
Fuzzy Sets Can Be
Interpreted as Limits of Crisp Sets,

and This Can Help to Fuzzify Crisp Notions

Olga Kosheleva1, Vladik Kreinovich1, and Thavatchai Ngamsantivong2

1University of Texas at El Paso, El Paso, TX 79968, USA,
olgak@utep.edu, vladik@utep.edu

2Computer and Information Science, Faculty of Applied Sciences,
King Mongkut’s University of Technology North Bangkok,

Bangkok 10800 Thailand, tvc@kmutnb.ac.th

Abstract. Fuzzy sets have been originally introduced as generalizations
of crisp sets, and this is how they are usually considered. From the math-
ematical viewpoint, the problem with this approach is that most notions
allow many different generalizations, so every time we try to general-
ize some notions to fuzzy sets, we have numerous alternatives. In this
paper, we show that fuzzy sets can be alternatively viewed as limits of
crisp sets. As a result, for some notions, we can come up with a unique
generalization – as the limit of the results of applying this notion to the
corresponding crisp sets.

1 Formulation of the Problem: Too Many Different
Fuzzifications

Crisp sets: brief reminder. Many properties are well-defined and objective
(“crisp”). For example, a real number x is either positive or not positive, it
is either smaller than 10 or not, etc. Each such crisp property can be described
by a (crisp) set – namely, by the set S of all the objects that satisfy this property.

For each such set S and for each object x, either the object x belongs to the
set S (x ∈ S) or the object x does not belong to the set S (x ̸∈ S). A set S
can therefore be equivalently described by its characteristic function µS(x) that
assigns, to each object x, the truth value of the statement x ∈ S. In other words:

– If x ∈ S, i.e., if the object x satisfies the property defining the set, then
µS(x) = 1.

– On the other hand, if x ̸∈ S, i.e., if the object x does not satisfy the desired
property, then we take µS(x) = 0.

Need for fuzzy sets. Humans routinely deal with properties which are not fully
well-defined and not fully objective, such as “small”, “young”, etc. A large por-
tion of our knowledge, of our experience, is described in terms of such properties.
To deal with such imprecise (“fuzzy”) properties, L. Zadeh introduced the no-
tion of a fuzzy set; see, e.g., [1–3]. The main idea behind fuzzy sets is that for



fuzzy notions S, we no longer have a clear division into objects which absolutely
satisfy this notion and objects which absolutely do not satisfy this notion.

For a crisp property like “positive”, if we continuously increase a number x
from negative values to positive ones, we first have numbers which are absolutely
not positive, and then, at x = 0, we abruptly switch to numbers which are
absolutely positive. In contrast, for a property like “small”, as we increase values
x from small to not small, we do not abruptly switch from small numbers to non-
small ones, the transition is continuous. When the value x is very small, this value
will be classified by everyone as absolutely small. Similarly, a very large value
will be classified by everyone as absolutely not small. However, for intermediate
values, we may differ whether this value is small or nor, and even a single person
can hesitate.

To capture this phenomenon of a “smooth” transition between true and false,
Zadeh decided to use values between 0 (“false”) and 1 (“true”) to describe the
intermediate states of our beliefs. As a result, a fuzzy set S can be mathematically
defined as a function µS(x) that assigns, to each possible object x into a number
µS(x) from the interval [0, 1].

Fuzzy sets have been very successful. Zadeh’s idea of capturing the fuzziness
of human reasoning has led to numerous successful applications, in control, in
clustering, etc.; see, e.g., [1, 2].

Important problem: how to fuzzify? It is not always easy to apply fuzzy tech-
niques. One of the reasons for this is that there are many alternative fuzzy
techniques, and it is not clear which of these techniques we should use.

The reason for this variety of techniques is that, as defined above, the concept
of a fuzzy set is a generalization of the concept of a crisp set. A crisp set can be
defined as function that assigns, to each object x, a value from the 2-element set
{0, 1}, while a fuzzy set is defined as a function that assigns to each x an element
of the more general set [0, 1]. To extend a concept from crisp sets to fuzzy sets
means that we need to extend an operation defined for two truth value 0 and 1
to all possible intermediate values.

This happens, e.g., when we define a complement to a set. In the classical
case, this is easy: if an element x belongs to the set S, this element does not
belong to the complement −S, and vice versa. In other words, if χS(x) = 1, then
χ−S(x) = 0, and if χS(x) = 0, then χ−S(x) = 1. So, a complement is described
by an operation that maps 0 to 1 and 1 to 0. We would like to generalize this
operation to general fuzzy sets, i.e., to general numbers from the interval [0, 1].
It is clear that there are many different ways to extend an operation.

That is why in fuzzy applications, there are many generalizations of nega-
tion, many generalization of the union (different t-conorms) and of the intersec-
tion (different t-norms), different definitions of probability of a fuzzy event, etc.
Which of these generalization should we choose? This is often not clear.



What we do in this paper. In this paper, we show that fuzzy sets can be also
naturally interpreted as limits of crisp sets. Mathematically, this equivalent re-
formulation in terms of limits is equivalent to the original definition.

Computationally, the reformulation in terms of limits may even be much
worse that the original definition, since we are replacing a reasonably simple
notion of a function (from the set X of all objects to the interval [0, 1]), a notion
routinely studied in high school, with a much more complex concept of limit of
sets, a concept that is only studied by professional mathematicians.

However, from the viewpoint of generalizations, the limit definition has a
clear advantage: once a fuzzy set S is represented as a limit of a sequence of
crisp sets S1, S2, . . . , then we can define, e.g., the probability of this fuzzy set
as a limit of the probabilities of the corresponding crisp sets.

We will show that in some cases, this idea indeed enables us to select one
definition among many. We will also show that this idea is not a panacea: some-
times, when the sequence Sn tends to S, the corresponding values do not tend
to a limit; in such situations, we still have to choose an appropriate fuzzification.

We hope that, in addition to the above-described pragmatic use of this idea,
it will also lead to an even wider acceptance of fuzzy set techniques: one may
be reluctant to use generalizations, but it is a natural idea to use limits: this is
why we routinely use real numbers which are, in effect, nothing else but limits
of directly observable rational numbers; that is why we routinely use infinities
which are nothing else but limits of real numbers, etc.

2 Polling Interpretation of Fuzzy Properties Naturally
Leads to Fuzzy Sets as Limits of Crisp Sets

Polling interpretation of fuzzy properties: reminder. One of the standard ways
to elicit the membership degrees µS(x) is by polling. We ask several (N) experts
whether they would agree that an object x satisfies the corresponding property
(e.g., whether the given number is small). If M out of N folks say that the given

value x is small, we take the ratio
M

N
as the desired degree µS(x).

Polling: logistic challenges. When a variable x only takes finitely many possible
values, we can simply repeat the above procedure for all these values, and get
all the desired degrees µS(x), i.e., get the full description of the corresponding
fuzzy set. In reality, there are infinitely many possible values of each quantity x.
The first challenge us that we can only ask folks about finitely many different
values x.

The second challenge is that it is difficult for many people to think in abstract
terms. When I see a person, I can tell whether, in my opinion the person is
short or not; when I experience a certain temperature, I can tell whether this
temperature corresponds to “warm” or not. However, if for me, a fuzzy threshold
between short and non-short lies around 170 cm, and none of my friends are of
this threshold height, it will be difficult for me to decide whether someone of



height exactly 170 cm is short or not, without actually observing such a person.
Because of this, not only we are limited to finitely many possible values x, but
we are also limited to values x corresponding to actual objects shown to the
polled experts.

This leads to the third challenge: that we may be polling, e.g., medical doctors
or geoscientists located at different parts of the word. It would be too expensive
to fly the same patients to all the medical doctors, or to fly all geoscientists
to the same earth formation. Realistically, each expert deals with his/her own
values x, and our goal is to combine this data.

What is the direct result of polling. As a result of polling, we get a finite collection
C of values x, some of which are marked, by an expert, as having the property S
while others are marked as not having the property S. Let C+ ⊆ C denote the
collection of all the values that experts marked as satisfying the desired property.

We are dealing with real-life objects. For two real-life objects, the probability
that they have the exact same value of some quantity x is 0. We can therefore
safely assume that all these values are different. For example, if we pick two
rocks, it is highly improbable that they will have the exact same weight; their
weights may be close, but they cannot be exactly equal.

How polling techniques process this information. Based on the given set of sam-
ples marked by experts, how can we estimate the degrees µS(x) corresponding
to different values x? For each value x, it is highly improbable that one of the
experts actually dealt with this very value; we can only hope to find close values
for which an expert has expressed his or her opinion. So, we take a neighbor-
hood (x − ε, x + ε) of the desired value x and, in this neighborhood, count the
proportion of points which were marked by an expert as satisfying the property
S. In other words, as an estimate for µS(x), we take the ratio

µS(x) ≈
#(C+ ∩ (x− ε, x+ ε))

#(C ∩ (x− ε, x+ ε))
, (1)

where #(s) denote the number of elements in a set s.
To get a more accurate estimate, we need to elicit more opinions from the

experts, which would enable us to get more points in the set C. This means that
we are not just dealing with a single set C of such values, we get an increasing
sequence of finite sets C1, C2, . . . , Cn, . . . corresponding to increasing number
of points (#(Cn) → +∞), so that

µS(x) ≈
#(C+

n ∩ (x− ε, x+ ε))

#(Cn ∩ (x− ε, x+ ε))
(2)

for all n.
The more points, the more accurate the estimate; thus, the most accurate

estimate corresponds to the limit n → +∞:

µS(x) ≈ lim
n→+∞

#(C+
n ∩ (x− ε, x+ ε))

#(Cn ∩ (x− ε, x+ ε))
. (3)



This limit, however, is not yet an exact value of µS(x), since this limit rep-
resents not just a single value x but the whole interval (x − ε, x + ε). To get
the exact value of µS(x), we therefore need to perform one more transition to a
limit: by taking ε → 0. After that, we should be able to get the exact value of
the membership degree:

µS(x) = lim
ε→0

lim
n→+∞

#(C+
n ∩ (x− ε, x+ ε))

#(Cn ∩ (x− ε, x+ ε))
. (4)

Let us show how this procedure can lead to a limit interpretation of fuzzy
sets.

From finite lists Cn to crisp sets Sn: crisp case. Let us start our analysis of the
situation with the case when the desired property is crisp. Suppose that we have
a finite set Cn of values for each of which experts decided whether this value
satisfies the desired property or not. For each given value x, how can we then
decide whether the given value x satisfied the desired property?

A natural idea, as we have mentioned, is to check whether some value which
is close to x have been classified by experts. The closer this already-classified
value to x, the more confident we are that this element and the desired value x
both satisfy or both do not satisfy the property S. Thus, a reasonable idea is to
look for the element from Cn which is the closest to x:

– if this closest element satisfies the property S, then we conclude that the
given value x also satisfies the property S;

– is this closest element does not satisfy the property S, then we conclude that
the given value x does not satisfy S either.

Of course, there will be few threshold cases when the value x is exactly in between
two values, one classifies as satisfying S and another classified as not satisfying
S, but these values are rare, so we can arbitrarily classify them to S or to a
complement to S.

Thus, for each n, we divide the set X of all possible values of x into two sets:

– the set of all the values x which are, based on the set Cn, classified as
satisfying the property S; we will denote this set by Sn; and

– the set of all the values x which are, based on the set Cn, classified as not
satisfying the property S; this second set is simply a complement X − Sn.

As we elicit more and more opinions from experts, we get sets Cn which have
more and more points; moreover, we get more and more points within each
interval. So in the limit, when we increase n, the corresponding sets Sn and
X − Sn becomes closer and closer to the actual sets S and X − S, in the sense
that:

– if the value x actually satisfies the property S, i.e., if x ∈ S, then most
probably, starting with some sufficiently large n, it will be recognized by
this procedure as having this property;



– similarly, if the value x actually does not satisfy the property S, i.e., if
x ̸∈ S, then most probably, starting with some sufficiently large n, it will be
recognized by this procedure as not having this property.

In other words, if we form the values χSn(x), then for sufficiently large n, these
values will coincide with χ(S), i.e., we will have χS(x) = lim

n→+∞
χSn(x).

From finite lists Cn to crisp sets Sn: general (fuzzy) case. What happens in the
general (fuzzy) case? In this case, based on each set of observations Cn, we can
also subdivide the entire set X into two crisp subsets:

– the set Sn of all the values x for which the closest point from Cn is classified
as having the property S, and

– the set X − Sn of all the values x for which the closest point from Cn is
classified as not having the property S.

So far, the description is similar to the corresponding description of the crisp
case. The difference is what happens in the intermediate values x for which the
experts differ. For such intermediate values, if we start with a randomly selected
collection of values around x, out of which experts classify a proportion µS(x) as
satisfying the property S, then, as one can easily check, the proportion of points
assigned to the set Sn will also be approximately the same. In other words, we
will have

µS(x) ≈
len(Sn ∩ (x− ε, x+ ε))

len(x− ε, x+ ε)
, (5)

where len(s) denotes the total length of the set S:

– for an interval, it is exactly its length;
– for a union of several disjoint intervals, it is the sum of their lengths.

Similarly to the above formulas (3)–(4), to get an accurate value µS(x), we need
to take more and more points n and narrower and narrower interval (x−ε, x+ε).
Then, we get

µS(x) = lim
ε→0

lim
n→+∞

len(Sn ∩ (x− ε, x+ ε))

len(x− ε, x+ ε)
. (6)

Resulting idea: fuzzy set as a limit of crisp sets. Similarly to describing a crisp
set S as a limit of the corresponding crisp sets Sn, we can thus formally describe
a fuzzy set as a limit of crisp sets if the formula (6) is satisfied.

We can now define operations on fuzzy sets as limits of operations on the
corresponding sets Sn – when such a limit exists. Let us describe this idea in
precise terms.

3 Fuzzy Sets as Limits of Crisp Sets: Definitions and
Results

Definition 1. We say that a fuzzy set S with a membership function µS(x) is
a limit of a sequence of (crisp) sets Sn, and denote it as Sn → S, if for every
x ∈ X, the formula (6) holds.



Comment. A similar definition can be formulated for fuzzy subsets of a plane,
a 3-D space, or, more generally, a multi-D space; in this case:

– to describe a neighborhood of a point x = (x1, . . . , xd), it is reasonable to
use, e.g., boxes

(x1 − ε1, x1 + ε1)× . . .× (xd − εd, xd + εd)

instead of intervals;
– instead of a length of a set, we need to use a more general Lebesgue measure;

e.g., area for sets in a plane, volume for 3-D sets. etc.

Let us first show that the above intuitive idea indeed works, i.e., that generic
fuzzy sets can indeed be represented as limits of crisp sets.

Proposition 1. Every fuzzy set with a continuous membership function can be
represented as a limit of crisp sets.

Proof. One way to describe the corresponding set Sn is to divide the real axis

into intervals

[
k

n
,
k + 1

n

)
corresponding to different integers k, and to divide

each such interval of length
1

n
into two parts:

– a part

[
k

n
,
k

n
+ µ

(
k

n

)
· 1
n

)
, a portion µ

(
k

n

)
, is assigned to the set Sn,

while

– the remaining part

(
k

n
+ µ

(
k

n

)
· 1
n
,
k + 1

n

)
is assigned to the complement

of the set Sn.

One can easily check that for the resulting sequence of sets

Sn =
∪
k

[
k

n
,
k

n
+ µ

(
k

n

)
· 1
n

)
,

the equation (6) holds for every x. The statement is proven.

Let us show that this enables us to uniquely describe probability of a fuzzy set.

Definition 2. Let ρ(x) be a continuous probability density, let P (s)
def
=

∫
s
ρ(x) dx

be the resulting probability measure, and let S be a fuzzy set. We say that a real
number P (S) is a probability of a fuzzy set S if for every sequence of crisp set
Sn with Sn → S, we have P (Sn) → P (S).

Proposition 2. For every fuzzy set S with a continuous membership function
µ(x), its probability is well-defined and equal to P (S) =

∫
µ(x) · ρ(x) dx.



Comment. This result provides one more justification for the original Zadeh’s
definition of the probability of a fuzzy set [4].

Another case when the limit idea enables us to select a unique generalization
is the case of a complement.

Definition 3. We say that a fuzzy set S′ is a complement to a fuzzy set S if
for every sequence Sn of crisp sets for which Sn → S, we have −Sn → S′ for
the sequence of their complements −Sn.

Proposition 3. For every fuzzy set S with a continuous membership function
µ(x), its complement S′ is well-defined and its membership function is equal to
µS′(x) = 1− µ(S).

The limit idea is not a panacea. While the above idea works well for defining
probability, it is not a panacea. Let us show, for example, that this idea does
not lead to a unique definition of a union or intersection of two fuzzy sets.

Indeed, ideally, we should be able to define the intersection of two fuzzy sets
S and S′ in a similar manner:

– we say that a fuzzy set is a union S ∪ S′ of fuzzy sets S and S′ if for every
two sequences of crisp sets Sn → S and S′

n → S′ imply Sn ∪ S′
n → S ∪ S′;

– similarly, we say that a fuzzy set is an intersection S ∩ S′ of fuzzy sets S
and S′ if for every two sequences of crisp sets Sn → S and S′

n → S′ imply
Sn ∩ S′

n → S ∩ S′.

Alas, it turns out that for different sequences Sn and S′
n, we get different limits.

Indeed, let us consider, for example, the two identical fuzzy sets S = S′ both
corresponding to complete ignorance µS(x) = µS′(x) = 0.5. For this membership
function, the construction from the proof of Proposition 1 leads to the sets

Sn =
∪
k

[
k

n
,
k

n
+

1

2
· 1
n

)
. (7)

If we use these sets as sequences Sn and S′
n corresponding to both fuzzy sets S

and S′, then we get Sn ∪ S′
n = Sn ∩ S′

n = Sn, and thus, for the limit fuzzy sets,
we get µ(x) = 0.5 for all x.

Alternatively, we can still use Sn as a sequence of crisp sets approximating
the set S while using a different sequence

S′
n =

∪
k

[
k

n
+

1

2
· 1
n
,
k + 1

n

)
(8)

to approximate the set S′. In this case:

– the union Sn ∪ S′
n is the whole real line, so in the limit (6), we get µ(x) = 1

for all x;



– on the other hand, the intersection Sn ∩ S′
n consists of midpoints of all

intervals

[
k

n
,
k + 1

n

)
, so here, in the limit (6), we have µ(x) = 0.

Comment. In mathematical terms, the property that Sn → S implies P (Sn) →
P (S) is known as continuity. In these terms, we can say that:

– probability is a continuous function of sets (in the sense of convergence Sn →
S);

– complement is a continuous operation, while
– union and intersection are not continuous operations.

For such discontinuous operations, instead of a single limit value, we have an in-
terval of possible limit values. So maybe we can extend the limit idea to interval-
valued fuzzy sets?
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