
Towards Designing Optimal Individualized

Placement Tests

Octavio Lerma1, Olga Kosheleva1,
Shahnaz Shahbazova2, and Vladik Kreinovich1

1University of Texas at El Paso
500 W. University

El Paso, TX 79968, USA
lolerma@episd.org, olgak@utep.edu, vladik@utep.edu

2Azerbaijan Technical University
Baku, Azerbaijan, shahbazova@gmail.com

Abstract

To find the current level of a student’s knowledge, we use a sequence
of problems of increasing complexity; if a student can solve a problem,
the system generates a more complex one; if a student cannot solve a
problem, the system generates an easier one. To find a proper testing
scheme, we must take into account that every time a student cannot solve
a problem, he/she gets discouraged. To take this into account, we define
an overall effect on a student by combining “positive” and “negative”
problems with different weights, and we design a testing scheme which
minimizes this effect.

1 Optimal Testing: Formulation of the Problem

Need for a placement test. Computers enable us to provide individualized
learning, at a pace tailored to each student. In order to start the learning
process, it is important to find out the current level of the student’s knowledge,
i.e., to place the student at an appropriate level.

Usually, such placement tests use a sequence of N problems of increasing
complexity; if a student is able to solve a problem, the system generates a more
complex one; if a student cannot solve a problem, the system generates an easier
one – until we find the exact level of this student. After this, the actual learning
starts.

A seemingly natural idea. A natural tendency is to speed up this prelimi-
nary stage and to get to actual leaning as soon as possible, i.e., to minimize the
number of problems given to a student.

1

Resulting solution: bisection. The solution to the corresponding optimiza-
tion problem is a well-known bisection procedure; see, e.g., [1]. To describe this
procedure, let us add, to the problems of levels 1 though N , two fictitious
“problems”:

• a trivial problem that everyone can solve – which will be called level 0;
and

• a very complex problem that no one can solve – which will be called level
N + 1.

In the beginning, we know that a student can solve a problem at level 0 (since
everyone can solve a problem at this level) and cannot solve a problem of level
N + 1 (since no one can solve problems at this level).

After the tests, we may know that a student can or cannot solve some prob-
lems. Let i be the highest level of problems that a student has solved, and let
j be the lowest level of problems that a student cannot solve. If j = i+ 1, then
we know exactly where the student stands: he or she can solve problems of level
i but cannot solve problems of the next complexity level i+ 1.

If j > i = 1, we need further testing to find out the exact level of knowledge
of this student. In the bisection method, we give the student a problem on

level m
def
= (i+ j)/2. Depending on whether a student succeeded in solving this

problem or not, we either increase i to m or decrease j to m.
In both cases, we decrease the interval by half. We started with an interval

[0, N + 1]. After s steps, we get an interval of width 2−s · (N + 1). Thus, when
2−s · (N + 1) ≤ 1, we get an interval of width 1, i.e., we have determined the
student’s level of knowledge. This requires s = ⌈log2(N + 1)⌉ steps.

The problem with bisection. The problem with bisection is that every
time a student is unable to solve a problem, he/she gets discouraged; in other
words, such problems have a larger effect on the student than problems which
the student can solve. For example, if a student is unable to solve any problem
already on level 1, this students will get a negative feedback on all ≈ log2(N+1)
problems – and will be thus severely discouraged.

How to solve this problem: an idea. To take the possible discouragement
into account, let us define an overall effect on a student by combining “positive”
and “negative” problems with different weights.

In other words, we will count an effect of a positive answer as one, and
the effect of a negative answer as w > 1. For positive answers, the student
simply gets tired, while for negative answers, the student also gets stressed and
frustrated. The value w can be determined for each individual student.

Resulting optimization problem. For each testing scheme, the resulting
effect on each student can be computed as the number of problems that this
student solved plus w multiplied by the number of problems that this student

2

did not solve. This effect depends on a student: for some students it may
be smaller, for other students it may be larger. As a measure of quality of a
testing scheme, let us consider the worst-case effect, i.e., the largest effect over
all possible students.

Our objective is to find a testing scheme which places all the students while
leading to the smallest effect on a student, i.e., for which the worst-case effect
is the smallest possible.

2 Optimal Testing: Analysis of the Problem and
the Resulting Algorithm

Testing scheme: a general description. A general testing scheme works as
follows. First, we ask a student to select a problem of some level n. Depending
on whether a student succeeds or not, we ask the student to solve a problem of
some other level n′ > n or n′ < n, etc.

As a result, we get the knowledge level of a student, i.e., we get the level
i for which the student can solve the problems on this level but cannot solve
problems on the next level i+ 1. This level i can take any of the N + 1 values
from 0 to N .

Deriving the main formula. Let e(x) denote the smallest possible effect
needed to find out the knowledge level of a student in a situation with x = N+1
possible student levels.

In the beginning, we know that a student’s level is somewhere between 0
and N . In the optimal testing scheme, we first ask a student to solve a problem
of some level n. Let us consider both possible cases: when the student succeeds
in solving this problem and when the student doesn’t.

If the student successfully solved the level n problem, this means that after
providing a 1 unit of effect on the student, we know that this student’s level is
somewhere between n and N . In this case, we must select among N − n+ 1 =
x− n possible student levels. By definition of the function e(x), the remaining
effect is equal to e(x − n). Thus, in this case, the total effect on a student is
equal to 1 + e(x− n).

If the student did not solve the problem of level n, this means that after
producing w units of effect on the student, we learn that the student’s level is
somewhere between 0 and n−1. The remaining effect to determine the student’s
level is equal to e(n). Thus, the total effect on the student is equal to w+ e(n).

The worst-case effect e(x) is, by definition, the largest of the two effects
1 + e(x− n) and w + e(n): e(x) = max(1 + e(x− n), w + e(n)). In the optimal
method, we select n (from 1 to N = x− 1) for which this value is the smallest
possible. Thus, we conclude that

e(x) = min
1≤n<x

max(1 + e(x− n), w + e(n)). (1)

3

The value n(x) corresponding to x can be determined as the value for which the
right-hand side of the expression (1) attains its minimum.

Comment. It is worth mentioning that similar formulas appear in other situ-
ations; see, e.g., [2, 3]. Because of this similarity, in this paper, we have used –
after a proper modification – some of the mathematics from [2, 3].

Towards the optimal testing scheme. For x = 1, i.e., for N = 0, we have
e(1) = 0. We can use the formula (1) to sequentially compute the values e(2),
e(3), . . . , e(N + 1) by using formula (1); while computing these values, we also
compute the corresponding minimizing values n(2), n(3), . . . , n(N + 1).

In the beginning, we know that a student’s level ℓ is between 0 and N , i.e.,
that 0 ≤ ℓ < N + 1. At each stage of the testing scheme, we know that the
student’s level ℓ is between some numbers i and j: i ≤ ℓ < j, where i is the
largest of the levels for which the student succeeded in solving the problem, and j
is the smallest level for which the student was unable to solve the corresponding
problem. In this case, we have j−i possible levels i, i+1, . . . , j−1. In accordance
with the above algorithm, we should thus ask a question corresponding to the
n(j − i)-th of these levels. If we count from 0, this means the level i+ n(j − i).
Thus, we arrive at the following algorithm.

Resulting optimal testing scheme. First, we take e(1) = 0, and sequen-
tially compute the values e(2), e(3), . . . , e(N + 1) by using the main formula
(1), while simultaneously recording the corresponding minimizing values n(2),
. . . , n(N + 1).

At each stage of testing, we keep track of the bounds i and j for the student’s
level. In the beginning, i = 0 and j = N +1. At each stage, we ask the student
to solve a problem at level m = i+ n(j − i).

• If the student succeeds in solving this problem, we replace the original
lower bound i with the new bound m.

• If the student did not succeed in solving the problem on levelm, we replace
the original upper bound j with the new bound m.

We stop when j = i+ 1; this means that the student’s level is i.

Example 1. Let us consider an example when N = 3 and w = 3. In this
example, we need to compute the values e(2), e(3), and e(4).

• We take e(1) = 0.

• When x = 2, the only possible value for n is n = 1, so

e(2) = min
1≤n<2

{max{1 + e(2− n), 3 + e(n)}} =

max{1 + e(1), 3 + e(1)} = max{1, 3} = 3.

Here, e(2) = 3, and n(2) = 1.

4

• To find e(3), we must compare two different values n = 1 and n = 2:

e(3) = min
1≤n<3

{max{1 + e(3− n)), 3 + e(n)}} =

min{max{1 + e(2), 3 + e(1)},max{1 + e(1), 3 + e(2)}} =

min{max{4, 3},max{1, 6}} = min{4, 6} = 4.

Here, the minimum is attained when n = 1, so n(3) = 1.

• To find e(4), we must consider three possible values n = 1, n = 2, and
n = 3, so

e(4) = min
1≤n<4

{max{1 + e(4− n), 3 + e(n))}} =

min{max{1 + e(3), 3 + e(1)},max{1 + e(2), 3 + e(2)},

max{1 + e(1), 3 + e(3)}} =

min{max{5, 3},max{4, 6},max{1, 7}} =

min{5, 6, 7} = 5.

Here, the minimum is attained when n = 1, so n(4) = 1.

So here, the optimal testing procedure is as follows. First, we have i = 0 and
j = N+1 = 4, so we ask a student to solve a problem of levelm = i+n(j−i) = 1.

If a student did not succeed in solving this level 1 problem, we replace the
original upper bound j with the new value j = 1. Now, j = i+1, so we conclude
that the student is at level 0.

If the student succeeds in solving the level 1 problem, we take i = 1 (and keep
j = 4 the same). In this case, the next problem is of level m = i+ n(j − i) = 2.

If the student fails to solve the level 2 problem, then we replace the original
upper bound j with the new value j = m = 2. Here, j = i+ 1, so we conclude
that the student is at level 1.

If the student succeeds is solving the problem at level 2, then we replace
the previous lower bound i with the new bound i = m = 2. Now, we give the
student the next problem of level i+ n(j − i) = 2 + n(4− 2) = 2 + 1 = 3.

If the student fails to solve this problem, then we replace the original upper
bound j with the new value j = m = 3. Here, j = i + 1, so we conclude that
the student is at level 2.

If the student succeeds in solving the problem at level 3, then we replace the
previous lower bound i with the new bound i = m = 3. Here, j = i+ 1, so we
conclude that the student is at level 2.

Comment. In this case, the optimal testing scheme is the most cautious one,
when we increase the level by one every time. This way, we are guaranteed that
a tested student has no more than one negative experience.

5

Example 2. Let us now consider an example when N = 3 and w = 1.5.

• We take e(1) = 0.

• When x = 2, then

e(2) = min
1≤n<2

{max{1 + e(2− n), 3 + e(n)}} =

max{1 + e(1), 1.5 + e(1)} = max{1, 1.5} = 1.5.

Here, e(2) = 1.5, and n(2) = 1.

• To find e(3), we must compare two different values n = 1 and n = 2:

e(3) = min
1≤n<3

{max{1 + e(3− n)), 1.5 + e(n)}} =

min{max{1 + e(2), 1.5 + e(1)},max{1 + e(1), 1.5 + e(2)}} =

min{max{2.5, 1.5},max{1, 3}} = min{2.5, 3} = 2.5.

Here, the minimum is attained when n = 1, so n(3) = 1.

• To find e(4), we must consider three possible values n = 1, n = 2, and
n = 3, so

e(4) = min
1≤n<4

{max{1 + e(4− n), 1.5 + e(n))}} =

min{max{1 + e(3), 1.5 + e(1)},max{1 + e(2), 1.5 + e(2)},

max{1 + e(1), 1.5 + e(3)}} =

min{max{3.5, 1.5},max{2.5, 3},max{1, 4}} =

min{3.5, 3, 4} = 3.

Here, the minimum is attained when n = 2, so n(4) = 2.

So here, the optimal testing procedure is as follows. First, we have i = 0 and
j = N+1 = 4, so we ask a student to solve a problem of levelm = i+n(j−i) = 2.

If a student did not succeed in solving the level 2 problem, we replacing the
original upper bound j with the new value j = 2. Now, we ask the student to
solve a problem on level m = i + n(j − i) = 1. If a student succeeds, his/her
level is 1; if the student does not succeed, his/her level is 0.

If the student succeeds in solving the level 2 problem, we take i = 2 (and keep
j = 4 the same). In this case, the next problem is of level m = i+ n(j − i) = 3.
If a student succeeds, his/her level is 3; if the student does not succeed, his/her
level is 2.

Comment. In this case, the optimal testing scheme is the bisection.

6

Computational complexity. For each n from 1 to N , we need to compare
n different values. So, the total number of computational steps is proportional
to 1 + 2 + . . .+N = O(N2).

Additional problem. When N is large, N2 may be too large. In some
applications, the computation of the optimal testing scheme may takes too long.
For this case, we have developed a faster algorithm for producing a testing
scheme which is only asymptotically optimal.

3 A Faster Algorithm for Generating an Asymp-
totically Optimal Testing Scheme

Description of the algorithm. First, we find the real number α ∈ [0, 1] for
which α+αw = 1. This value α can be obtained, e.g., by applying bisection [1]
to the equation α+ αw = 1.

Then, at each step, once we have the lower bound i and the upper bound j
for the (unknown) student level ℓ, we ask the student to solve a problem at the
level m = ⌊α · i+ (1− α) · j⌋.

Comments. This algorithm is similar to bisection, expect that bisection cor-
responds to α = 0.5. This makes sense, since for w = 1, the equation for α
takes the form 2α = 1, hence α = 0.5. For w = 2, the solution to the equation

α+ α2 = 1 is the well-known golden ratio α =

√
5− 1

2
≈ 0.618.

Computational complexity. At each step, we end up with either an interval
[i,m] whose width is 1−α from the original size, or with the interval [m, j] whose
width is α from the original size. Since α ≥ 1 − α, the worst-case decrease is
decrease by a factor of α. In k steps, we decrease the width N to ≤ N · αk.
Thus, we stop for sure when N · αk ≤ 1, i.e., after k = O(log(N)) problems.

At each level, we need a constant number of computation steps to compute
the next level, so the overall computation time is O(log(N)).

In what sense the resulting testing scheme is asymptotically optimal.
We will prove that for this scheme, there is a constant C such that for every N ,
the worst-case effect from this scheme differs from the worst-case effect of the
optimal testing scheme by no more than C.

Proof that the resulting testing scheme is indeed asymptotically op-
timal. Let us denote the optimal effect by e(N) and the worst-case effect
corresponding to our procedure by e0(N). Let us also denote K = 2−α. To
prove our result, we will prove that there exist constants C > 0 and C1 > 0
such that for every N , we have

K · log2(N) ≤ e(N)

7

and

e0(N) ≤ K · log2(N) + C − C1

N
.

By definition, e(N) is the smallest worst-case effect of all possible testing schemes,
thus, e(N) ≤ e0(N). So, if we prove the above two inequalities, we will indeed
prove that our algorithm is asymptotically optimal.

Proof of the first inequality. Let us first prove the first inequality by in-
duction over N . The value N = 1 represents the induction base. For this value,
K · log2(1) = 0 = e(1), so the inequality holds.

Let us now describe the induction step. Suppose that we have already proved
the inequality K · log2(n) ≤ e(n) for all n < N . Let us prove that K · log2(N) ≤
e(N).

Due to our main formula, e(N) is the smallest of the values

max{1 + e(x− n), w + e(n)}

over n = 1, 2, . . . , N−1. So, to prove that K · log2(N) is indeed the lower bound
for e(N), we must prove that K · log2(N) cannot exceed each of these values,
i.e., that

K · log2(N) ≤ max{1 + e(N − n), w + e(n)}

for every n = 1, 2, . . . , N − 1. For these n, we have n < N and N − n < N , so
for all these values, we already know that K · log2(n) ≤ e(n) and

K · log2(N − n) ≤ e(N − n).

Therefore,
1 +K · log2(N − n) ≤ 1 + e(N − n),

w +K · log2(n) ≤ w + e(n),

and
max{1 +K · log2(N − n), w +K · log2(n)} ≤

max{1 + e(N − n), w + e(n)}.

So, to prove the desired inequality, it is sufficient to prove that

K · log2(N) ≤

max{1 +K · log2(N − n), w +K · log2(n)}.

We will prove this inequality by considering two possible cases: n ≤ (1−α) ·N
and n ≥ (1− α) ·N .

• When n ≤ (1− α) ·N , we have N − n ≥ α ·N and therefore,

1 +K · log2(N − n) ≥ z,

8

where

z
def
= 1 +K · log2(α ·N) = 1 +K · log2(N) +K · log2(α).

Here, by definition of K = 2−α, we have log2(α) = −1/K, hence

1 +K · log2(α) = 0,

and so z = K · log2(N). In this case,

K · log2(N) ≤ z = 1 +K · log2(N − n) ≤

max{1 +K · log2(N − n), w +K · log2(n)}.

• When n ≥ (1− α) ·N , we have w +K · log2(n) ≥ t, where

t
def
= w +K · log2((1− α) ·N) = w +K · log2(N) +K · log2(1− α).

By definition of α, we have 1− α = αw, so log2(1− α) = w · log2(α) and
thus, w+K · log2(1−α) = w ·(1+K · log2(α)) = 0. Hence, t = K · log2(N).
So, in this case,

K · log2(N) ≤ t = w +K · log2(n) ≤

max{1 + log2(N − n), w +K · log2(n)}.

In both cases, we have the desired inequality. The induction step is proven, and
so, indeed, for every N , we have

K · log2(N) ≤ e(N).

Proof of the second inequality. Let us now prove that there exist real
numbers C > 0 and C1 > 0 for which, for all N ,

e0(N) ≤ K · log2(N) + C − C1

N
.

To prove this inequality, we will pick a value N0, prove that this inequality holds
for all N ≤ N0, and then use mathematical induction to show that it holds for
all N > N0 as well.

Induction basis. Let us first find the conditions on C, C1, and N0 under
which for all N ≤ N0,

e0(N) ≤ K · log2(N) + C − C1

N
.

Subtracting K · log2(N) and adding
C1

N
to both sides of the this inequality, we

get

C ≥ C1

N
+ e0(N)−K · log2(N)

9

for all N from 1 to N0. So, to guarantee that this inequality holds, if we have
already chosen N0 and C1, we can choose

C = max
1≤N≤N0

(
C1

N
+ e0(N)−K · log2(N)

)
.

Induction step. Let us assume that for all n < N (where N > N0), we have
proven that

e0(n) ≤ K · log2(n) + C − C1

n
.

We would like to conclude that

e0(N) ≤ K · log2(N) + C − C1

N
.

According to the definition of e0(N), we have

e0(N) = max{1 + e0(N − n), w + e0(n))},

where n = ⌊(1− α) ·N⌋. Due to induction hypothesis, we have

e0(n) ≤ K · log2(n) + C − C1

n

and

e0(N − n) ≤ K · log2(N − n) + C − C1

N − n
.

Therefore,

e0(N) ≤ max

{
1 +K · log2(N − n) + C − C1

N − n
,

w +K · log2(n) + C − C1

n

}
.

Thus, to complete the proof, it is sufficient to conclude that this maximum does
not exceed

K · log2(N) + C − C1

N
.

In other words, we must prove that

1 +K · log2(N − n) + C − C1

N − n
≤ K · log2(N) + C − C1

N

and that

w +K · log2(n) + C − C1

N − n
≤ K · log2(N) + C − C1

N
. (2)

10

Without losing generality, let us show how we can prove the second of these two
inequalities. Since n = ⌊(1−α) ·N⌋, the left-hand side of the inequality (2) can
be rewritten as

W1 +K · log2((1− α) ·N) +K · (log2(n)− log2((1− α) ·N)) + C − C1

n
.

We already know that w+K ·log2((1−α)·N) = K ·log2(N). Thus, the left-hand
side of (2) takes the simpler form

K · log2(N) +K · (log2(n)− log2((1− α) ·N)) + C − C1

n
.

Substituting this expression into (2) and canceling the terms K · log2(N) and
C in both sides, we get an equivalent inequality

K · (log2(n)− log2((1− α) ·N))− C1

n
≤ −C1

N
. (3)

Let us further simplify this inequality. We will start by estimating the difference
log2(n)− log2((1−α) ·N). To estimate this difference, we will use the interme-
diate value theorem, according to which, for every smooth function f(x), and
for arbitrary two values a and b, we have f(a)− f(b) = (a− b) · f ′(ξ) for some
ξ ∈ [a, b]. In our case,

f(x) = log2(x) =
ln(x)

ln(2)
,

a = n, and b = (1− α) ·N . Here,

f ′(ξ) =
1

ξ · ln(2)
,

so

f ′(ξ) ≤ 1

n · ln(2)
;

also, |a− b| ≤ 1, so, the difference log2(n)− log2((1− α) ·N) can be estimated
from above by:

log2(n)− log2((1− α) ·N) ≤ 1

n · ln(2)
.

Hence, the above inequality holds if the following stronger inequality holds:

K

n · ln(2)
− C1

n
≤ −C1

N
,

or, equivalently,
C1

N
≤ C1 −K/ ln(2)

n
. (4)

Here, n ≥ (1− α) ·N − 1, i.e.,

n

N
≥ (1− α)− 1

n
.

11

When N → ∞, we have n → ∞ and
1

n
→ 0. Thus, for every ε > 0, there exists

an N0 starting from which
1

n
≤ ε and hence, n ≥ (1 − α − ε) · N . For such

sufficiently large N , the inequality (4) can be proven if we have

C1

N
≤ C1 −K/ ln(2)

(1− α− ε) ·N
,

i.e., if we have

C1 ≤ C1 −K/ ln(2)

1− α− ε
. (5)

Since 0 ≤ α ≤ 1, for sufficiently large C1, this inequality is true. For such C1,
therefore, the induction can be proven and thus, the second inequality is true.

The statement is proven.

4 What If We Also Know Probabilities

Formulation of the problem. In some cases, we also know the frequencies
p0, p1, . . . , pN with which students are at the corresponding levels. These
frequencies can be alternatively described by the corresponding cumulative dis-

tribution function F (i)
def
= Prob(ℓ < i) = p0 + p1 + . . .+ pi−1. In this situation,

instead of the worst-case effect, we can alternatively consider the average effect
– and look for a testing scheme which minimizes the average effect.

Towards a scheme which minimizes the average effect. Let e(i, j) be the
smallest possible conditional average effect under the condition that a student’s
actual level is between i and j, i.e., that the student has successfully solves a
problem at level i and was unable to solve the problem at level j. (The original
situation corresponds to i = 0 and j = N + 1.)

In this situation, we ask the student to solve a problem at some level n ∈
(i, j). Let us consider both possible cases: when the student was able to solve
this problem, and when a student was unable to solve this problem.

If a student was able to solve the problem at level n, this means that the
student’s level is in between n and j. By definition of a function e(·, ·), the
expected remaining effect is equal to e(n, j). Thus, in this case, the overall
expected effect on the student is equal to 1 + e(n, j). The conditional probabil-
ity of this case can be obtained by dividing the probability F (j) − F (n) that
the student’s level is between n and j by the original probability F (j) − f(i)
that the student’s level is between i and j. Thus, this probability is equal to
F (j)− F (n)

F (j)− F (i)
.

If a student was unable to solve the problem at level n, this means that
the student’s level is in between i and n. By definition of a function e(·, ·),
the expected remaining effect is equal to e(i, n). Thus, in this case, the overall
expected effect on the student is equal to w+e(i, n). The conditional probability

12

of this case can be obtained by dividing the probability F (n) − F (i) that the
student’s level is between i and n by the original probability F (j)−f(i) that the

student’s level is between i and j. Thus, this probability is equal to
F (n)− F (i)

F (j)− F (i)
.

Thus, we have the expected effect 1+ e(n, j) with probability
F (j)− F (n)

F (j)− F (i)
,

and the expected effect w+e(i, n) with probability
F (n)− F (i)

F (j)− F (i)
. So, the overall

expected effect is equal to

F (j)− F (n)

F (j)− F (i)
· (1 + e(n, j)) +

F (n)− F (i)

F (j)− F (i)
· (w + e(i, n)).

Since we want to minimize the average effect, we select n for which this value
is the smallest possible. Thus, we arrive at the following formula:

Main formula: average case.

e(i, j) =

min
i≤n<j

(
F (j)− F (n)

F (j)− F (i)
· (1 + e(n, j)) +

F (n)− F (i)

F (j)− F (i)
· (w + e(i, n))

)
. (6)

Towards the optimal testing scheme. When j = i + 1, we know that
the student’s level is i, so no additional testing is needed and the effect is 0:
e(i, i+ 1) = 0. We can start with these values and sequentially use the formula
(6) to compute the values e(i, i+2), e(i, i+3), etc. In each case, we find n(i, j)
for which the minimum is attained.

Resulting optimal testing scheme. First, we take e(i, i + 1) = 0 for all i,
and use the formula (6) to sequentially compute the values e(i, i+2), e(i, i+3),
. . . , until we cover all possible values e(i, j). For each i and j, we record the
value n(i, j) for which the right-hand side of the formula (6) is the smallest.

At each stage of the testing, we keep track of the bounds i and j for the
student’s level. In the beginning, i = 0 and j = N + 1. At each stage, we ask
the student to solve a problem at level m = n(i, j).

• If the student succeeds in solving this problem, we replace the original
lower bound i with the new bound m.

• If the student did not succeed in solving the problem on levelm, we replace
the original upper bound j with the new bound j.

We stop when j = i+ 1; this means that the student’s level is i.

Computational complexity. For each of O(N2) pairs i < j of numbers from
0 to N , we need to compare j− i = O(N) different values. So, the total number
of computational steps is proportional to O(N2) ·O(N) = O(N3).

13

Comment. For large N , this computation time may be too large. It would
be nice – similarly to the worst-case optimization – to come up with a faster
algorithm even if it generates only an asymptotically optimal testing scheme.

Acknowledgments

This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
DUE-0926721.

The authors are thankful to all the participants of the Third World Con-
ference on Soft Computing (San Antonio, Texas, December 16–18, 2013) for
valuable suggestions.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[2] H. T. Nguyen, V. Kreinovich, and E. Kamoroff, “Asymmetric Informa-
tion Measures: How to Extract Knowledge From an Expert So That the
Expert’s Effort is Minimal”, International Journal of Automation and
Control (IJAAC), 2008, Vol. 2, No. 2/3, pp. 153–177.

[3] R. A. Trejo, J. Galloway, C. Sachar, V. Kreinovich, C. Baral, and
L. C. Tuan, “From Planning to Searching for the Shortest Plan: An
Optimal Transition”, International Journal of Uncertainty, Fuzziness,
Knowledge-Based Systems (IJUFKS), 2001, Vol. 9, No. 6, pp. 827–838.

14

