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Abstract

Similar techniques are often used to restore 1-D signals and 2-D images from distorted (“blurred”)
observations. From the purely mathematical viewpoint, 1-D signals are simpler, so it should be easier to
restore signals than images. However, in practice, it is often easier to restore a 2-D image than to restore a
1-D signal. In this paper, we provide a theoretical explanation for this surprising empirical phenomenon.
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1 Formulation of the Problem: A Surprising Empirical Phenomenon

Empirical fact. In his presentations at the IEEEWorld Congress on Computational IntelligenceWCCI’2012
(Brisbane, Australia, June 10–15, 2012), J. M. Mendel mentioned a puzzling fact [5]:

• replacing usual type-1 fuzzy techniques [2, 7, 10] with type-2 techniques (see, e.g., [4, 6]) often drastically
improves the quality of 2-D image processing,

• on the other hand, similar type-2 methods, in general, do not lead to any significant improvement in
processing 1-D signals (e.g., in predicting time series).

This is not just a weird property of type-2 techniques: J. Mendel recalled that he encountered a similar
phenomenon in the 1980s and early 1990s, when he was applying more traditional statistical methods to
processing geophysical signals and images; see, e.g., [3].

Why this is surprising. From the purely mathematical viewpoint, a 1-D signal means that we have
intensity values depending only on one variable (time), while a 2-D image means that we have intensity values
depending on two variables – namely, on two spatial coordinates. From this viewpoint, signals are a simplified
1-D version of the 2-D images. It is therefore natural to expect that it is easier to reconstruct a 1-D signal
than a 2-D image – but this is not what we observe.

What we do in this paper. In this paper, we provide a theoretical explanation for the above surprisingly
empirical phenomenon.

Comment. This justification is an additional argument that a picture is indeed worth a thousand words :-)

2 Main Idea Behind Our Theoretical Explanation of the Observed
Phenomenon

General description of distortion. Both in signal and in image processing, the observed signal is some-
what distorted (“blurred”):



2 C. Servin, V. Kreinovich: Images Are Easier to Restore than 1-D Signals

• for signals, the observed value x̃(t) at a moment t depends not only on the actual signal x(t) at this
moment of time, but also on the values of the signal x(t′) at nearby moments of time t′;

• similarly, for images, the value Ĩ(x, y) that we observe at a 2-D point with coordinates (x, y) depends
not only on the actual intensity I(x, y) at this spatial point, but also on spatial intensities I(x′, y′) at
nearby points (x′, y′).

Both in signal processing and in image processing, this distortion is usually well-described as convolution (see,
e.g., [8]), i.e., as a transformation from x(t) to

x̃(t) =

∫
K(t− t′) · x(t′) dt′ (1)

and from I(x, y) to

Ĩ(x, y) =

∫
K(x− x′, y − y′) · I(x′, y′) dx′ dy′. (2)

Our goal is to reconstruct the original signal x(t) (or the original image I(x, y)) from the distorted observations

x̃(t) (or Ĩ(x, y)).

An additional complication is that the functions K(t) (or K(x, y)) which describe the distortion are not
known exactly.

What we prove. In the next section, we show that in some reasonable sense, it is easier to restore a 2-D
image than to restore a 1-D signal. In precise terms, we prove that when we do not have any information
about the distortion function, then, in the ideal no-noise case:

• it is, in general, not possible to uniquely reconstruct the original 1-D signal;

• however, it is, in general, possible to uniquely reconstruct the original 2-D image.

Comment. In real life, when noise is present, the reconstruction is, of course, no longer unique, but the above
empirical fact shows that, with some accuracy, reconstruction of 2-D images is still possible.

3 Our Theoretical Explanation: Technical Details

Convolution can be naturally described in terms of Fourier transform. It is well known (see, e.g.,
[1, 8, 9]) that formula for the convolution can be simplified if we use Fourier transform

x̂(ω) =
1√
2π

·
∫ ∞

−∞
x(t) · exp(i · ω · t) dt, (3)

Î(ωx, ωy) =
1

2π
·
∫ ∫

I(x, y) · exp(i · (ωx · x+ ωy · y)) dx dy. (4)

Namely, in terms of Fourier transforms, the formulas (1) and (2) take a simple form

̂̃x(ω) = K̂(ω) · x̂(ω), (5)

̂̃
I(ωx, ωy) = K̂(ωx, ωy) · Î(ωx, ωy). (6)

In practice, we only observe discrete signals (images). In practice, we only observe finitely many
intensity values. For a signal, we measure the values x̃k corresponding to moments tk = t0 + k · ∆, where
∆t is the time interval between two consecutive measurements. For an image, we similarly usually measures
intensities Ĩk,ℓl corresponding to the grid points (xk, yℓ) = (x0 + k ·∆x, y0 + ℓ ·∆y).
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In the discrete case, Fourier transforms can be reformulated in terms of polynomials. Based on
the observed discrete value, we cannot recover the original signal (image) with high spatial resolution, we can

only hope to recover the values xk
def
= x(tk) and Ik,ℓ

def
= I(xk, yℓ) the original signal (image) on the same grid

(or an even sparser set. In terms of the observed and actual grid values, the Fourier transform formulas take
the form of an integral sums, such as

̂̃x(ω) = 1√
2π

·
N∑

k=0

(x̃k ·∆t) · exp(i · ω · k ·∆t). (7)

In terms of s
def
= exp(i · ω ·∆t), this formula takes the polynomial form ̂̃x(ω) = Px̃(s), where

Px̃(s)
def
=

N∑
k=0

(x̃k ·∆t) · sk. (8)

Similarly, we have x̂(ω) = Px(s) and K̂(ω) = PK(s), where

Px(s)
def
=

N∑
k=0

(xk ·∆t) · sk, PK(s)
def
=

N∑
k=0

(Kk ·∆t) · sk. (9)

For these polynomials, we have

Px̃(s) = PK(s) · Px(s). (10)

This equality holds for infinitely many different values s
def
= exp(i · ω ·∆x) corresponding to infinitely many

different values ω.

It is known that the difference between two polynomials of degree N is also a polynomial of the same
degree and thus, this difference can have no more than N roots. So, if the difference between two polynomials
is equal to 0 for infinitely many values s, this means that this difference is identically 0, i.e., that the equality
(10) holds for all possible values s.

Similarly, for the 2-D image case, for sx
def
= exp(i · ω ·∆x) and sy

def
= exp(i · ω ·∆y), we get

PĨ(sx, sy) = PK(sx, sy) · PI(sx, sy), (11)

where

PĨ(sx, sy)
def
=

N∑
k=0

N∑
ℓ=0

(
Ĩk,ℓ ·∆x ·∆y

)
· skx · sℓy, PK(sx, sy)

def
=

N∑
k=0

N∑
ℓ=0

(Kk,ℓ ·∆x ·∆y) · skx · sℓy, (12)

PI(sx, sy)
def
=

N∑
k=0

N∑
ℓ=0

(Ik,ℓ ·∆x ·∆y) · skx · sℓy. (13)

In terms of the resulting polynomials, reconstructing a signal (image) means factoring a poly-
nomial. In terms of the polynomial equalities (10) and (11), the problem of reconstructing a signal or an
image takes the following form: we know the product of two polynomials, and we want to reconstruct the
factors that lead to this product.

In 1-D case, there are many ways to represent a polynomial as a factor of two others. In the
1-D case, each complex-valued polynomial Px̃(s) of degree N has, in general, N complex roots s(1), s(2), etc.,
and can, therefore, be represented as |P (s)|2 = const · (s − s(1)) · (s − s(2)) · . . . In this case, there are many
factors, so there are many ways to represent it as a product of two polynomials.
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In the 2-D case, polynomial factorization is almost always unique. Interestingly, in contrast to the
1-D case, in which each polynomial can be represented as a product of polynomials of 1st order, in the 2-D
case, a generic polynomial cannot be represented as a product of polynomials of smaller degrees.

Indeed, to describe a general polynomial of two variables
n∑

k=0

n∑
ℓ=1

ckl · skx · sℓy in which each of the variables

has a degree ≤ n, we need to describe all possible coefficients ckl. Each of the indices k and ℓ can take n+ 1
possible values 0, 1, . . . , n, so overall, we need to describe (n+ 1)2 coefficients.

When two polynomials multiply, the degrees add: sm · sm′
= sm+m′

. Thus, if we represent P (s) as a
product of two polynomials, one of them must have a degree m < n, and the other one degree n − m. In
general:

• we need (m+ 1)2 coefficients to describe a polynomial of degree m and

• we need (n−m+ 1)2 coefficients to describe a polynomial of degree n−m,

• so to describe arbitrary products of such polynomials, we need (m+ 1)2 + (n−m+ 1)2 coefficients.

To be more precise, in such a product, we can always multiply one of the polynomials by a constant and divide
another one by the same constant, without changing the product. Thus, we can always assume that, e.g., in
the first polynomial, the free term c00 is equal to 1. As a result, we need one fewer coefficient to describe a
general product: (m+ 1)2 + (n−m+ 1)2 − 1.

To be able to represent a generic polynomial P (s) of degree n as such a product P (s) = Pm(s) · Pn−m(s),
we need to make sure that the coefficients at all all (n+1)2 possible degrees skx · sℓy are the same on both sides
of this equation. This requirement leads to (n+ 1)2 equations with (m+ 1)2 + (n−m+ 1)2 − 1 unknowns.

In general, a system of equations is solvable if the number of equations does not exceed the number of
unknowns. Thus, we must have (n+ 1)2 ≤ (m+ 1)2 + (n−m+ 1)2 − 1. Opening parentheses, we get

n2 + 2n+ 1 ≤ m2 + 2m+ 1 + (n−m)2 + 2 · (n−m) + 1− 1.

The constant terms in both sides cancel each other, as well as the terms 2n in the left-hand side and 2m +
2 · (n − m) = 2n in the right-hand side, so we get an equivalent inequality n2 ≤ m2 + (n − m)2. Opening
parentheses, we get n2 ≤ m2+n2−2·n·m+m2. Cancelling n2 in both sides, we get 0 ≤ 2m2−2·n·m. Dividing
both sides by 2m, we get an equivalent inequality 0 ≤ m − n, which clearly contradicts to our assumption
that m < n.

Concluding argument. Since a generic 2-D polynomial cannot be factorized, this means that, in general,
from the product PĨ(sx, sy) of two 2-variable polynomials (11), we can uniquely determine both factors – in
particular, we can uniquely determine the polynomial PI(sx, sy).

Based on the the observed value Ĩ(x, y), we can determine PĨ(sx, sy), and from the polynomial PI(sx, sy),
we can uniquely determine its coefficients Ik,ℓ · ∆x · ∆y, and thus, we can determine the original intensity
values Ik,ℓ = I(xk, yℓ). So, in the absence of noise, we can indeed (almost always) uniquely reconstruct a 2-D
image but not a 1-D signal. The statement is proven.
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