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Abstract

New good ideas sometimes propagate too slowly. To speed up their propagation, we need to have
a quantitative understanding of how ideas propagate. An intuitive understanding of ideas propagation
has led to several reasonable first-approximation mathematical models. These models provide a good
description of idea propagation on the later stages, when the ideas have already been adopted by a
reasonably large number of people. However, at the critically important early stages, these models are
not perfect: these models predict a linear growth with time, while empirical growth data is often better
described by a power law. In this paper, we provide an intuitive theoretical explanation of the observed
power-law growth.
c⃝2014 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem: Empirical Power-Law Growth Seems
to Be Inconsistent with Simple Intuitive Models of Idea Propa-
gation

Propagation of new tools and new ideas – one of the main ways science and technologies
progress. Science and technology are progressing at an enormous speed. New ideas appear all the time,
new tools are being designed all the time that enable us to do things that we could not do before – and do
them faster, more reliably, and more efficiently.

It is extremely important to come up with new ideas, to design new tools, but mere design is not enough:
it is important to make sure that these ideas and tools do not stay with their inventors, that they are widely
adopted and thus propagate.

Current first approximation model of ideas propagation. We would like to know how ideas propagate,
i.e., how the number n(t) of people who use the new idea grows with time t.

The main current model of idea propagation (see, e.g., [3, 6]) is as follows. For the idea to spread, people
who have not yet adopted the idea must learn about it – either from the original announcement or from
people who already use this idea. The probability that a new person will learn this new idea can thus be
estimated as a + b · n(t), where a is the probability to learn this idea from the original announcement, and
b is the probability to encounter one of the followers. Out of the total population of N people, N − n(t)
not-yet-users are exposed to this learning. Since the probability of each of them learning about the new idea
is proportional to a + b · n(t), the total number of people who learn about the new idea is proportional to
(a+ b · n(t)) · (N − n(t)). Thus, we arrive at the differential equation

dn

dt
= c · (a+ b · n(t)) · (N − n(t)),

where c is the corresponding proportionality coefficient. Thus, we get

dn

dt
= (A+B · n(t)) · (N − n(t)), (1)
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where A
def
= c · a and B

def
= c · b.

Many refinements of this model have been proposed (see, e.g., [6]), but the model (1) remains the main
first approximation model of knowledge propagation.

Solution to the first approximation model. By moving all the terms containing n to the left-hand side
and all the terms containing time t to the right-hand side, we conclude that

dn

(A+B · n) · (N − n)
= dt. (2)

Here, as one can easily check,

1

(A+B · n) · (N − n)
=

1

A+B ·N
·
(

B

A+B · n
+

1

N − n

)
. (3)

Thus, the left-hand side of the formula (2) takes the form

1

A+B ·N
·
(

B · dn
A+B · n

+
dn

N − n

)
=

1

A+B ·N
·
(
d(A+B · n)
A+B · n

− d(N − n)

N − n

)
. (4)

So, the integral of this left-hand side takes the form

1

A+B ·N
· (ln(A+B · n)− ln(N − n)) =

1

A+B ·N
· ln

(
A+B · n
N − n

)
. (5)

Hence, integrating both sides of the equation (2), we get

1

A+B ·N
· ln

(
A+B · n
N − n

)
= t+ C, (6)

where C is the integration coefficient. Therefore,

ln

(
A+B · n
N − n

)
= k · t+ c, (6)

where k
def
= A+ B ·N and c

def
= k · C. Raising e to the (equal) left- and right-hand sides of the equation (6),

we get
A+B · n
N − n

= C ′ · exp(k · t), (7)

where C ′ def
= exp(c). Multiplying both sides of this equation by N − n, we get

A+B · n = N · C ′ · exp(k · t)− n · C ′ · exp(k · t), (8)

hence
n · (B + C ′ · exp(k · t)) = C ′ · exp(k · t)−A, (9)

and, thus,

n(t) =
C ′ · exp(k · t)−A

B + C ′ · exp(k · t)
. (10)

If we start measuring time from the moment the idea was launched, so that n(0) = 0, then we conclude that
C ′ = A and thus, the formula (10) takes the form

n(t) =
A · (exp(k · t)− 1)

B +A · exp(k · t)
. (11)
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Initial propagation of a new idea: asymptotic description. Once the idea has spread, it will continue
spreading; the most critical period is right after the idea’s appearance, when t ≈ 0. For such t, asymptotically,
the first approximation model (11) implies that

n(t) ≈ c · t, (12)

where c
def
=

A · k
B +A

i.e., that n(t) linearly grows with time t.

Empirical data seems to be inconsistent with this asymptotics. While for medium and large times
t, the first approximation model (11) is in a reasonably good accordance with data, for small t, the empirical
data shows a clearly non-linear behavior (see, e.g., [1, 4]), a behavior which is better described by a power
function

n(t) ≈ c · ta (13)

for some a ̸= 1.

What we do in this paper. In this paper, we provide a simple intuitive model which explains such
power-law growth.

2 Our Explanation

Main idea behind our explanation: a qualitative description. To describe how a new idea propagates,
let us consider one specific tool (or idea) aimed at solving problems from a specific class. For example, this
tool may be a new (e.g., more efficient) software for solving large systems of linear equations.

Any person who sometimes solves the problem from the given class is a potential user of this tool. We
start with the initial situation, in which only the author of the tool knows it and uses it. Eventually, other
potential users start learning and using this tool.

When does a potential user start learning the new tool? On the one hand, there are clear benefits in learning
a new tool: once a person learns the new tool, he or she can solve the problems from the corresponding class
more efficiently.

• For example, efficiency may mean faster computations. In this case, the user will be able to solve large
systems of linear equations faster. This will save the time needed to solve such systems, and enable the
user to get the results faster.

• Alternatively, efficiency may mean that the user may be able to use fewer processors of a multi-processor
computer system to solve the same problem – so, if the user pays for the computer time, he or she will
be able to save some money by using this new software.

On the other hand, new tools, new ideas are not always easy to learn. One needs to invest some effort –
e.g., time – into learning the new tool. A potential user will start learning the new tool only if the expected
benefits exceed the investment needed to learn this tool. So, to figure out when a particular user will start
learning the tool, we need to be able to estimate both potential benefits and the required investment.

The potential benefits of using a tool depend on how often it will be used.

• Some potential users solve the corresponding problems very frequently. For such users, a potential
benefit may be large.

• Other users encounter the corresponding problems rarely. For such users, the potential benefit of learning
the new tool may be small.

In our analysis, we need to take this difference into account.
To estimate the difficulty of learning the tool, we need to take into account that this difficulty depends on

how many people have already learned it. If a tool is currently used only by a few folks, it is more difficult
to learn it: if there is a question about this tool, it is not so easy to find someone who knows the answer. On
the other hand, if the tool is widely used, learning this tool is much easier: when there is a question, one of
the nearby colleagues who is already using this tool can answer.
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For example, in a Computer Science department, it is easy for someone to learn one of the widely used
languages such as C++ or Java: whatever question may arise, there are plenty of people around who know
these languages already. On the other hand, a new operating system – e.g., a new version of Windows – may
be simpler to use than C++, but in the beginning, it is not so easy to learn – since in the beginning, very
few people have an experience of using it and therefore, it is difficult to find help if a problem arises.

Let us show how these qualitative ideas can be translated into a quantitative model.

Heavy users vs. light users. As we have mentioned, a user will start learning the new tool only if the
expected benefit of its use exceeds the expenses needed to learn this tool. For each user, the expected benefit
b of using the tool is proportional to the number x of the corresponding problems (per unit time) that this
user encounters: b = C · x, for some proportionality constant C (that describes the benefit of using the tool
to solve a single problem). From this viewpoint, each user can be characterized by the corresponding value x.

Let L(t) describe the cost of learning the tool at moment t. In this notation, at each moment of time
t, a potential user – characterized by the value x – will start learning the tool if the benefit C · x exceeds
the cost L(t): C · x > L(t). This condition can be equivalently described as x > x0(t), where we denoted

x0(t)
def
=

L(t)

C
. This ratio x0(t) serves as a threshold:

• “heavy users”, i.e., users for which x > x0(t), will start adopting the tool, while

• “light users”, i.e., users for which x < x0(t), will continue using previous tools.

Thus, at each moment of time, the state of propagation can be characterized by a single value – this threshold
value x0(t).

Distribution of users. To describe how knowledge propagates, we need to know how many users are there
with different levels of usage x. In many practical problems, the distribution is described by the power law
(see, e.g., [2, 7]), in which the proportion P (x ≥ X) of objects x for which x exceeds a given threshold X is
determined by a formula

P (x ≥ X) = C0 ·X−α (14)

for some constants C0 and α. The ubiquitous character of power laws was popularized by Benoit Mandelbrot
in his fractal theory; see, e.g., [5].

How easier is to to learn a new tool when we already have a given number n of users. In the
beginning, learning a new tool is not very easy, but ultimately, tools and techniques become relatively easy
to learn. For example:

• calculus used to be a great 17 century achievement, accessible only to a few great minds;

• however, nowadays, many kids study elements of calculus already in high school.

The reason why, in the beginning, learning a new tool is not easy is that a person learning the new tool
can go astray (and goes astray). The more advice we get, the more accurately we understand what needs to
be done – i.e., crudely speaking, the more accurate is the direction in which we are going – and thus, the
smaller amount of effort will be wasted. The resulting amount of effort can be viewed as proportional to the
inaccuracy with which we know the direction in which to go in learning the tool.

To find this direction, we can use the advice and expertise of the existing users. If we have n users that we
can consult, this means that we have n estimates for the desired direction. In general, according to statistics
(see, e.g., [8]), if we have n similar independent estimates of the same quantity, then, by taking their average,
we can get a combined estimate which is

√
n times more accurate than each of the individual estimates.

Thus, it is reasonable to assume that when we have n users, the amount of effort needed to learn the tool is

(approximately) equal to
b√
n

for some constant b.
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Resulting dynamics of propagation. As we have mentioned, a person starts learning a new tool if the
expected benefit of its use exceeds the cost of learning. Once we have n users, the cost of learning is equal to
b√
n
. The expected benefit of leaning the tool is proportional to the average number of problems encountered

by the potential user, i.e., to the number x; in other words, this benefit can be described as a · x for some

constant a. So, at this stage, only persons for which a · x ≥ b√
n

have an incentive to study this tool. This

condition can be described equivalently as x ≥ X0, where we denoted X0
def
=

b

a ·
√
n
. According to the power-

law distribution, out of N who may be potentially interested in this tool, the total number of persons who
have an incentive to study this tool is equal to

N · P (X > X0) = N · C0 ·X−α
0 = N · C0 ·

(
b

a ·
√
n

)−α

= c1 · nα/2, (15)

for an appropriate constant c1
def
= N · C0 ·

(
b

a

)−α

.

The rate
dn

dt
with which the number of users n increases is proportional to the number of potential users

who study the new tool, i.e., to the number of persons who have an incentive to study this tool. Thus, we
conclude that

dn

dt
= c2 · nα/2 (16)

for some constant c2.
Moving terms containing n to the left-hand side and terms containing t to the right-hand side, we get

n−α/2 · dn = c2 · dt. (17)

Now, we can integrate both sides. The result of this integration depends on the value α/2.
When α/2 = 1, integration leads to

ln(n) = c2 · t+ C, (18)

where C is the integration constant. We want to describe the starting period of idea propagation, when
n(t) = 0 for t = 0. For n = 0, however, the left-hand side of (18) is infinite, while the right-hand side is finite.
Thus, we cannot have α/2 = 1.

When α/2 ̸= 1, integration of (17) leads to

1

1− α/2
· n1−α/2 = c2 · t+ C. (18)

We want to satisfy the requirement that n(t) = 0 when t = 0. When t = 0, the right-hand side of the formula
(18) is equal to C. When n = 0, the value n1−α/2 is equal to 0 when 1−α/2 > 0 and to ∞ when 1−α/2 < 0.
Since C < ∞, the condition that n(t) = 0 when t = 0 can only be satisfied when 1 − α/2 > 0. In this case,
for t = 0, the formula (18) takes the form 0 = C. Substituting C = 0 into the formula (18), we conclude that

1

1− α/2
· n1−α/2 = c2 · t, (19)

hence
n1−α/2 = (c2 · (1− α/2)) · t. (20)

Raising both side by the power a
def
= 1/(1− α/2), we conclude that

n(t) = c · ta, (21)

where c
def
= (c2 · (1− α/2))a. This is exactly the formula that we wanted to explain.

Conclusion. So, the above light user–heavy users model indeed explains the observed power-law growth of
the number of adoptees of a new idea.
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