
Why Triangular Membership Functions Work

Well in F-Transform: A Theoretical Explanation

Jaime Nava and Vladik Kreinovich
Center for Theoretical Research and its

Applications in Computer Science (TRACS)
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

jenava@miners.utep.edu, vladik@utep.edu

Abstract

In many practical applications, it is useful to represent a signal or
an image by its average values on several fuzzy sets. The corresponding
F-transform technique has many useful applications in signal and im-
age processing. In principle, we can use different membership functions.
Somewhat surprisingly, in many applications, the best results occur when
we use triangular membership functions. In this paper, we provide a pos-
sible theoretical explanation for this empirical phenomenon.

1 Triangular Membership Functions Work Well
in F-Transform: An Empirical Fact

Need for approximating signals and images. In many practical situa-
tions, it is important to process signals and images. From the mathematical
viewpoint, a signal is a function x(t) that describe the recorded value of the
corresponding quantity at different moments of time t. Similarly, an image is a
function I(x, y) that describe the intensity at a spatial point with coordinates
(x, y). In principle, we can represent each signal by describing, for each moment
t, the corresponding value x(t); however, this representation often requires too
much computer memory, more than the current device has – and/or too much
computer time to process all these values, more than the time we need to make
a decision. In such situations, it is desirable to come up with a smaller number
of values representing the original signal – the values from which the signal can
be reproduced with a good approximation accuracy.

1



Human experts can do it. We humans face the same problem when we need
to make an urgent decision based on an observed signal or an observed image.
In such situations, we do not use all the values, we usually base our decisions
on our perception of the signal – perception which is usually described by using
imprecise (“fuzzy”) words from natural language. For example, when an investor
uses a recorded performance of a certain stock to make a buy or sell decision,
the investor usually explains his or her decision by using arguments like “the
price of the stock was increasing rapidly last year, this year is somewhat slowed
down”. This explanation uses imprecise terms like “rapidly”, “somewhat”, etc.
Such decisions are often very successful. It is therefore reasonable to try to
teach computers how to make similar “fuzzy” arguments and decisions.

How to use imprecise expert knowledge: fuzzy techniques. A natural
way to describe imprecise natural-language words in computer-understandable
(precise) terms has been provided by fuzzy logic; see, e.g., [4, 5, 10]. In fuzzy
logic, each imprecise term is characterized by a function µ(x) which assigns,
to each possible value x of the corresponding quantity, a degree µ(x) ∈ [0, 1]
to which this value satisfies this property. For example, to describe a property
“cheap”, we assign, to each price x, the degree to which an expert considers this
price to be cheap.

From crisp approximation to fuzzy approximation: the notion of F-
transform. In order to come up with a reasonable way of using fuzzy tech-
niques for approximation, let us first analyze how we can use crisp (= precise,
non-fuzzy) ideas for such an approximation.

In the extreme case, when we can only store a single number to represent
the whole signal x(t) on a time interval [t, t], it is reasonable to represent this

signal by its average value x
def
=

1

t− t
·
∫ t

t

x(t) dt. Based on this average value,

we can reconstruct the original signal as x(t) ≈ x≈(t) = x for all t.
If we have enough space and/or computation time to represent the original

signal by n > 1 numbers, then it is reasonable to divide the corresponding time
interval [t, t] into n subintervals [t0, t1), [t1, t2), . . . , [tn−1, tn), with t0 = t and

tn = t, and store the averages over each subinterval xi
def
=

1

ti − ti−1
·
∫ ti

ti−1

x(t) dt.

Once we know these values, a natural way to reconstruct the original signal is
to take x≈(t) = xi when t ∈ [ti−1, ti].

This procedure can be equivalently represented in a more analytical form if
we introduce the characteristic functions Ai(t) of the corresponding intervals,
i.e., functions for which Ai(t) = 1 when t belongs to the i-th interval and
Ai(t) = 0 otherwise. These functions have the properties that for every t, only
one of them is different from 0, and their sum is always equal to 1. (Alternatively,
we can assign degree 1/2 to borderline points ti, then the sum is still equal to
1, but we may have two functions different from 0 for some t.)

2



In terms of the characteristic functions, the above expression for xi takes
the form

xi =

∫
Ai(t) · x(t) dt∫

Ai(t) dt
, (1)

and the resulting approximation for the original signal takes the form

x≈(t) =

n∑
i=1

Ai(t) · xi. (2)

In the crisp case, each value t either belongs to the i-th interval or not, so
the value Ai(t) is equal either to 1 or to 0. In the fuzzy case, instead of intervals,
we have fuzzy sets with membership functions Ai(t) which can take values from
the whole interval [0, 1]. Similarly to the crisp case, it is reasonable to require
that for each t, at most two functions Ai(t) are different from 0 and that the
sum

∑
i

Ai(t) is always equal to 1. Once such membership functions Ai(x) are

given, we can use the same formula (1) and (2) to describe the corresponding
approximation to the original signal.

The values xi form a fuzzy transform (or F-transform, for short), and the
resulting approximation x≈(t) is known as the inverse F-transform.

F-transform is useful in many practical applications. In many problems
related to signal and image processing, F-transform works very well; see, e.g.,
see, e.g., [3, 6, 7, 8, 9].

Triangular membership functions work well in F-transform: why? In
principle, we can use many different membership functions Ai(x) in F-transform.
Interestingly, in many practical applications, triangular membership functions
seem to work the best see, e.g., [3, 6, 7, 8, 9]. Until now, there was no theo-
retical explanation for this empirical fact. In this paper, we provide a possible
theoretical explanation for this empirical phenomenon.

2 A Possible Theoretical Explanation

Numerical values of time depend on choice of a measuring unit and
a starting point. Most applications of F-transform are to signal and image
processing. A signal x(t) describes how the value of the corresponding property
x changes with time t.

To describe a signal in a computer, we need to measure time, i.e., we need
to provide a numerical values for different moments of time. To describe such
values, we need to select a starting point (corresponding to t = 0) and a mea-
suring unit (corresponding to t = 1). If we change the starting point and/or
measuring unit, we get different numerical values for time.

If we replace the original starting point with a new starting point which is
s units before the previous one, then each original numerical value t will be

3



replaced by the new shifted value t′ = t+ s. Similarly, if we replace the original
measuring unit by a new unit which is λ times smaller (e.g., replace a minute
by a second which is 60 times smaller), then the resulting numerical values get
multiplied by λ, i.e., instead of the original value t, we get a new re-scaled value
t′ = λ · t.

It is reasonable to require that the class of approximations does not
change when we change a measuring unit and/or a starting point.
In general, an approximation (2) obtained by using F-transforms is a linear
combination of the membership functions Ai(x). On each interval, no more
than two membership functions are different from 0. So, on the interval on
which Ai(x) and Ai+1(x) are different from 0, an approximation takes the form

x≈(t) = xi ·Ai(t) + xi+1 ·Ai+1(t). (3)

On this interval, the formula
∑
i

Ai(t) = 1 takes the form Ai(x) + Ai+1(t) = 1,

hence Ai+1(x) = 1−Ai(x), and the formula (3) takes the form

x≈(t) = a+ b ·Ai(t), (4)

where a
def
= ai+1 and b

def
= xi − xi+1.

For different signals x(t), we get all possible combinations of xi and xi+1

and therefore, all possible combinations of the values a and b. Thus, the class
of all approximations has the form {a+ b ·Ai(t)}a,b, for all possible values of a
and b.

We are looking for techniques which work well for all possible signals, no
matter what measuring unit and/or starting point we choose. It is therefore
reasonable to require that the resulting class of approximating signals does not
change if we simply change the measuring unit and/or the starting point.

Towards formalizing this requirement. If we change the starting point,
then the numerical value of the time changes to t′ = t + s. In the new units,
we get family {a+ b ·Ai(t

′)}a,b, which, in the old units, takes the form {a+ b ·
Ai(t+ s)}a,b. We therefore require that these two classes coincide.

Similarly, if we change the measuring unit, then the numerical value of the
time changes to t′ = λ · t. In the new units, we get the family {a+ b ·Ai(t

′)}a,b,
which, in the old units, takes the form {a+ b ·Ai(λ · t)}a,b. We also require that
these two classes coincide.

A membership function is usually piece-wise monotonic, i.e., its domain con-
sists of finitely many intervals on each of which it is either non-decreasing or
non-increasing. We are interested in a local behavior, so we can assume that
the function A(t) is monotonic.

So, we arrive at the following definitions.

4



Definition. We say that a monotonic function A(t) leads to shift- and scale-
invariant approximations if for every real number s and for every positive real
number λ > 0, the classes {a+ b ·A(t+ s)}a,b and {a+ b ·A(λ · t)}a,b coincide
with the class {a+ b ·A(t)}a,b.

Proposition. A function A(t) leads to shift- and scale-invariant approxima-
tions if and only if this function is linear.

Proof.

1◦. If a function A(t) is linear, then the class {a+ b ·A(λ · t)}a,b consists of all
linear functions. It is easy to see that in this case, the classes {a+b ·A(t+s)}a,b
and {a+b ·A(λ · t)}a,b also consists of all linear functions and therefore, coincide
with the class {a+ b ·A(λ · t)}a,b.

2◦. Let us now assume that the function A(t) leads to shift- and scale-invariant
approximations. This means, in particular, that for every s, the classes {a+ b ·
A(t+ s)}a,b and {a+ b ·A(t)}a,b coincide, so every function from the first class,
including the function A(t+ s), belongs to the second class. In other words, for
every s, there exist values a(s) and b(s) (depending on s) for which, for every
t, we have

A(t+ s) = a(s) + b(s) ·A(t) (1)

2.1◦. Let us prove that the function A(t) is differentiable for all t.

It is known that a monotonic function is almost everywhere differentiable;
see, e.g., [1, 2]. Let t0 be a point at which the function A(t) is differentiable,

i.e., for which there exists a limit A′(t0) = lim
h→0

A(t0 + h)−A(t0)

h
. Let t be any

real number. We want to prove that the ratio
A(t+ h)−A(t)

h
also tends to a

limit when h tends to 0. Indeed, for s
def
= t− t0, the formula (1) takes the form

A(t) = a(s) + b(s) · A(t0) and A(t + h) = a(s) + b(s) · A(t0 + h). Substituting
these expressions into the desired ratio, we conclude that

A(t+ h)−A(t)

h
= b(s) · A(t0 + h)−A(t0)

h
.

The right-hand side of this equality tends to A′(t0), thus, the left-hand side
tends to the limit b(s) ·A′(t0). The statement is proven.

2.2◦. Let us now prove that the functions a(s) and b(s) are also differentiable.

Indeed, for two different values t1 ̸= t2, the formula (1) takes the form

A(t1 + s) = a(s) + b(s) ·A(t1); (2)

A(t2 + s) = a(s) + b(s) ·A(t2). (3)

5



Subtracting the equality (3) from the equality (2), we get A(t1+s)−A(t2+s) =
b(s) · (A(t1)−A(t2)), hence

d(s) =
A(t1 + s)−A(t2 + s)

A(t1)−A(t2)
. (4)

Since the function A(t) is differentiable, the right-hand side of the equality (4)
is differentiable in s. Therefore, the function b(s) is also differentiable.

From (2), we can now conclude that a(s) = A(t1 + s) − b(s) · A(t1) is also
differentiable. The statement is proven.

2.3◦. Now that we know that the functions A(t), a(s), and b(s) are all differen-
tiable, we can differentiate both sides of the formula (1) with respect to s. As
a result, we get the equality

A′(t+ s) = a′(s) + b′(s) ·A(t).

Substituting s = 0 into this formula, we get

A′(t) = a+ b ·A(t), (5)

where we denoted a
def
= a′(0) and b

def
= b′(0). Thus,

dA

dt
= a + b · A. Moving

all the terms containing A to the left-hand side and all the other terms to the
right-hand side, we get

dA

a+ b ·A
= dt. (6)

To integrate this equation, we consider two possible cases: b = 0 and b ̸= 0.

2.4◦. If b = 0, then
dA

a
= dt, so integrating both sides, we get

A

a
= t + C for

an integration constant C, i.e., we get A(t) = a · t+ a · C. In this case, A(t) is
a linear function.

2.5◦. If b ̸= 0, then we can introduce a new variable B
def
= A +

a

b
. In terms of

this new variable, a = b ·A = b ·B, so the formula (6) takes the form
dB

b ·B
= dt.

Integrating both sides, we get
1

b
· ln(B) = t+C, hence ln(B) = b · t+C1, where

we denoted C1
def
= b ·C. Exponentiating both sides, we get B(t) = C2 · exp(b · t),

where C2
def
= exp(C1), and thus,

A(t) = B(t)− a

b
= C2 · exp(b · t)−

a

b
. (7)

Let us show that such functions are not scale-invariant and thus, this case is
impossible.

Indeed, scale-invariance means, in particular, that for every λ > 0, the
function A(λ · t) has the form a(λ) + b(λ) · A(t) for appropriate a(λ) and b(λ).
For the function (7), this means that

C2 · exp(b · λ · t)− a

b
= a(λ) ·

(
exp(b · t)− a

b

)
+ b(λ). (8)

6



For λ = 2, if b > 0, the left-hand side of the formula (8) grow faster than the
right-hand side for t → +∞; for b < 0, the same is true when t → −∞. In both
cases, it is not possible to have the equality (8) for all t.

Thus, the case b ̸= 0 is indeed impossible, so the only shift- and scale-
invariant function A(t) is indeed linear. The proposition is proven.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of
Excellence) and DUE-0926721.

The authors are thankful to Irina Perfilieva for her encouragement and help-
ful discussions.

References

[1] R. G. Bartle, The Elements of Real Analysis, Wiley, New York, 1976.

[2] M. Hazewinkel, “Monotone function”, In: Encyclopedia of Mathematics,
Springer, 1994.

[3] M. Holčapek and T. Tichý, “A smoothing filter based on fuzzy transform”,
Fuzzy Sets and Systems, 2011, Vol. 180, pp. 69–97.

[4] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[5] H. T. Nguyen and E. A. Walker, First Course In Fuzzy Logic, CRC Press,
Boca Raton, Florida, 2006.

[6] V. Novák, M. Štěpnička, A. Dvořák, I. Perfilieva, V. Pavliska, and
L. Vavř́ıcková, “Analysis of seasonal time series using fuzzy approach”,
International Journal of General Systems, 2010, Vol. 39, No. 3, pp. 305–
328.

[7] V. Novák, M. Štěpnička, I. Perfilieva, and V. Pavliska, “Analysis of peri-
odical time series using soft computing techniques”, Proceedings of the 8th
International FLINS Conference on Computational Intelligence in Decision
and Control FLINS’2008, Madrid, Spain, September 21–24, 2008.

[8] I. Perfilieva, “Fuzzy transforms: theory and applications”, Fuzzy Sets and
Systems, 2006, Vol. 157, pp. 993–1023.

[9] I. Perfilieva, V. Novák, V. Pavliska, A. Dvořák, and M. Štěpnička, “Anal-
ysis and prediction of time series using fuzzy transform”, Proceedings of
IEEE World Congress on Computational Intelligence WCCI’2008, 2008,
pp. 3875–3879.

[10] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

7


