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Abstract

A usual statistical criterion for the quantities X and Y to be inde-
pendent is that the corresponding distribution function F (x, y) is equal
to the product of the corresponding marginal distribution functions. If
this equality is violated, this is usually taken to mean that X and Y are
dependent. In practice, however, the inequality may be caused by the fact
that we have a mixture of several populations, in each of which X and
Y are independent. In this paper, we show how we can distinguish true
dependence from such varying independence. This can also lead to new
measures to degree of independence and of varying independence.

1 Formulation of the Problem

Independence: a usual description (see, e.g., [8]). In statistics, indepen-
dence between two events A and B means that the probability of the event A
is not affected by whether the event B occurs or not. For example, the prob-
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ability of winning a lottery is the same where a person was born in January
or not. In precise terms, this means that the conditional probability P (A |B)
of A under the condition B is equal to the probability P (A) of the event A:
P (A |B) = P (A).

Since P (A |B) =
P (A&B)

P (B)
, the above equality is equivalent to

P (A&B) = P (A) · P (B).

For quantities X and Y , independence means that every event related to X
is independent from any event related to Y . In particular, for every two real
numbers x and y, the events X ≤ x and Y ≤ y are independent. In precise
terms, this means that

F (x, y) = FX(x) · FY (y), (1)

where F (x, y)
def
= P (X ≤ x&Y ≤ y) is a joint (cumulative) distribution function

of the pair (X,Y ) , and FX(x)
def
= P (X ≤ x) and FY (y)

def
= P (Y ≤ y) are

marginal distribution functions.
To derive the formula (1), we used very specific events X ≤ x and Y ≤ y.

However, one can show that once the formula (1) is satisfied, each event related
to X is independent from each event related to Y . Thus, the formula (1) can
be used as the definition of independence.

Alternatively, independence can be described in terms of the probability
density functions of the corresponding distributions:

ρ(x, y) = ρX(x) · ρY (y), (2)

where

ρ(x, y)
def
= lim

h→0

P (x− h ≤ X ≤ x+ h& y − h ≤ Y ≤ y + h)

(2h) · (2h)
is the probability density of the joint distribution, and

ρX(x) = lim
h→0

P (x− h ≤ X ≤ x+ h)

2h
and ρY (y) = lim

h→0

P (y − h ≤ Y ≤ y + h)

2h

are probability densities of the marginal distributions.

Varying independence: idea. In many real-life situations, we have a mix-
ture of several populations for each of which X and Y are independent. For
example, suppose that we analyze the dependence of salary on height, and sup-
pose that within each country, salary and height are independent. However, if
we bring together some people from Sweden (where people are taller and salaries
are higher) and from Greece (where people are somewhat shorter and salaries
are somewhat smaller), we may get a wrong conclusion that salary and height
are related.

This is an example of what we call varying independence: for each popula-
tion, X and Y are independent, but because we have a mixture of populations,
we get an illusion of dependence.
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Varying independence: description in precise terms. Let K be a total
number of different populations, let wk (1 ≤ k ≤ K) denote the probability that
a randomly selected object belongs to the k-th population, and let Ak(x) and
Bk(y) be marginal distribution functions corresponding to the k-th population.

We assumed that within each population, the quantities X and Y are inde-
pendent. Thus, for each population k, the joint probability distribution has the
form Ak(x) ·Bk(y), and the overall probability distribution has the form

F (x, y) =
K∑

k=1

wk ·Ak(x) ·Bk(y). (3)

Similar description in terms of probability densities. A similar formula
describes the probability density function ρ(x, y) of the joint distribution (3):

ρ(x, y) =

K∑
k=1

wk · ak(x) · bk(y), (4)

where ak(x) and bk(y) are the probabilities densities of the marginal distribu-
tions corresponding to the k-th population.

Problem: how to distinguish true dependence from varying indepen-
dence? A natural question is: how can we separate the situations when we
have two truly dependent variables X and Y from situations of varying inde-
pendence, for some small number of populations K?

This is the question that we will be answering in this paper.

2 Idealized Situation

Description of the idealized situation. To answer the above question,
let us start with an ideal situation, in which we know the exact values of the
probability distribution F (x, y) for all x and y, or, to be more precise, we know
the exact values F (xi, yj) for all the values (xi, yj) for some dense grid xi =
x0 + i · hx (1 ≤ i ≤ I) and yj = y0 + j · hy (1 ≤ j ≤ J).

Analysis of the ideal situation. In this case, for each i, the vector

F⃗i
def
= (F (xi, y1), . . . , F (xi, yJ))

is a linear combination of K vectors B⃗k
def
= (Bk(y1), . . . , Bk(yJ)) :

F⃗i =

K∑
k=1

wk ·Ak(xi) · B⃗k. (5)

Thus, every K + 1 vectors of this type will be linearly dependent.
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Vice versa, if every K+1 vectors F⃗i are linearly dependent, this means that
we can represent all the vectors F⃗i as a linear combination of ≤ K basic vectors,
i.e., that we have an expression (5) for all i. The equality between two vectors
means that all their components are equal, so we get (3) for all x and y.

This analysis leads us to the following way of checking whether a given
function F (x, y) has a representation of type (3).

Resulting algorithm. We are given a function F (x, y) and an integer K, and
we want to check whether the given function can be represented in the form (3).

For this checking, we consider vectors F⃗i
def
= (F (xi, y1), . . . , F (xi, yJ)) one by

one.
We try i′ = 1, 2, . . ., and out of the first i′ vectors we find the set S consisting

of K linearly independent ones. We start with an empty set S.

• Once the set S is formed for some i′, we check whether the next vector
F⃗i′+1 is linearly independent from S (see, e.g., [1]).

• If the vector F⃗i′+1 is a linear combination of vectors from the set S, then
we keep the set S intact and go to the next value i′.

• If F⃗i′+1 is linearly independent from S, then we add this vector F⃗i′+1 to
the set S, and also go to the next value i′.

If at some point, we get a set S with > K elements, we stop and conclude that
a representation of type (3) is impossible, i.e., we have a true dependence. On

the other hand, if after considering all I vectors F⃗1, . . . , F⃗I , we have a set S
with ≤ K vectors, this means that a representation of type (3) is possible, i.e.,
we have a varying independence.

Comment. Instead of the values F (xi, yj) of the joint distribution function,
we can similarly consider the values ρ(xi, yj) of the joint probability density
function.

3 General Case

Description of the general case. In general, we only know approximate
values of the distribution F (x, y). In this case, instead of the exact equality (3),
we have an approximate equality

F (xi, yj) ≈
K∑

k=1

wk ·Ak(xi) ·Bk(yj). (6)
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Formal description of the problem. A usual statistics-motivated way to
deal with approximate equalities is to use the least squares approach, i.e., to
look for the the values wk and the functions Ak(xi) and Bk(yj) for which the
sum of the least squares

s
def
=

I∑
i=1

J∑
j=1

(
F (xi, yj)−

K∑
k=1

wk ·Ak(xi) ·Bk(yj)

)2

(7)

attains the smallest possible value.

If, for this minimum smin, the corresponding average value a
def
=

smin

I · J
does

not exceed the accuracy σ2 with which we know the values F (xi, yj), this means
that the measurements are consistent with the varying independence. On the
other hand, if a > σ2, this means that varying independence cannot explain the
observed data, i.e., we have true dependence.

Analysis of the problem. We want to find K vectors B⃗k so that all I vectors
F⃗i can be approximately represented as linear combinations of these vectors. For
each i, the corresponding sum

J∑
j=1

(
F (xi, yj)−

K∑
k=1

wk ·Ak(xi) ·Bk(yj)

)2

(8)

is the square of the Euclidean (l2) distance between the vector F⃗i and the
corresponding linear combination, and

si
def
= min

wk,Ak(xi)

J∑
j=1

(
F (xi, yj)−

K∑
k=1

wk ·Ak(xi) ·Bk(yj)

)2

(9)

is the square of the smallest such distance, i.e., the square

d2(F⃗i,Lin(B⃗1, . . . , B⃗K))

of the distance between the vector F⃗i and the K-dimensional linear space gen-
erated by the vectors B⃗k (1 ≤ k ≤ K). In these terms, we are given I vectors

F⃗i, and we need to find the K-dimensional linear space for which the sum of
the distance s1 + . . .+ sI is the smallest possible.

It is known (see, e.g., [2, 4]) that the solution to this problem is the linear
space spanned by the first K singular vectors v⃗1, . . . , v⃗K of the matrix F (xi, yj),
i.e., the unit vectors for which

v⃗1 = arg max
∥v⃗ ∥=1

∥F v⃗ ∥, (10)

where F is the matrix with elements F (xi, yj), ∥v⃗ ∥
def
=
√
v21 + . . .+ v2J is the

usual Euclidean norm of a vector v⃗ = (v1, . . . , vJ), and for every k > 1,

v⃗k = arg max
∥v⃗ ∥=1,v⃗⊥v⃗1,...,v⃗⊥v⃗k−1

∥F v⃗ ∥. (11)
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The actual minimum smin can be described in terms of the corresponding

singular values σk
def
= ∥F v⃗k∥, as

smin = ∥F∥2F −
K∑

k=1

σ2
k, (12)

where

∥F∥F
def
=

√√√√ I∑
i=1

J∑
j=1

(F (xi, yj))2 (13)

is the Frobenius norm of the matrix F . There are many efficient algorithm
for Singular Value Decomposition (SVD), i.e., for computing the corresponding
singular vectors and singular values.

Comment. It is worth mentioning that squares of singular values are eigenval-
ues of the matrices FTF and FFT , i.e., matrices with elements

Mii′
def
=

J∑
j=1

F (xi, yj) · F (xi′ , yj) and M ′
jj′

def
=

I∑
i=1

F (xi, yj) · F (xi, yj′).

Resulting algorithm. The above analysis leads to the following algorithm
for checking whether a given joint distribution F (xi, yj) corresponds to varying
dependence with a given integer K and accuracy σ. For this checking:

• We first compute the Frobenius norm (13) of the matrix F with the com-
ponents F (xi, yj).

• Then, we apply SVD to the matrix F to compute the first K singular
values σ1, . . . , σK .

• After that, we compute smin by using the formula (12).

• Finally, we compute a =
smin

I · J
.

– If a ≤ σ2, then the available information is consistent with the vary-
ing dependence.

– If a > σ2, then we have true dependence.

Comments.

• If we are interested in the corresponding probability distributions Ak(x)
and Bk(y), then we can find them as linear combinations of the corre-
sponding singular vectors v⃗k.

• Alternatively, we can apply a similar analysis to the matrix ρ whose com-
ponents are the values ρ(xi, yj) of the probability density.
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• A similar problem can be formulated – and the same solution proposed
– when we have more than two variables X, Y , . . . , Z. The main chal-
lenge here is that while for two quantities X and Y , there exist efficient
algorithms for solving the corresponding problem, for several variables,
the corresponding decomposition problem is proven to be computation-
ally intractable (NP-hard); see, e.g., [3, 6]. Since in this case, there is no
universally applicable feasible algorithm, we have to use heuristic methods;
see, e.g., a survey [6].

4 Related Measures of Dependence and Varying
Dependence

Formulation of the problem. When the two quantities are not exactly
independent and are not exactly consistent with the assumption of varying in-
dependence, it is reasonable to ask how close the resulting distribution is to
independence or to varying independence.

Possible solution: idea. In view of the above analysis, a reasonable solution
to this problem is to use the smallest l2-distance between the given distribution
and possible K-varying independent ones as the desired measure. This leads us
to the following definition.

Definition 1. Let the values F (xi, yj) of the probability distribution be given,
and let a positive integer K be given. By a measure of deviation from K-varying

independence, we mean the value dK
def
=

√
smin

I · J
, where smin is the smallest

possible value of the quantity

s
def
=

I∑
i=1

J∑
j=1

(
F (xi, yj)−

K∑
k=1

wk ·Ak(xi) ·Bk(yj)

)2

(7)

over all possible values of wk, Ak(xi), and Bk(yj).

Comments.

• For K = 1, we get a measure of deviation from independence, i.e., a
measure of dependence.

• We can get alternative measures of dependence if instead of using the
values F (xi, yj) of the probability distribution, we use the values ρ(xi, yj)
of the probability density function.
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How to efficiently compute the resulting measures of dependence.
Similarly to the previous section, we can use known efficient algorithms for
SVD to compute the corresponding dependence measures dK . Namely:

• We first compute the Frobenius norm (13) of the matrix F with the com-
ponents F (xi, yj).

• Then, we apply SVD to the matrix F to compute the first K singular
values σ1, . . . , σK .

• After that, we compute smin by using the formula (12).

• Finally, we compute dK =

√
smin

I · J
.

5 Formulations in Terms of Copulas

Formulation of the problem. Whether two quantities X and Y are depen-
dent or independent does not change if we apply linear or non-linear transfor-
mations X → X ′ = f(X) and Y → Y ′ = g(Y ) to each of these quantities.
However, for the above definition of dependence measures, the numerical values
of the corresponding measures change if we apply such a re-scaling. It is there-
fore desirable to come up with alternative measures of dependence which would
not change under such transformations.

Copulas: brief reminder. A description of a joint probability distribution
of quantitiesX and Y which does not change under arbitrary re-scaling is known
as a copula; see, e.g., [5, 7]. A copula corresponding to the distribution F (x, y)
with marginal distributions FX(x) and FY (y) can be defined as

C(u, v) = F
(
F−1
X (u), F−1

Y (v)
)
, (14)

where F−1
X (u) and F−1

Y (v) denote functions which are inverse to FX(x)
and FY (y).

One can easily check that this expression indeed does not change if we re-
scale each of the quantities X and Y . Each copula is a probability distribution
on the unit square [0, 1]× [0, 1] whose marginals are uniform distributions.

Copulas corresponding to the independent and varying independent
cases. The case of two independent quantities corresponds to the copula
C(u, v) = u · v. For the varying independent case, from the formula (3), we
conclude that

C(u, v) =

K∑
k=1

wk · ak(u) · bk(v), (15)

where ak(u)
def
= Ak

(
F−1
X (u)

)
and bk(v)

def
= Bk

(
F−1
X (v)

)
.
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How to detect varying independence based on the copula: idea. Since
a copula is itself a probability distribution, we can use methods described in the
previous sections to detect varying dependence based on a copula.

Algorithm for the idealized case. Let us first consider the ideal case, when
for some grid values ui and vj (1 ≤ i ≤ I, 1 ≤ j ≤ J), we know the exact values
C(ui, vj) of the corresponding copula. We want co check whether, for a given
integer K, this copula corresponds to K-varying independence case, i.e., that
this copula can be presented in the form (15).

For this checking, we consider vectors C⃗i
def
= (C(ui, b1), . . . , C(ui, vj)) one by

one.
We try i′ = 1, 2, . . ., and out of the first i′ vectors we find the set S consisting

of K linearly independent ones. We start with an empty set S.

• Once the set S is formed for some i′, we check whether the next vector
C⃗i′+1 is linearly independent from S (see, e.g., [1]).

• If the vector C⃗i′+1 is a linear combination of vectors from the set S, then
we keep the set S intact and go to the next value i′.

• If C⃗i′+1 is linearly independent from S, then we add this vector C⃗i′+1 to
the set S, and also go to the next value i′.

If at some point, we get a set S with > K elements, we stop and conclude that
a representation of type (15) is impossible, i.e., we have a true dependence. On

the other hand, if after considering all I vectors C⃗1, . . . , C⃗I , we have a set S
with ≤ K vectors, this means that a representation of type (15) is possible, i.e.,
we have a K-varying independence.

Algorithm for the case of an approximately known copula. Let us now
assume that we know the copula values with a known accuracy σ. Then:

• We first compute the Frobenius norm of the matrix C with the compo-
nents C(ui, vj):

∥C∥F
def
=

√√√√ I∑
i=1

J∑
j=1

(C(ui, vj))2. (16)

• Then, we apply SVD to the matrix C to compute the first K singular
values σ1, . . . , σK .

• After that, we compute

smin = ∥C∥2F −
K∑

k=1

σ2
k. (17)

• Finally, we compute a =
smin

I · J
.
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– If a ≤ σ2, then the available information is consistent with the vary-
ing dependence.

– If a > σ2, then we have true dependence.

Copula-based measures of dependence: definition. We arrive at the
following definition.

Definition 2. Let the values C(ui, vj) of the copula be given, and let a positive
integer K be given. By a measure of deviation from K-varying independence,

we mean the value cK
def
=

√
smin

I · J
, where smin is the smallest possible value of

the quantity

s
def
=

I∑
i=1

J∑
j=1

(
C(ui, yj)−

K∑
k=1

wk · ak(ui) · bk(vj)

)2

(18)

over all possible values of wk, ak(ui) and bk(vj).

How to compute copula-based measures of dependence.

• First, we compute the Frobenius norm (16) of the matrix C with the
components C(ui, vj).

• Then, we apply SVD to the matrix C to compute the first K singular
values σ1, . . . , σK .

• After that, we compute smin by using the formula (17).

• Finally, we compute cK =

√
smin

I · J
.

6 Conclusions

In practice, it is often important to check whether two quantities X and Y
are statistically independent or not. Traditional statistical methods for such
checking assume that have a homogeneous population.

In reality, we often have a mixture of several populations. In this case,
even when X and Y are independent for each of the populations, the tradi-
tional homogeneity-based statistical criteria would (erroneously) conclude that
the quantities X and Y are dependent. It is therefore desirable to distinguish
between true dependence and varying independence – when we have a mixture
of several populations in each of which the quantities X and Y are statistically
independent.

In this paper, we formulate this problem in precise terms, and we describe
efficient algorithms for solving this problem. Specifically, we describe two algo-
rithms: the first algorithm assumes that we know the joint distribution F (x, y) of
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X and Y , the second algorithm only assumes that we know the copula describing
this dependence, i.e., the function C(u, v) for which F (x, y) = C(FX(x), FY (y)),
where FX(x) and FY (y) are the corresponding marginal distributions.

For quantities which are close to independence or to varying independence,
we can similarly describe a degree of dependence and a degree of K-varying de-
pendence (whereK is the number of different populations which form a mixture)
as, e.g., the mean square distance between the given distribution F (x, y) and
the nearest independent (or, correspondingly, K-varying independent) distribu-
tion. Similar measures of dependence can be formulated in terms of copulas.
We present efficient algorithms for computing these measures of dependence.

Acknowledgments

This work was supported by Grant No. P202/10/P360 from the Czech Sci-
ence Foundation, by the National Science Foundation grants HRD-0734825
and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721, by
Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes
of Health, and by a grant N62909-12-1-7039 from the Office of Naval Research.

This work was performed when M. Krmelova and M. Trnecka were visiting
the University of Texas at El Paso. The authors are thankful to Hung T. Nguyen
for valuable discussions.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, MA, 2009.

[2] G. H. Golub and C. F. van Loan, Matrix Computations, John Hopkins Press,
2013.

[3] J. Hastad, “Tensor rank is NP-complete”, Journal of Algorithms, 1990,
Vol. 11, pp. 644–654.

[4] J. Hopcroft and R. Kannan, Foundations of Data Science, to appear.

[5] P. Jaworski, F. Durante, W. K. Härdle, and T. Ruchlik (eds.), Copula Theory
and Its Applications, Springer Verlag, Berlin, Heidelberg, New York, 2010.

[6] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications”,
SIAM Reviews, 2009, Vol. 51, No. 3, pp. 455–500.

[7] R. B. Nelsen, An Introduction to Copulas, Springer Verlag, Berlin, Heidel-
berg, New York, 1999.

[8] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, Chapman and Hall/CRC Press, Boca Raton, Florida, 2011.

11


