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Abstract

It is known that in general, solving interval linear systems is NP-hard.
There exist several proofs of this NP-hardness, and all these proofs use
examples with intervals of different width – corresponding to different
accuracy in measuring different coefficients. For some classes of interval
linear systems with the same accuracy, feasible algorithms are known. We
show, however, that in general, solving interval linear systems is NP-hard
even when all inputs are known with the same accuracy.

Keywords: interval computations, interval linear systems, NP-hard
AMS subject classifications: 65G20, 65G40, 03D15, 68Q17

1 Introduction

Interval computations are needed. In practice, we only know approximate
values of physical quantities x: e.g., we only know measurement results x̃, and mea-
surements are never absolutely accurate; see, e.g., [6]. In many practical situations, the
only information that we have about the measurement accuracy is the upper bound ∆

on the absolute value of the measurement error ∆x
def
= x̃− x: |∆x| ≤ ∆. In such situ-

ations, based on the measurement result x̃, we can only conclude that the (unknown)

actual value x belongs to the interval x = [x, x]
def
= [x̃−∆, x̃+∆].

If we have such interval information xi = [xi, xi] about the quantities xi (i =
1, . . . , n), and we want to estimate the value of a quantity y which is related to xi by
a known relation y = f(x1, . . . , xn), then we can only conclude that y belongs to the
range y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}. Computing this range is one of the
main problems of interval computations (see, e.g., [4]).
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Interval computations are, in general, NP-hard. In general, the problem
of computing the endpoints y and y of the desired range y = [y, y] is NP-hard, even
when the function f(x1, . . . , xn) is polynomial (even when the function f(x1, . . . , xn)
is quadratic); see, e.g., [1, 3].

In particular, the problem of interval computations is NP-hard in a practically
useful case when the algorithm f(x1, . . . , xn) corresponds to solving a system of linear
equations. In this case:

• we know that the quantities y1, . . . , ym satisfy a system of linear equations
m∑

j=1

aij · yj = bi, i = 1, 2, . . .,

• we know intervals of possible values aij and bi for aij and bj , and

• we want to find the interval of all possible values of, e.g., y1 corresponding to
different combinations of values of aij ∈ aij and bi ∈ bi.

Discussion. The values of some of the coefficients aij and bi come from measure-
ments and are, thus, only known with interval uncertainty. In some cases, however, we
know that bi is not affected by yj and thus, the corresponding coefficient aij is equal
to 0; in such cases, no measurement is needed.

For example, when we try to reconstruct the values of the actual signal x(t) at
different moments of time based on the sensor recordings x̃(t) at the same moments
of time, then we know, from causality, that the value x̃(t) cannot be affected by the
future values x(s) with s > t. In this case, ats = 0.

It is worth mentioning that this situation is different from the case when in prin-
ciple, the dependence is possible, but the corresponding coefficient aij is so small that
our measuring instruments are unable to detect this dependence. In this case, the
measured value ãij is 0, but, due to the measurement uncertainty, the actual value aij

may be non-zero.

What if all the measurements have the same accuracy. The original
proof that interval computations is NP-hard used situations in which all intervals
xi have the same width, i.e., in measurement terms, when all measurements were
performed with the same accuracy; see, e.g., [1, 3].

However, in the known proofs that solving interval linear systems is NP-hard,
different intervals aij and bi have different widths. In some cases when all the widths
are equal, it is possible to find a feasible algorithm for solving the corresponding
interval linear systems (even explicit formulas); see, e.g., [2]. It is therefore reasonable
to ask whether the problem of solving interval linear systems remains NP-hard when
all inputs are known with the same accuracy.

What we do. In this paper, we prove that the problem of solving interval linear
systems is NP-hard even if we restrict ourselves to systems in which all the inputs
are known with the same accuracy ∆. To be more precise, we prove that for every
accuracy ∆ > 0, the problem is NP-hard even if we only consider systems in which all
the input intervals have the same half-width ∆.
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2 Results

Definition 1.

• By an interval linear system, we mean a tuple consisting of integers m and n
and intervals aij and bi, 1 ≤ i ≤ n, 1 ≤ j ≤ m with rational bounds. A system

will also be denoted by
m∑

j=1

aij · yj = bi.

• We say that a tuple y = (y1, . . . , ym) is a possible solution to the interval linear

system if for some aij ∈ aij and bi ∈ bi, we have
m∑

j=1

aij · yj = bi for all i.

• By the problem of solving interval linear systems, we mean the following problem:

– given an interval linear system and a rational number ε > 0,

– find ε-approximations to the endpoints y
1
and y1 of the range of all the

values y1 corresponding to all possible solutions (y1, . . . , ym) of the given
interval linear system.

Definition 2. Let ∆ > 0 be a rational number. We say that an interval linear

system
m∑

j=1

aij · yj = bi is uniformly ∆-accurate if each interval aij or bi is either

identically 0 or has half-width ∆.

Proposition 1. For every ∆ > 0, the problem of solving uniformly ∆-accurate
interval linear systems is NP-hard.

Comment. It turns that out that not just computing the range of solutions is NP-
hard, even checking whether a given system has solutions at all is NP-hard.

Proposition 2. For every ∆ > 0, it is NP-hard to check whether a uniformly
∆-accurate interval linear system has a possible solution.

Comment. Proposition 2 is similar to Theorem 22.5 from [3], according to which
it is NP-hard to check, given a matrix ãij , whether all matrices aij with

aij ∈ [ãij − 1, ãij + 1]

are regular. This similarly can be enhanced, since from Theorem 22.5, we can extract
the following corollary: for every rational ∆ > 0, it is NP-hard to check, given a matrix
ãij , where all matrices aij with aij ∈ [ãij −∆, ãij +∆] are regular.

3 Proof of Propositions 1 and 2

1◦. By definition (see, e.g., [3, 5]), a problem P0 is NP-hard is every problem from the
class NP can be reduced to this problem P0. Thus, to prove that a given problem Pg

is NP-hard, it is sufficient to prove that a known NP-hard problem Pk can be reduced
to Pg: in this way, every problem from the class NP can be reduced to Pk, and Pk can
be reduced to Pg, so every problem from the class NP can be reduced to Pg.

As such a problem Pk, we take the following subset sum problem (see, e.g., [3, 5]):



4 R. Kelsey, V. Kreinovich, Systems with Same Accuracy Are Still NP-Hard

• given positive integers s1, . . . , sn,

• find the values εi ∈ {−1, 1} for which
n∑

i=1

εi · si = 0.

2◦. To prove Proposition 1, we will reduce each instance (s1, . . . , sn) of the sub-
set sum problem to the following interval linear system with m = n + 1 unknowns
y1, . . . , yn, yn+1:

• for each i from 1 to n, we add two interval linear equations

[∆, 3∆] · yi + [−∆,∆] · yn+1 = 0; (1)

[−∆,∆] · yi + [−3∆,−∆] · yn+1 = 0; (2)

• we also add two additional equations

[1, 1 + 2∆] · yn+1 = [−∆,∆]; (3)

n∑
i=1

[M · si −∆,M · si +∆] · yi = 0, (4)

where we denoted M
def
= 3∆ · n.

One can easily check that in this system, all inputs are indeed known with the same
accuracy ∆.

Let us prove the following two implications:

• if the original instance of the subset sum has a solution, then the range y1 of
possible values of y1 is equal to [−∆,∆];

• on the other hand, if the original instance of the subset problem does not have
a solution, then the y1 = [0, 0].

Thus, if we can compute the endpoints of the interval y1 with accuracy ε < ∆/2, we
will be able to tell whether a given instance of the subset problem has a solution; thus,
we will have the desired reduction.

3◦. To prove the above implications, let us first analyze the system (1)–(4).

Equation (1) means that ai · yi = bi · yn+1 for some ai ∈ [∆, 3∆] and bi ∈ [−∆,∆].

Thus, yi = ri · yn+1, where the coefficient ri
def
= bi/ai takes a value from the interval

[−∆,∆]/[∆, 3∆] = [−1, 1]. So, |ri| ≤ 1.
Equation (2) means that a′

i · yi = b′i · yn+1 for some a′
i ∈ [−∆,∆] and b′i ∈ [∆, 3∆].

Here, |a′
i| ≤ ∆ and |b′i| ≥ ∆. Substituting yi = ri · yn+1, with |r| ≤ 1, into this

equation, we conclude that

(a′
i · ri) · yn+1 = b′i · yn+1. (5)

3.1◦. We either have yn+1 = 0 or yn+1 ̸= 0.
If yn+1 = 0, then from yi = ri · yn+1, we conclude that yi = 0 for all i. In this

case, we have a tuple consisting of all zeros. One can check that this tuple is a possible
solution of the system (1)–(4).

3.2◦. If yn+1 ̸= 0, then, dividing both sides of the equation (5) by yn+1, we conclude
that

a′
i · ri = b′i. (6)
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Since b′i ≥ ∆, we cannot have a′
i = 0. If we had |ri| < 1, then we would have

|a′
i · ri| < |a′

i| ≤ ∆, which contradicts to the fact that for b′i = a′
i · ri, we have |b′i| ≥ ∆.

Since |ri| ≤ 1 and it is not possible to have |ri| < 1, we conclude that |ri| = 1, i.e.,
that yi = ri · yn+1 for some ri ∈ {−1, 1}. Thus, all possible solutions (y1, . . . , yn+1)
with yn+1 ̸= 0 have the form yi = ±yn+1.

4◦. From the equation (3), it follows that |yn+1| ≤ ∆. Since y1 = r1 ·yn+1 for r1 = ±1,
we conclude that |y1| ≤ ∆ for all possible solutions (y1, . . . , yn+1).

5◦. The equation (4) means for some αi for which |αi| ≤ ∆, we have

n∑
i=1

(M · si + αi) · yi = 0,

i.e.,

M ·
n∑

i=1

si · yi = −
n∑

i=1

αi · yi.

Substituting yi = ri · yn+1 into the formula (6) and dividing both sides by yn+1 ̸= 0,
we conclude that

M ·
n∑

i=1

ri · si = −
n∑

i=1

αi · ri. (7)

Since |αi| ≤ ∆ and ri = ±1, we have∣∣∣∣∣
n∑

i=1

αi · ri

∣∣∣∣∣ ≤
n∑

i=1

|αi| ≤ n ·∆.

Thus, from (7), we get

M ·

∣∣∣∣∣
n∑

i=1

ri · si

∣∣∣∣∣ ≤ n ·∆. (8)

Dividing both sides of this inequality by M = 3∆ · n, we conclude that∣∣∣∣∣
n∑

i=1

ri · si

∣∣∣∣∣ ≤ 1

3
. (9)

The values si are integers, the values ri = ±1 are also integers, so the sum
n∑

i=1

ri · si

is also an integer. The fact that the absolute value of this integer does not exceed 1/3

means that this integer is equal to 0, i.e., that
n∑

i=1

ri · si = 0.

Thus, if the system (1)–(4) has a non-zero possible solution, then the original
instance of the subset problem has a solution.

6◦. From the previous statement, we can conclude that if the original instance has no
solutions, then the only possible solution to the system (1)–(4) is an all-zeros solution.
In this case, the range y1 is equal to [0, 0].

7◦. If the original instance has a solution εi ∈ {−1, 1} for which
n∑

i=1

εi · si = 0, then,

for each value y1 ∈ [−∆,∆], we can take yi =
εi
ε1

· y1 for all i ≤ n and yn+1 =
y1
ε1

.

One can easily check that these values form a possible solution of the system (1)–(4);
indeed:
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• The equation (1) is satisfied since for these values yi, we have

∆ · yi + (−∆ · εi) · yn+1 = 0,

with ∆ ∈ [∆, 3∆] and −∆ · εi ∈ [−∆,∆].

• The equation (2) is satisfied since we have

(∆ · εi) · yi + (−∆) · yn+1 = 0,

with ∆ · εi ∈ [−∆,∆] and −∆ ∈ [−3∆,−∆].

• Equation (3) is satisfied since

1 · yn+1 = yn+1,

where 1 ∈ [1, 1 + 2∆] and yn+1 ∈ [−∆,∆].

• Finally, the equation (4) is satisfied since we have

n∑
i=1

(M · si) · yi = 0,

with M · si ∈ [M · si −∆,M · si +∆].

On the other hand, we know that for all possible solutions, we have |y1| ≤ ∆. Thus, in
this case, the desired range y1 of possible values of y1 coincides with the the interval
[−∆,∆].

The reduction is proven, and so is Proposition 1.

8◦. To prove Proposition 2, we will reduce each instance (s1, . . . , sn) of the sub-
set sum problem to the following interval linear system with m = n + 1 unknowns
y1, . . . , yn, yn+1:

• for each i from 1 to n, we add two interval linear equations

[∆, 3∆] · yi = [−∆,∆]; (10)

[−∆,∆] · yi = [∆, 3∆]; (11)

• we also add an additional equation

n∑
i=1

[M · si −∆,M · si +∆] · yi = [−∆,∆], (12)

where we denoted M
def
= 3∆ · (n+ 1).

One can easily check that in this system, all inputs are indeed known with the same
accuracy ∆.

Let us prove the following two implications:

• if the original instance of the subset sum has a solution, then the system (1)–(4)
has a possible solution;

• on the other hand, if the original instance of the subset problem does not have
a solution, then the system (1)–(4) does not have a possible solution.
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9◦. To prove the above implications, let us analyze the system (10)–(12).

9.1◦. Equation (10) implies that yi ∈ [−∆,∆]/[∆, 3∆] = [−1, 1]. So, |yi| ≤ 1.

9.2◦. Equation (11) means that ai · yi = bi for some ai ∈ [−∆,∆] and bi ∈ [∆, 3∆].
Here, |ai| ≤ ∆ and bi ≥ ∆. Since bi ≥ ∆, we cannot have ai = 0.

If we had |yi| < 1, then we would have |ai · yi| < |ai| ≤ ∆, which contradicts to
the fact that for bi = ai · yi, we have bi ≥ ∆. Since |yi| ≤ 1 and it is not possible to
have |yi| < 1, we conclude that |yi| = 1, i.e., that yi ∈ {−1, 1}.

Thus, all possible solutions (y1, . . . , yn) of the system (10)–(12) have the form
yi = ±1.

9.3◦. The equation (12) means for some αi and α0 for which |αi| ≤ ∆, we have

n∑
i=1

(M · si + αi) · yi = α0,

i.e.,

M ·
n∑

i=1

si · yi = α0 −
n∑

i=1

αi · yi. (13)

Since |αi| ≤ ∆ and yi = ±1, we have∣∣∣∣∣α0 −
n∑

i=1

αi · yi

∣∣∣∣∣ ≤
n∑

i=0

|αi| ≤ (n+ 1) ·∆.

Thus, from (13), we get

M ·

∣∣∣∣∣
n∑

i=1

yi · si

∣∣∣∣∣ ≤ (n+ 1) ·∆. (14)

Dividing both sides of this inequality by M = 3∆ · (n+ 1), we conclude that∣∣∣∣∣
n∑

i=1

yi · si

∣∣∣∣∣ ≤ 1

3
. (14)

The values si are integers, the values yi = ±1 are also integers, so the sum
n∑

i=1

yi · si

is also an integer. The fact that the absolute value of this integer does not exceed 1/3

means that this integer is equal to 0, i.e., that
n∑

i=1

yi · si = 0.

10◦. Thus, if the system (1)–(4) has a possible solution, then the original instance of
the subset problem has a solution.

11◦. To complete the proof of Proposition 2, let us show that if the original instance
of the subset sum problem has a solution εi, then the system (10)–(12) also has a
solution yi = εi. Indeed:

• Equation (10) is satisfied for every i, since we have

(∆ · εi) · yi = ∆,

where ∆ · εi ∈ [−∆,∆] and ∆ ∈ [−∆,∆].
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• Equation (11) is satisfied, since we have

∆ · yi = (∆ · εi),

with ∆ ∈ [∆, 3∆] and ∆ · εi ∈ [−∆,∆].

• Finally, the equation (12) is satisfied, since we have

n∑
i=1

(M · si) · yi = 0,

with M · si ∈ [M · si −∆,M · si +∆] and 0 ∈ [−∆,∆].

The reduction is proven, and so is Proposition 2.

Comment. In the above reductions, the number of equations is, in general larger
than the number of unknowns; however, we can easily make these two numbers equal if
we add extra unknowns that do not affect equations at all. Thus, the problem remains
NP-hard even if we limit ourselves to square systems.
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