative distribution functions F (x, y).
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It is desirable to describe the dependence between x and y in a way which is
independent on the units for measuring x and y. Such a description is known as
a copula. The main idea behind a copula is that, once we know the probability
distribution, we no longer need to use any artificial units to describe each of the
quantities x and y:

– to describe the value of x, we can use the probability FX(x) = Prob(X ≤ x);
and

– to describe the value of y, we can use the probability FY (y) = Prob(Y ≤ y).

Thus, instead of asking for a value F (x, y) = Prob(X ≤ x&Y ≤ y) corre-
sponding to given real numbers x and y, we can ask for a value C(a, b) of this
probability corresponding to given probabilities a = FX(x) and b = FY (y).

Formally, the copula is defined as a function C(a, b) for which a = FX(x)
and b = FY (y) imply that F (x, y) = c(a, b), i.e., equivalently, as a function for
which F (x, y) = C(FX(x), FY (y)) for all x and y.

Copulas are useful. Copulas have been successfully used to describe dependencies
in many application areas, including econometrics; see, e.g., [10, 20, 21].

Formulation of the problem. We need to be able to detect linear dependence
between the quantities x and y based on the copula C(a, b) that describes their
dependence.

3 Detecting Linear Dependence Based on a Copula: Main
Idea and the Resutling Definition

Main idea. As we have mentioned earlier, a copula describes two quantities x
and y modulo arbitrary (generally, non-linear) monotonic re-scalings X → X ′ =
A(X) and Y → Y ′ = B(Y ). Even if the dependence is exactly linear (and r = 1
or r = −1) for some choice of scales, it stops being linear after a non-linear
re-scaling.

What we want to check if whether the dependence is linear for some possible
re-scaling. For different re-scalings, we have different values of the Pearson’s
correlation coefficient. The possibility to have r = 1 for one of the re-scalings
means that the maximum L+ of r over all such re-scaling is equal to 1. Thus,
we can use this maximum to gauge to what a dependence described by a given
copula is, in appropriate scales, described by an increasing linear function.

Similarly, the possibility to have r = −1 for one of the re-scalings means that
the minimum L− of r over all such re-scaling is equal to −1. Thus, we can use
this minimum to gauge to what a dependence described by a given copula is, in
appropriate scales, described by an decreasing linear function.

In general, we can use the pair (L+, L−) to detect a linear dependence based
on the copula:

– the values L+ = 1 or L− = −1 means that (in appropriate scales) we have
a perfect linear dependence;
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– in general, In general, values L+ > 0 or L− < 0 indicate that there is an
approximate linear dependence – and the closer |L+| or |L−| to 1, the closer
is to the actual dependence to a linear one.

Resulting definition. Let us select any two variables X and Y with a given
copula. All other variables with this same copula can be obtained from X and Y
by applying appropriate non-linear transformations X ′ = A(X) and Y ′ = B(Y ).
The desired measures of linearity L can therefore be described as

L+ = max
A(x),B(y)

r(A(X), B(Y )), L− = min
A(x),B(y)

r(A(X), B(Y )), (9)

where maximum and minimum are taken over all possible non-decreasing func-
tions A(x) and B(y) and r(A(X), B(Y )) is the Pearson’s correlation coefficient
relating the random variables A(X) and B(Y ).

By definition of Pearson’s correlation coefficient r, we conclude that

L+ = max
A(x),B(y)

L(A,B); L+ = min
A(x),B(y)

L(A,B), (10)

L(A,B)
def
=

C(A,B)

σ(A) · σ(B)
, (11)

C(A,B) = E[(A(X) ·B(Y ))]− E[A(X)] · E[B(Y )] =∫
A(x) · b(y) · ρ(x, y) dx dy−

(∫
A(x) · ρ(x, y) dx dy

)
·
(∫

B(y) · ρ(x, y) dx dy
)
, (12)

σ(A)
def
=

√
V (A), σ(B)

def
=

√
V (B), (13)

V (A)
def
= E[A2(X)]− (E[A(X)])2 =∫

A2(x) · ρ(x, y) dx dy −
(∫

A(x) · ρ(x, y) dx dy
)2

, (14)

V (B)
def
= E[B2(X)]− (E[B(X)])2 =∫

B2(y) · ρ(x, y) dx dy −
(∫

B(y) · ρ(x, y) dx dy
)2

. (15)

These values depend only on the copula. The above definitions do not change if
we re-scale each of the two variables. Thus, we conclude that these quantities
depend only on the copula. To confirm this, let us show how the above definitions
(10) can be explicitly reformulate in copula terms.
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An explicit expression for L+ and L− in terms of the copula. The joint distri-
bution of two random variables depends on the copula C(a, b), and on the two
marginal distributions FX(x) and FY (y).

It is known that a general probability distribution forX can be describedX =
A(X0) for an appropriate function A(x): namely, as A(x), we can take an inverse
function to FX(x). (This is one of the mostly used way to simulate a general
probability distribution based on the uniform distribution – which is included in
most programming languages.) Similarly, a general probability distribution for
Y can be described Y = B(Y0) for an appropriate function B(y). In this case, for
each variable, FX0(x) = Prob(X0 ≤ x) = x and FY0(y) = Prob(Y0 ≤ y) = y and
thus, the joint cumulative distribution function has the form F (x, y) = C(x, y)

and thus, ρ(x, y) =
∂2C(x, y)

∂x∂y
. For this probability density, the above formulas

(10)–(15) become expressed solely in terms of a copula.

4 How to Compute the Corresponding Values L+ and L−

Analysis of the problem. According to calculus, one way to find minimum and
maximum of an expression is to equate the derivative to 0. In our case, we need
to situations when the unknowns are two functions A(x) and B(y), the rules for
corresponding differentiation are described in variational calculus; see, e.g., [8].

Here, σ(B) does not depend on A(x), so, by using the usual rules of differ-
entiating the ratio, we get:

δ

δA(x)
L(A,B) =

1

σ(B)
· δ

δA(x)

(
C(A,B)

σ(A)

)
=

1

σ(B)
· δ

δA(x)
·

δC(A,B)

δA(x)
· σ(A)− C(A,B) · δσ(A)

δA(x)

σ2(A)
. (16)

Thus, the derivative is equal to 0 if

δC(A,B)

δA(x)
· σ(A)− C(A,B) · δσ(A)

δA(x)
= 0. (17)

Since σ(A) =
√

V (A), the chain rule for differentiation implies that

δσ(A)

δA(x)
=

1

2σ(A)
· δV (A)

δA(x)
. (18)

For V (A) =
∫
A2(x) · ρ(x, y) dx dy −

(∫
A(x) · ρ(x, y) dx dy

)2
, we get

δV (A)

δA(x)
= 2A(x) ·

∫
ρ(x, y) dy − 2E[A(X)] ·

∫
ρ(x, y) dy. (19)

Similarly, for

C(A,B) =

∫
A(x) ·B(y) · ρ(x, y) dx dy−
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A(x) · ρ(x, y) dx dy

)
·
(∫

B(y)) · ρ(x, y) dx dy
)
, (20)

we get

δC(A,B)

δA(x)
=

∫
B(y) · ρ(x, y) dx dy − E[B(Y )] ·

∫
ρ(x, y) dy. (21)

Thus, the above equation (17) takes the form

c1 ·
∫

B(y) · ρ(x, y) dx dy + c2 ·A(x) ·
∫

ρ(x, y) dy + c3 ·
∫

ρ(x, y) dy = 0 (22)

for some constants ci. From this equation, we can determine A(x) as

A(x) = a1 + a2 · E[B(Y ) |X = x], (23)

where ai are appropriate constants, and the conditional expected value

E[B(Y ) |X = x] (24)

has the form

E[B(Y ) |X = x] =

∫
B(y) · ρ(x, y) dx dy∫

ρ(x, y) dx dy

. (25)

By differentiating with respect to B(y), we get a similar equation

B(y) = b1 + b2 · E[A(X) |Y = y], (26)

for appropriate constants b1 and b2.
These expressions depend on constants ai and bj which need to be deter-

mined. To make the expressions easier, we can take into account that the cor-
relation coefficient does not change if we apply a linear transformation to the
variables. Thus, instead of the functions A(x) and B(y), we can use arbitrary
linear re-scalings a + a′ · A(x) and b + b′ · B(y). We can use this ambiguity to
normalize the functions A(x) and B(y), e.g., by setting A(0) = B(0) = 0 and
A(1) = B(1) = 1. By applying these conditions to the above formula for B(y),
we conclude that

B(0) = 0 = b1 + b2 · E[A(X) |Y = 0], (27)

B(1) = 1 = b1 + b2 · E[A(X) |Y = 1]. (28)

Substracting the first equation from the second one, we get

1 = b2 · (E[A(X) |Y = 1]− E[A(X) |Y = 0]), (29)

hence

b2 =
1

E[A(X) |Y = 1]− E[A(X) |Y = 0]
. (30)
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From the equation (27) for B(0), we can now conclude that

b1 = − E[A(X) |Y = 0]

E[A(X) |Y = 1]− E[A(X) |Y = 0]
. (31)

Substituting the expressions for b1 and b2 into the formula (26) for B(y), we
thus conclude that

B(y) =
E[A(X) |Y = y]− E[A(X) |Y = 0]

E[A(X) |Y = 1]− E[A(X) |Y = 0]
. (32)

Similarly, we get

A(x) =
E[B(Y )) |X = x]− E[B(Y ) |X = 0]

E[B(Y ) |X = 1]− E[B(Y ) |X = 0]
. (33)

Resulting algorithm. Formulas (32) and (33) prompts the following natural it-
erative algorithm. We start with arbitrary initial functions A0)(x) and B0)(y),
e.g., with functions A(0)(x) = x and B(0)(y) = y. Then, on each iteration, once
we know the values A(k)(x) and B(k)(y), we compute the values corresponding
to the next iteration as follows:

A(k+1)(x) =
E[B(k)(Y )) |X = x]− E[B(k)(Y ) |X = 0]

E[B(k)(Y ) |X = 1]− E[B(k)(Y ) |X = 0]
, (34)

B(k+1)(y) =
E[A(k)(X) |Y = y]− E[A(k)(X) |Y = 0]

E[A(k)(X) |Y = 1]− E[A(k)(X) |Y = 0]
. (35)

We stop when the new functions A(k+1)(x) and B(k+1)(y) are close to functions
A(k)(x) and B(k)(y) from the previous iteration: e.g., when the differences do
not exceed some threshold ε:

|A(k+1)(x)−A(k+1)(x)| ≤ ε; |B(k+1)(y)−B(k+1)(y)| ≤ ε. (36)

We then take A(k+1)(x) and B(k+1)(y) as the desired functions A(x) and B(y).
Based on these finctions, we use the formula (11) to compute the desired
value L+.

Example. To make sure that this algorithm makes sense, let us analyze what
happens when we apply this algorithm to the standard case of two jointly dis-
tributed correlated Gaussian variables.

Let us start with the simplest initial functions A(0)(x) = x and B(0)(y) = y.
For these functions, the formulas (34) and (35) for computing the next iteration
A(1)(x) and B(1)(y) take the form

A(1)(x) =
E[Y |X = x]− E[Y |X = 0]

E[Y |X = 1]− E[Y |X = 0]
, (37)

B(1)(y) =
E[X |Y = y]− E[X |Y = 0]

E[X |Y = 1]− E[X |Y = 0]
. (38)
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It is know that when variables X and Y have a Gaussian joint distribution, then
E[Y |X = x] is a linear function of x, i.e.,

E[Y |X = x] = c0 + c1 · x (39)

for some constant c0 and c1. Substituting this expression (30) into the formula
(37), we get

A(1)(x) =
(c0 + c1 · x)− (c0 + c1 · 0)
(c0 + c1 · 1)− (c0 + c1 · 0)

=
c1 · x
c1

= x. (40)

Similarly, we get B(1)(y) = y.
Here, we have A(1)(x) = A(0)(x) and B(1)(y) = B(0)(y) for all x ad y, so

we stop iterations, and take A(x) = A(1)(x) = x and B(y) = B(1)(y) = y.
For these functions A(x) = x and B(y) = y, the expression (11) becomes the
usual expression (3) for the Pearson’s correlation coefficient r. So, for the usual
Gaussian case, the above algorithm converges and leads to the desired result.

Important mathematical subtleties.

1◦. There are cases when the above algorithm – and even the definition (9) – do
not lead to the desired result.

For example, if Y = X when X ≥ 0 and Y = X − Z2 for X < 0, where
Z is a random variable which is independent of X, then the maximum in (9) is
attained when we take A(x) = x for x ≥ 0, A(x) = 0 for x ≤ 0, and similarly,
B(y) = y for y ≥ 0 and B(y) = 0.

For these functions A(x) and B(y), we have A(X) = B(Y ) and thus,
L(A,B) = 1. This value seems to indicate that X and Y are perfectly corre-
lated, but in reality, they are only correlated when X ≥ 0 and Y ≥ 0 and they
are definitely not well correlated when X < 0 and Y < 0.

This counterintuitive feature of the definition (9) appeared because we al-
lowed functions A(x) and B(y) which are constant on some intervals. To avoid
this counterintuitive feature, it is therefore reasonable to make sure that func-
tions A(x) and B(y) are never constant. The functions A(x) and B(y) are sup-
posed to be non-decreasing. Non-decreasing means that the derivative is non-
negative, while constant means derivative is 0. Thus, it makes sense to select a
small positive number δ > 0 and, in the definition (9), only consider functions
for which A′(x) ≥ δ and B′(y) ≥ δ for all x and y.

2◦. Another important issue is the existence of the functions A(x) and B(y)
which maximize L(A,B). In general, a continuous function is guaranteed to
attain its maximum value on a given domain D only if this domain is compact.
A known Ascoly-Arzela theorem states that a compact class of functions should
be uniformly continuous; for smooth functions, this means that there should be
an upper bound M on the derivatives, such that A′(x) ≤ M and B′(y) ≤ M for
all x and y.

3◦. Because of Comments 1 and 2, it makes sense to fix two positive real numbers
δ < M and to restrict ourselves only to functions A(x) and B(y) for which
δ ≤ A′(x) ≤ M and δ ≤ B′(y) ≤ M .
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5 Case of Heavy-Tailed Distribution

Need to go beyond Pearson’s correlation coefficient. Pearson’s correlation coeffi-
cient r, as defined by the formula (3), implicitly assumes that the margianl distri-
butions for X and Y have finite variance. In reality, however, many econometric-
related distributions are heavy-tailed, with infinite variance. Let us show how we
can extend the above definitions to the heavy-tailed case. For that, we first need
to briefly recall the need for heavy-tailed distributions.

Heavy-tailed distributions are ubiquitous. In many practical situations, e.g., in
economics and finance, we encounter heavy-tailed probability distributions, i.e.,
distributions for which the variance is infinite. These distributions surfaced in
the 1960s, when Benoit Mandelbrot, the author of fractal theory, empirically
studied the fluctuations and showed [14] that larger-scale fluctuations follow the
power-law distribution, with the probability density function ρ(x) = A ·x−α, for
some constant α ≈ 2.7. For this distribution, variance is infinite.

The above empirical result, together with similar empirical discovery of
heavy-tailed laws in other application areas, has led to the formulation of fractal
theory; see, e.g., [15, 16].

Since then, similar heavy-tailed distributions have been empirically found in
other financial situations [2–4, 7, 17, 19, 24, 26–28], and in many other application
areas [1, 9, 15, 18, 23].

Utility: reminder. People’s economic behavior is determined by their preferences.
A standard way to describe preferences of a decision maker is to use the notion
of utility u; see, e.g., [5, 6, 11, 13, 22]. According to decision theory, a user prefers

an alternative for which the expected value
n∑

i=1

pi · ui of the utility is the largest

possible. Alternative, we can say that the expected value
n∑

i=1

pi·Ui of the disutility

U
def
= −u is the smallest possible.

Disutility caused by probabilistic uncertainty. If we know the exact value of a
quantity, then we can make an optimal decision based on this value. If we do not
know the exact value – e.g., if we only know the probability distribution ρ(x) on
the set of all possible values – then we have to make a decision based on some
value m. Since the actual value x is, in general, different from m, this decision
is not as perfect as the decision based on the exact knowledge x.

For example, if we knew exactly what will be the future price x of a certain
financial instrument (e.g., stock), then (after applying an appopriate future-
related discount), we will be able to find the exact price that we are willing to
pay for this instrument. In practice, we do not know this future price; at best, we
know the probability of future value. As a result, we set up a price correponding
to some “expected” value m.

– If the actual value x is smaller than our prediction m, then we overpay and
thus, lose money on this transaction.
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– If the actual value x is larger than m, this means that we may have missed
an opportunity to invest in this instrument.

In both cases, the difference between the actual value x and the selected value
m leads to disutility.

Let U(d) denote the disutility cause by the difference d = x−m. When the
value m has been selected, the average disutility is equal to

∫
U(x−m) ·ρ(x) dx.

We select the valuem for which this disutility is the smallest possible. The result-
ing minimal disutility is the disutility caused by the probabilistic uncertainty:

dU (X)
def
= min

m
E[U(X −m)] = min

m

∫
U(x−m) · ρ(x) dx. (41)

What if x partly depends on a known quantity y? If the desired quantity x is
somewhat dependent on another (known) quantity y, then, once we know y, we
thus have more knowledge about x and hence, our uncertainty-caused disutility
will decrease.

It is reasonable to take the percentage of this decrease as a measure of de-
pendence between x and y.

Case of linear dependence. In this paper, we are interested in the case of linear
dependence x = a+ b · y. A linear dependence is either increasing or decreasing.

If we expect the dependence to be increasing, then it makes sense to consider
dependencies with b ≥ 0. Among all such dependencies, we should select the
values a and b ≥ 0 for which the expected disuility E[U(X − (a + b · Y )] is the
smallest possible. The resulting remaining disutility is equal to

d+U (X |Y ) = min
a;b≥0

E[U(X − (a+ b · Y )] =

min
a;b≥0

∫
U(x− (a+ b · y)) · ρ(x, y) dx dy. (42)

The corresponding decrease D+
U (X |Y ) in disutility can be thus estimated as

D+
U (X |Y )

def
=

dU (X)− d+U (X |Y )

d(X)
. (43)

Similarly, if we expect the dependence of x on y to be decreasing, we should
consider dependencies with b ≤ 0. Among all such dependencies, we should also
select the values a and b ≤ 0 for which the expected disuility E[U(X−(a+b ·Y )]
is the smallest possible. The resulting remaining disutility is equal to

d−U (X |Y ) = min
a;b≤0

E[U(X − (a+ b · Y )] =

min
a;b≤0

∫
U(x− (a+ b · y)) · ρ(x, y) dx dy. (44)

The corresponding decrease D−
U (X |Y ) in disutility can be thus estimated as

D−
U (X |Y )

def
=

dU (X)− d−U (X |Y )

dU (X)
. (45)
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How is this idea related to Pearson’s correlation coefficient? For the case when
U(d) = d2, as one can easily check:

– the optimal value m is the mean of the random variable X: m = E[X];
– the corresponding value dU (X) is equal to the variance V (X);
– for r ≥ 0, the decrease D+

U (X |Y ) is equal to r2; and
– for r ≤ 0, the decrease D−

U (X |Y ) is equal to r2.

How to make the above definition depend only on a copula. The above-defined
values D±

U (X |Y ), in general, change when we apply non-linear re-scalings A(x)
and B(y) to the quantitiesX and Y . Similarly to the case of Pearson’s correlation
coefficient, to define a scale-independent quantity, a quantity depending only on
the copula, it makes sense to take a maximum over all possible re-scaling. Thus,
we arrive at the following definition.

Resulting definition. Let a disutility function U(d) be given. For a joint distribu-
tion of two random variables X and Y , the corresponding measures of linearity
L+
U and L−

U will be defined as

L+ = max
A(x),B(y)

D+
U (A(X) |B(Y )), L− = max

A(x),B(y)
D−

U (A(X) |B(Y )), (46)

where maximum is taken over all possible non-decreasing functions A(x) an
B(y), and the values D±

U are defined by the formulas (41)–(45).

Comment. Similarly to the case of Pearson’s correlation coefficient, we can make
the definition explicitly depending only on the copula C(x, y) if we use the above

formulas with the probability density ρ(x, y) =
∂2C(x, y)

∂x∂y
.
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