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Abstract. In many real-life situations, e.g., in medicine, it is necessary
to process data while preserving the patients’ confidentiality. One of the
most efficient methods of preserving privacy is to replace the exact values
with intervals that contain these values. For example, instead of an exact
age, a privacy-protected database only contains the information that the
age is, e.g., between 10 and 20, or between 20 and 30, etc. Based on
this data, it is important to compute correlation and covariance between
different quantities. For privacy-protected data, different values from the
intervals lead, in general, to different estimates for the desired statistical
characteristic. Our objective is then to compute the range of possible
values of these estimates.

Algorithms for effectively computing such ranges have been developed
for situations when intervals come from the original surveys, e.g., when
a person fills in whether his or her age is between 10 or 20, between 20
and 30, etc. These intervals, however, do not always lead to an optimal
privacy protection; it turns out that more complex, computer-generated
“intervalization” can lead to better privacy under the same accuracy,
or, alternatively, to more accurate estimates of statistical characteristics
under the same privacy constraints. In this paper, we extend the existing
efficient algorithms for computing covariance and correlation based on
privacy-protected data to this more general case of interval data.

1 Formulation of the Problem

Need for processing data in statistical databases. Often, we collect data for the
purpose of finding possible dependencies between different quantities. For exam-
ple, we collect all possible information about the medical patients with the hope
of finding out which factors affect different illnesses and which factors affect the
success of different cures. The resulting collection of records ri = (ri1, . . . , rip),
1 ≤ i ≤ n, is known as a statistical database since typically, statistical meth-
ods are used for look for possible dependencies; see, e.g., [7]. These statistical
methods are usually based on computing statistical characteristics such as mean
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√
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·
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.

Need for privacy protection. In many real-life situations, e.g., in medicine, it is
necessary to process data while preserving the patients’ confidentiality.

One of the most efficient methods of preserving privacy is to replace the exact
values with intervals that contain these values. For example, instead of an exact
age, a privacy-protected database only contains the information that the age is,
e.g., between 10 and 20, or between 20 and 30, etc.

In general, for each of p variables xi, 1 ≤ i ≤ p, we fix some thresholds
ti,1 < ti,2 < . . . < ti,ni (e.g., 0, 10, 20, 30, . . . , for age), and replace each
original value xi with the range [ti,k, ti,k+1] that contains this value. In the
above example, the actual age of 19 will be replaced by the range [10, 20].

Need to process corresponding interval data. Based on this interval data, it is
important to compute the values of different statistical characteristics such as
correlation and covariance between different quantities.

For privacy-protected data, for each statistical characteristic C(v1, . . . , vm),
different values vi from the given intervals [vi, vi] lead, in general, to different
estimates C(v1, . . . , vm). Thus, it is necessary to compute the range of possible
values of these estimates:

C([v1, v1], . . . , [vm, vm])
def
=

{C(v1, . . . , vm) : v1 ∈ [v1, v1], . . . , vm ∈ [vm, vm]}. (1)

What was known before. For most statistical characteristics, the problem of
computing the range (1) under general interval uncertainty is NP-hard; see, e.g.,
[6]. However, for the above-described privacy-related case, feasible algorithms are
possible for computing many statistical characteristics, in particular, covariance
and correlation; see, e.g., [2–6].

Need to go beyond the threshold-based “intervalization”. In the above threshold-
based “intervalization”, we replace each data point r = (r1, . . . , rp) with a box

b = [b1, b1]× . . .× [bp, bp] (2)

formed by the corresponding threshold intervals [bi, bi]. The larger the boxes,
the wider the resulting interval (1) – i.e., the less accurate our estimates of
the corresponding statistical characteristics. From this viewpoint, the boxes b
should be as narrow as possible. On the other hand, if they are too narrow,
e.g., if some box contains only one record, then the privacy of this record is
not well-protected. To properly protect privacy, we need to make sure for some
sufficiently large integer K, each box b contains at least K records (this is called



K-anonymity; see, e.g., [8]), and that for each variable xi, there are at least
ℓ different values of this variable coming from records within this box (this is
called ℓ-diversity); see, e.g., [1].

Boxes do not have to come from thresholds. The only reasonable restriction is
that they should form a subdivision in the sense that no two boxes should have a
common interior point. Under the privacy-motivated restrictions ofK-anonymity
and ℓ-diversity, we must look for a subdivision into boxes which leads to the
narrowest possible range C([v1, v1], . . . , [vp, vp]) of the desired characteristic. It
turns out (see, e.g., [9, 10]) that to attain this narrowest range, we need to use a
general subdivision into boxes which is more complex than the above threshold-
based one. Namely, in the above threshold-based subdivision into boxes, if two
records (r1, r2, . . .) and (r′1, r

′
2, . . .) have the same value of r1 (i.e., if r′1 = r1),

then the corresponding boxes have the same x1-interval [b1, b1]. In other words,
the selection of the x1-interval of the corresponding box depends only on the
value r1 and does not depend on the values of all other quantities r2, . . .

In contrast, in the optimal subdivision into boxes, the same value of r1,
depending on the values of other quantities r2, . . ., we may need boxes with
different x1-intervals. For example, if for some r2, . . ., there are more records
around the point (r1, r2, . . .), then, in the optimal subdivision into boxes, these
records are assigned to a narrower box, with narrower x1-intervals. On the other
hand, for the same value r1 and different values r′2, . . ., there may be much fewer
records around the point (r1, r

′
2, . . .). In this case, in the optimal subdivision

into boxes, these new records records are assigned to a wider box, with a wider
x1-interval.

Resulting problem and what we do in this paper. Since the optimal intervalization
goes beyond a simple threshold-based one, it is necessary to extend algorithms
for estimating covariance and correlation to such optimal intervalization. Such
algorithms are presented in this paper.

2 Analysis of the Problem

First comment: computing the upper endpoint Cjk can be reduced to comput-
ing the lower endpoint Cjk. One can easily check that if we replace each
value rik with its opposite r′ik = −rik, then the covariance Cjk changes sign:
C ′

jk = −Cjk. As a result, if we replace each original interval [rik, rik] with its
opposite [−rik,−rik], then the resulting range is the opposite to the original

range: [C ′
jk, C

′
jk] = [−Cjk,−Cjk]. This means, in particular, that C ′

jk = −Cjk

and therefore, that Cjk = −C ′
jk.

Thus, if we know how to compute lower endpoints, we can compute the lower
endpoint C ′

jk for the modified database, and then compute Cjk as Cjk = −C ′
jk.

Because of this reduction, in the following text, we will only consider the
problem of computing the lower endpoint Cjk.



Known facts from calculus: reminder. Each statistical characteristic
C(v1, . . . , vm) is a continuous function of its variables. It is known that the
range of a continuous function on a connected box [v1, v1]× . . .× [vm, vm] is an
interval [C,C] whose endpoints are the smallest possible value C of the function
C(v1, . . . , vm) on the box and its largest value C. It is also known that for each
continuous function on a closed box, its minimum and its maximum are attained
at some points.

When a function C(v1, . . . , vm) attains its minimum on the box at a point
(vmin

1 , . . . , vmin
i , . . . , vmin

m ), this means, in particular, that for every i, the one-

variable function f(vi)
def
= C(vmin

1 , . . . , vmin
i−1 , vi, v

min
i+1 , . . . , v

min
m ) attains its mini-

mum on the interval [vi, vi] at vi = vmin
i .

In general, a function f(x) of one variable attains its minimum on an interval
[x, x] either inside this interval or at one of its endpoints x or x. If the function
f(x) attains its minimum at an inside point, then its derivative at this point is
known to be equal to 0: f ′(xmin) = 0. If f(x) attains its minimum at x, then we
should have f ′(x) ≥ 0 because otherwise, if we had f ′(x) < 0, then, for a small
∆x, we would have f(x̃+∆x) < f(x), which contradicts to our assumption that
the value f(x) is the smallest. Similarly, if the function f(x) attains its minimum
at x, we should have f ′(x) ≤ 0.

Let us apply these facts to minimizing covariance. For covariance, as one can

easily check,
∂Cjk

∂rij
=

1

n
· (rik − Ek) and

∂Cjk

∂rik
=

1

n
· (rij − Ej). Thus, for the

values rmin
ij and rmin

ik at which the minimum of Cjk is attained, we have one of
the three options:

– either rij < rmin
ij < rij and

∂Cjk

∂rij
= 0, i.e., rmin

ik = Ek;

– or rmin
ij = rij and rmin

ik ≥ Ek;

– or rmin
ij = rij and rmin

ik ≤ Ek.

Thus:

– if rmin
ik > Ek, then the first and third cases are impossible, so we must have

rmin
ij = rij ;

– if rmin
ik < Ek, then the first and second cases are impossible, so we must have

rmin
ij = rij .

Therefore, if Ek < rik, then, due to rik ≤ rmin
ik , we get Ek < rmin

ik and therefore,
rmin
ij = rij . Similarly, if rik < Ek, then rmin

ij = rij .

Likewise, if rmin
ij > Ej , then rmin

ik = rik, and if rmin
ij < Ej , then rmin

ik = rik.

So, if Ej < rij , then rmin
ik = rik, and if rij < Ej , then rmin

ik = rik.
Thus, if we know the location of Ej in comparison to the interval [rij , rij ]

and we know the location of Ek in comparison with the interval [rik, rik], then,
with one exception, we can uniquely determine the minimizing values rmin

ij and

rmin
ik . For example, if Ek < rik and Ej < rij , then rmin

ij = rij and rmin
ik = rik. If

Ek < rik and rij ≤ Ej ≤ rij , then rmin
ij = rij ≥ Ej , hence rmin

ik = rik.



The only exception is when Ej ∈ [rij , rij ] and Ek ∈ [rik, rik]. In this case,
minimizing over rij , we have three calculus-motivated options:

– the first option is rmin
ik = Ek;

– the second option is rmin
ij = rij and rmin

ik ≥ Ek;

– the third option is rmin
ij = rij and rmin

ik ≤ Ek.

These conditions describe a set of possible pairs (rmin
ij , rmin

ik ), a set formed by
three line segments.

Similarly, minimizing over rik, we have three other calculus-motivated op-
tions:

– the first option is rmin
ij = Ej ;

– the second option is rmin
ik = rik and rmin

ij ≥ Ej ;

– the third option is rmin
ik = rik and rmin

ij ≤ Ej ,

which define a new three-segment set. The actual pair (rmin
ij , rmin

ik ) belongs to
both these sets and thus, belongs to their intersection. This intersection consists
of three points: (rij , rik), (rij , rik), and (Ej , Ek).

Let us show that the minimum cannot be attained at a point (Ej , Ek). Indeed,
let us show that if for some small∆ ̸= 0, we replace the value rij = Ej with a new
value r′ij = Ej +∆ and the value rik = Ek with a new value r′ik = Ek −∆, then
the covariance will decrease – which shows that the minimum is not attained
when rij = Ej and rik = Ek. To show this, we will use a known equivalent

expression for the covariance Cjk = M − Ej · Ek, where M
def
=

1

n
·

n∑
i=1

rij · rik.

When we replace the values rij and rik with the new values r′ij and r′ik, then

the mean Ej is replaced with E′
j = Ej +

∆

n
, the mean Ek is replaced with

E′
k = Ek − ∆

n
. The product rij · rik = Ej · Ek is replaced with

(Ej +∆)(Ek −∆) = Ej · Ek −∆ · Ej +∆ · Ek −∆2.

Thus, the quantity M is replaced with M ′ = M − 1

n
·∆ ·Ej +

1

n
·∆ ·Ek−

1

n
·∆2.

Hence, the new expression for the covariance takes the form

C ′
jk = M ′−E′

j ·E′
k = M− 1

n
·∆·Ej+

1

n
·∆·Ek−

1

n
·∆2−

(
Ej +

∆

n

)
·
(
Ek +

∆

n

)
.

After opening parentheses, we can see that the terms proportional to ∆ ·Ej and

∆·Ek cancel out, so we get C ′
jk = Cjk−

1

n
·∆2+

1

n2
·∆2 = Cjk−

n− 1

n2
·∆2 < Cjk.

This proves that when the box b contains the point (Ej , Ek), then we have only
two options for the minimizing values of rij and rik.



Towards an algorithm. In the privacy-protected database, boxes form a subdivi-
sion, so for each possible location of the pair (Ej , Ek), there is at most one box
that contains this pair. This box contains several records; let us denote their num-
ber by nb. In the minimizing selection, some of the pairs (rmin

ij , rmin
ik ) are equal

to (rij , rik) and some are equal to (rij , rik). Covariance does not change if we
re-order the records; thus, when computing covariance, we only care about how
many of nb records are equal to (rij , rik); let us denote this number by mb. One
can easily check that M , Ej , and Ek are linear functions of mb; thus, the covari-
ance Cjk = M−Ej ·Ek is a quadratic function ofmb: Cjk = C2 ·m2

b+C1 ·mb+C0,
for known values Ci.

To find the smallest possible value of Cjk, we want to find a value mb =
0, 1, . . . , nb for which this expression is the smallest possible. This can be done
by using the known properties of a quadratic function C2 ·m2

b + C1 ·mb + C0:

– when C2 > 0, it decreases when mb ≤ − C1

2C2
and increases after that;

– when C2 < 0, it increases when mb ≤ − C1

2C2
and decreases after that;

– when C2 = 0, it increases if C1 > 0 and decreases if C1 < 0.

On the interval where this expression is increasing, we take the smallest possible
value of mb; on the interval where this expression is decreasing, we take the
largest possible value of mb.

Towards an algorithm: final touch. What is important is where the values Ej and
Ek are in comparison with the endpoints of the corresponding intervals [rij , rij ]
and [rik, rik]. Thus, to find possible ranges of Ej , we can sort all the endpoints
rij and rij of the xj-intervals of different boxes into an increasing sequence
Tj,1 < Tj,2 < . . ., and consider all possible “small boxes” b = [Tj,ij , Tj,ij+1] ×
[Tk,ik , Tj,ik+1]. Thus, we arrive at the following algorithm for computing the
lower endpoint Cjk of the range of covariance.

3 Algorithm for Computing Covariance

What is given. We are given a finite collection of B boxes ba = [ba1, ba1]× . . .×
[bap, bap], 1 ≤ a ≤ B. These boxes form a subdivision, i.e., no two boxes have
a common interior point. For each of these boxes, we are given the number na

of records corresponding to this box. We are also given the indices j and k for
which we want to find the range of covariance values.

Algorithm. First, we sort all 2B j-endpoints baj and baj of all B boxes into
an increasing sequence Tj,1 < Tj,2 < . . ., and form ≤ 2B “small” j-intervals
[Tj,ij , Tj,ij+1].

Then, we similarly sort all 2B k-endpoints bak and bak of all B boxes into
an increasing sequence Tk,1 < Tk,2 < . . ., and form ≤ 2B “small” k-intervals
[Tk,ik , Tk,ik+1]. After that, we form “small boxes” by considering all possible



pairs b = [Tj,ij , Tj,ij+1] × [Tk,ik , Tj,ik+1] of a small j-interval and a small k-
interval. In our algorithms, we will analyze these small boxes one by one.

Let us now consider computations corresponding to a fixed small box b. As we
have shown, once the small box b = [bj , bj ]× [bk, bk] is fixed, then for almost all
original boxes (except for the original box ba0 that contains b), we can uniquely
determine the minimizing values rmin

ij and rmin
ik :

– if bj ≤ baj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if bj ≤ baj and bak ≤ bk ≤ bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if bj ≤ baj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and baj ≤ bk ≤ bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj ≤ bj ≤ baj and bk ≤ bak, then rmin
ij = baj and rmin

ik = bak;

– if baj ≤ bj ≤ bj ≤ baj and bak ≤ bk, then rmin
ij = baj and rmin

ik = bak.

This way, for each of the boxes ba (a ̸= a0), we can compute this box’s contri-
butions to the expressions M , Ej , and Ek as, correspondingly,

na

n
· rmin

ij · rmin
ik ,

na

n
· rmin

ij , and
na

n
· rmin

ik .

For the box ba0 = [ba0j , ba0j ]× [ba0k, ba0k], the corresponding contributions take
the form

ma0

n
· ba0j

· ba0k +
na0 −ma0

n
· ba0j · ba0k

,

ma0

n
· ba0j

+
na0 −ma0

n
· ba0j , and

ma0

n
· ba0k +

na0 −ma0

n
· ba0k

,

with an unknown ma0
. By adding the contributions corresponding to different

boxes and forming Cjk = M − Ej · Ek, we get an expression for Cjk which is
quadratic in ma0

. By using techniques described in the previous section, we can
compute the minimum of this expression over all possible integer valuesma0 from
0 to na0 . This minimum Cjk(b) is the smallest possible value of the covariance
under the assumption that the pair (Ej , Ek) belongs to the small box b.

To find the desired value Cjk, we can then compute the smallest of the values
Cjk(b) corresponding to all possible small boxes b.

Computational time for this algorithm. Sorting takes time O(B · log(B)). After
sorting, we get ≤ 2B j-intervals and ≤ 2B k-intervals, so we get O(B2) small
boxes – pairs of such intervals.

In the main part of the algorithm, for each of O(B2) small boxes b and
for each of B original boxes ba, we need finitely many computational steps.
Thus, the total number of computational steps for the main part is bounded
by O(B2) · B · const = O(B3). The total computation time is thus equal to
O(B · log(B)) + O(B3), i.e., to O(B3). This algorithm requires cubic time and
is, therefore, feasible.



Comment. According to [9], in some cases, better estimates for covariance come

from weighted estimates Cw
jk =

n∑
i=1

wi · (rij − Ew
j ) · (rik − Ew

k ), where

Ew
j =

n∑
i=1

wi · rij , Ew
k =

n∑
i=1

wi · rik,

and wi are appropriate weights for which wi ≥ 0 and
n∑

i=1

wi = 1. The weight

wi of a record depends only on the box ba that contains this record. In other
words, for some values Wa, wi = Wa for all the records ri from the box ba. In

these terms, the equality
n∑

i=1

wi = 1 means that
∑
a
na ·Wa = 1. The formula for

Cw
jk can be represented in an equivalent form, as Cw

jk = Mw − Ew
j · Ew

k , where

Mw
jk =

n∑
i=1

wi · rij · rik.

An analysis similar to the one from Section 2 shows that, in effect, the algo-
rithm from Section 3 can be applied for computing the range of this character-
istic as well; the only difference is that after selecting the values rmin

ij and rmin
ik ,

we need to use the weighted expressions Mw, Ew
j , and Ew

k instead of original
equal-weight expressions for M , Ej , and Ek.

4 Algorithms for Computing Correlation

Correlation: reminder. The Pearson’s correlation coefficient ρ describes the de-
gree of dependence between the inputs: if the coefficient ρ is close to 1 or to −1,
this means that there is a strong dependence; if this coefficient is close to 0, this
means that most probably, there is no dependence.

Correlation under interval uncertainty: practical meaning of lower and upper
bounds. Under interval uncertainty, instead of a single value ρ, we get an interval[
ρ, ρ

]
of possible values. For positive values ρ, the upper endpoint ρ describes

to what extent it is possible that there is a dependence between the inputs, while
the lower endpoint ρ describes to what extent, based on the available data, we
can guarantee that there is a dependence. Similarly, for negative values ρ, the
lower endpoint ρ describes to what extent it is possible that there is a dependence
between the inputs, while the upper endpoint ρ describes to what extent, based
on the available data, we can guarantee that there is a dependence.

Which endpoints are most important for statistical databases. As we have men-
tioned, one of the main purposes of statistical databases is to discover possible
new dependencies – dependencies which can then be checked and utilized. From
this viewpoint, the most important endpoints are: the upper endpoint for the
positive correlation, and the lower endpoint for the negative correlation.



Computing correlation: what is known. The relative importance of different
bounds is good news: while in general, computing correlation under interval
uncertainty is NP-hard (see, e.g., [6]), a feasible (i.e., polynomial-time) algo-
rithm is possible for computing the upper endpoint ρ for positive correlations
and the lower endpoint ρ for negative correlations; see, e.g., [2].

The known algorithm is rather slow. This algorithm is polynomial-time: for
inputs consisting of n records, its computation time is bounded by O(n5).

However, from the practical viewpoint, even for a small database with n =
1000 records, this means 1015 arithmetic operations: two weeks on a Gigaflop
machine; for n = 104 records, this already means an unrealistic amount of 1020

operations.

For statistical databases with privacy-motivated boxes, the known algorithm can
be made somewhat faster. In the algorithm from [2], we consider possible quadru-
ples (pairs of pairs) of vertices. In the privacy-motivated case, we have ≤ 4B
vertices, where B is the number of different boxes. Thus, the total number of
quadruples of vertices is O(B4).

According to [2], once the quadruple is fixed, then, within each box ba, we
select the same optimizing values rmax

ij and rmax
ik (or rmin

ij and rmin
ik ) for all the

records from this box. Thus, once the quadruple is fixed, we need to perform only
finitely many computations within each box – and then, as we did for covariance,
multiply the results by na. For each ofO(B4) quadruples, we therefore needO(B)
computational steps, to the total of O(B4) ·O(B) = O(B5).

This number of steps is still large, but since the number of boxes is much
smaller than the number of records, this number of steps is much smaller than
O(n5) – and thus, more realistic.
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