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Abstract. In some practical situations (e.g., in econometrics), it is important

to check whether a given linear subspace of a space Rm with component-wise
order is a lattice – and if it is not, whether it is at least a directed ordered space.

Because of the practical importance, it is desirable to have feasible algorithms

for solving these problems – which in Computer Science is usually interpreted
as algorithms whose computation time does not exceed a polynomial of the

length of the input. No such algorithms were previously known. In this paper,

we present feasible algorithms for solving both problems.

1. Introduction

In financial applications, it is important to check whether a vector space gener-
ated by non-negative vectors is lattice-ordered. Specifically, it was proven, in [3],
that the existence of appropriate minimum-cost insured portfolios is equivalent to
the fact that the linear space generated by the corresponding financial instruments
is lattice-ordered.

A real vector space V is called an ordered vector space if it is equipped with a
compatible partial order ≤, i.e., if for any vectors u, v and w from V , if u ≤ v, then
u + w ≤ v + w, and for any positive α ∈ R, αu ≤ αv. This order is a lattice if for
any two elements u and v, there exist the least upper bound u∨ v and the greatest
lower bound u ∧ v.

Every lattice order is also directed in the sense that for every two elements u
and v, there is an upper bound w for which u ≤ w and v ≤ w, and similarly there
is a lower bound. The set V + = {u ∈ V : u ≥ 0} is called a positive cone of V . It
satisfies the three axioms of a cone:

• K +K ⊆ K
• R+K ⊆ K
• K ∩ −K = {0}.

Vice versa, any subset of V satisfying the three above conditions is a positive cone
of a partial order on V . For a space to be directly ordered, is equivalent to the
condition that V = K −K, i.e., the positive cone K is generating.

Throughout the paper by Rm we will understand the coordinate-wise ordered
vector lattice

⊕m
i=1 R. By a subspaceW of Rm we understand any subspace ordered

by the order of Rm.
A vector subspace W of a vector lattice V is called a lattice-subspace if W

equipped with the ordering from V is a vector lattice on its own, i.e., if the least
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upper bound of any two elements from W exists in W (and automatically so does
the greatest lower bound of the elements). In [1], Abramovich et al. studied
the lattice-subspaces of Rn and gave equivalent conditions for a subspace to be a
lattice-subspace. In [5], the authors gave equivalent conditions for a subspace to be
directed. In this article, we improve the efficiency of both algorithms. Since it is
necessary to algorithmically compare two numbers, we will restrict our considera-
tions to algebraic numbers (numbers which are solutions to polynomial equations
with integer coefficients), for which we can use the Tarski-Seidenberg algorithm
(e.g. [2, 7] and [9] for rational numbers).

2. Lattice Order

In their paper [1], Abramovich, Aliprantis and Polyrakis gave necessary and
sufficient conditions for a subspace of Rm to be lattice-ordered. We assume that
the partial orders considered are coordinate-wise and that the subspace is 〈X〉, a
subspace generated by a set X of n linearly independent positive vectors. We put
the vectors from X in a n ×m matrix as columns and consider the associated set
Y = {y1, . . . , ym} of the rows of the matrix. Their main Theorem 2.6 asserts that
〈X〉 is lattice-ordered if and only if the set X admits a fundamental set of indices I,
which means that the subset YI ⊆ Y of vectors indexed by I is linearly independent,
and every vector from Y \ YI is a nonnegative linear combination of vectors from
YI . The authors also give a computer algorithm that, based on the above result,
determines if a given subspace is lattice ordered. The algorithm requires

(
m
n

)
steps,

which grows exponentially with m.
Below we propose an alternative algorithm, which is of polynomial time. For the

reasons mentioned in the introduction we limit our input to algebraic numbers. We
begin with functions INDEX(Y ) and PREFUND(Y ) that output a subset I of
indices and a subset YI of Y indexed by I, respectively. There are known (c.f. [4])
polynomial-time algorithms that solve linear programming problems. Therefore we
can have a polynomial-time (boolean output) routine NONNEGCOMB(yi|Z)
that checks if a vector yi ∈ Y is a nonnegative linear combination of vectors from
Z ⊆ Y .

input m;Y
INDEX(Y ) := {1, . . . ,m}; Z := Y
for(i = 1; i ≤ m; i+ +)

if NONNEGCOMB(yi|Z)
{ Z := Z \ {yi};
INDEX(Y ) := INDEX(Y ) \ {i} }

PREFUND(Y ) := Z

Also, there are known polynomial-time algorithms checking linear independence
of a set of vectors. Let LININDEP(Z) be such an algorithm checking linear
independence of a set Z of vectors. Now our main algorithm LATTICE(X) can
be written. Let GETY(X) be an algorithm returning the associated set Y given
the input X.

input m;X
Y := GETY(X)
if LININDEP(PREFUND(Y ))

LATTICE(X) = yes

else
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LATTICE(X) = no

In what follows we will prove that this algorithm is both correct and of polyno-
mial time.

Definition 2.1. A subset I ⊆ {1, . . . ,m} of indices of vectors from Y is called
pre-fundamental if

∀k∈{1,...,m} yk =
∑
i∈I

αiyi, for some αi ≥ 0

and

k ∈ I ⇔ αi = δik in any representation of the above type.

Here δik =

{
1 if i = k
0 if i 6= k

. In other words all vectors from Y are nonnegative

combinations of those from YI and for every i ∈ I the only such combination yielding
yi is yi = 1 · yi.

Lemma 2.2. Let I and J be two pre-fundamental sets of indices. Then for every
j ∈ J , yj = αlyl for some l ∈ I and αl > 0.

Proof. If j ∈ I then l = j and αl = 1. If j 6∈ I, then

(*) yj =
∑
i∈I

αiyi, αi ≥ 0

and for some i ∈ I \ J , αi > 0. If yi = αyj , for some α > 0 we are done by putting
l = i and αl = 1

α . We show that the remaining case is impossible. If yi is not a
scalar multiple of yj , then yi is a nonnegative linear combination of vectors from
YJ and it has a positive coefficient by some yj′ 6= yj , j

′ ∈ J . Since all coefficients
are nonnegative, yj′ will maintain a positive coefficient in (*) written in terms of
vectors from YJ . But since J is pre-fundamental, the vector equal to the right hand
side of (*) is not in YJ , which is a contradiction.

�

It follows, by reversing the roles of I and J in Lemma 2.2, that the sets YI and
YJ may only differ by positive scalar multiples of their elements. In particular we
have

Theorem 2.3. If the vectors from X admit a fundamental set of indices, then any
pre-fundamental set I of indices is also fundamental.

Proof. Let J be a fundamental set of indices. So J is also pre-fundamental, therefore
the vectors from YJ differ from those from YI by at most positive scalar multiples.
Since YJ is linearly independent, then so is YI and thus I is fundamental. �

Theorem 2.4. Let Y be the set of m vectors associated with a set X of positive
linearly independent vectors from Rm, then INDEX(Y ) is pre-fundamental.

Proof. Let I = INDEX(Y ) and Z = YI . It is clear that given that the set Y has
at least one nonzero vector, Z 6= ∅. Also is clear that for every index k ∈ I the
conditions from Definition 2.1 are satisfied. Let now k 6∈ I. If k = m then yk is
a nonnegative linear combination of vectors from Z, so the claim holds true. If
k = m − 1, then yk is a nonnegative linear combination of vectors from Z ∪ {ym}
which, in case that m ∈ I, is equal to Z and we are done. In case that m 6∈ I, ym−1
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is a nonnegative linear combinations of vectors from Z ∪ {ym} which may include
a nonzero contribution from ym. But ym is a nonnegative linear combination of
vectors from Z, so we conclude that ym−1 is also such a combination and thus
satisfies the conditions from the Definition 2.1. Similarly we proceed backwards
towards k = 1 to argue that all the indices 1 ≤ i ≤ m satisfy the conditions and
thus that I is pre-fundamental. �

Now we can prove the correctness of our algorithm.

Theorem 2.5. If X ⊆ Rm is a set of n positive linearly independent vectors, then
LATTICE(X) = yes if and only if the subspace 〈X〉 is lattice ordered.

Proof. (⇐) Assume that the subspace 〈X〉 is lattice-ordered. Then the set of vectors
X admits a fundamental set of indices by Theorem 2.6 from [1]. Call it J . On the
other hand I = INDEX(Y ) is pre-fundamental by Theorem 2.4. Therefore by
Theorem 2.3 the set I is linearly independent, which results in LATTICE(X) =
yes.

(⇒) If LATTICE(X) = yes, then the set PREFUND(Y ) is linearly inde-
pendent. Since by Theorem 2.4 I = INDEX(Y ) is pre-fundamental we conclude
that it is fundamental. Therefore the set X of vectors admits a fundamental set of
indices, so by Theorem 2.6 from [1] the subspace 〈X〉 is lattice-ordered.

�

Theorem 2.6. The algorithm LATTICE is polynomial-time.

Proof. The algorithm only once calls the routines GETY, LININDEP and PREFUND.
While the first two routines are polynomial-time on m, the third one calls m times
the polynomial-time routine NONNEGCOMB. Therefore the total time is poly-
nomial. �

3. Directed Order

In [5], the authors give equivalent conditions for determining when an n-dimensional
subspace W of Rm is directed. The associated algorithm runs in exponential time,
O(mn). Here, we present an algorithm for checking if the order is directed which
runs in polynomial time O

(
m4.5

)
. This algorithm is also restricted to vectors con-

sisting of algebraic numbers.

In order to determine if W+ is generating, we check that each element of the
basis of W can be expressed as a difference of two nonnegative vectors.

Let X = {x1, . . . , xn} be a basis for W . Define by x (i) the ith component of x,
where 1 ≤ i ≤ m. There exist polynomial-time algorithms (e.g. [4]) that check the
existence of algebraic numbers c1, . . . , cn which satisfy the inequalities

(3.1)

n∑
k=1

ck xk (i) ≥ 0

and

(3.2)

n∑
k=1

ck xk (i) + xj (i) ≥ 0
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for each j = 1, . . . , n and all i. Call SYSLINEQ an algorithm which checks for
solutions to 3.1 and 3.2. We then define DIRORDER as follows:

input X, m
if SYSLINEQ (X)

DIRORDER = yes

else
DIRORDER = no

We claim that DIRORDER correctly identifies directed subspaces, and that
it runs in polynomial time O

(
m4.5

)
. First, let us verify the correctness of the

algorithm:

Theorem 3.1. Let W ⊆ Rm with X = {x1, x2, . . . , xn} a basis for W and n < m.
Then W is directed if and only if DIRORDER(X) = yes.

Proof. If W = W+−W+, then for each element xj ∈ X there exist uj , vj ≥ 0 such
that xj = uj − vj . In turn, each uj and vj admit a unique linear combination of
the basis vectors: uj =

∑n
k=1 αkxk and vj =

∑n
k=1 βkxk; either may be taken to

satisfy 3.1. Note that

(3.3) xj = uj − vj =

n∑
k=1

(αk − βk)xk

By linear independence of X, we must have αk = βk when k 6= j, and αk − βk = 1
when k = j. The αk and βk are fully described by one another, and so we focus on
the βk as a solution also to 3.2. Indeed, since uj = vj + xj , we have

(3.4)

n∑
k=1

βkxk + xj = uj ≥ 0

which proves that the βk satisfy both inequalities, and so DIRORDER(X) = yes.
For the converse, if there exist c1, . . . , cn that satisfy 3.1 and 3.2, then set uj =∑n
k=1 ckxk +xj with vj =

∑n
k=1 ckxk, and we have uj , vj ≥ 0 where xj = uj − vj ,

so that W is directed.
�

Theorem 3.2. The algorithm DIRORDER is O
(
m4.5

)
.

Proof. The algorithm DIRORDER calls SYSLINEQ m times. Since SYS-
LINEQ is known to be O(m3.5) (e.g. [8]) , we may conclude that DIRORDER
is then O(m4.5). �
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