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Abstract—In this paper, we explore one of the possible ways
to make decisions under uncertainty: namely, we explain how
to define a fair price for a participation in such a decision, and
then select an alternative for which the corresponding fair price
is the largest. This idea is explained on the examples of interval
uncertainty, set-valued, fuzzy, and Z-number uncertainty.

I. FORMULATION OF THE PROBLEM

Need for decision making under uncertainty. In many
practical situations, we need to make a decision in sit-
uations when we have an incomplete information about
consequences of different decisions.

Fair price approach: an idea. When we have a full
information about an object, we can express our desirability
of each possible situation, e.g., by declaring a price that we
are willing to pay to get involved in this situation. Once these
prices are set, selecting the most preferable alternative is
easy: we just select the alternative for which the participation
price is the highest – since this is clearly the most desirable
alternative.

In decision making under uncertainty, the situation is not
so clear, since it is not easy to come up with a fair price. A
natural idea is to develop techniques for producing such fair
prices – these prices can then be used in decision making,
to select an appropriate alternative.

Comment. An alternative approach to decision making under
uncertainty – based on the extension of the notion of utility
to interval, fuzzy, and Z-number uncertainty – is described
in [1].

II. CASE OF INTERVAL UNCERTAINTY

Interval uncertainty: description. Let us start with a simple
case of uncertainty, in which, instead of knowing the exact
gain u of selecting an alternative, we only know the lower
bound u and the upper bound u on this gain – and we have no
information on which values from the corresponding interval
[u, u] are more probable or less probable. This situation, in
which the only information that we have about the gain u is
that this gain belongs to the interval [u, u], is called interval
uncertainty.
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Assigning fair price under interval uncertainty: descrip-
tion of the problem. We want to assign, to each interval
[u, u], a number P ([u, u]) describing the fair price of this
interval. There are several reasonable requirements that this
function must satisfy.

First, since in all cases, the gain is larger than or equal
to u and is smaller than or equal to u, it is reasonable to
require that the price should also be larger than or equal to
u and smaller than or equal to u: u ≤ P ([u, u]) ≤ u.

Second, if we keep the lower endpoint u intact but increase
the upper bound, this means that we are keeping all the
previous possibilities, but we are allowing new possibilities
with a higher gain. In this case, it is reasonable to require
that the corresponding price increases (or at least that it does
not decrease). In other words, if u = v and u < v, then
P ([u, u]) ≤ P ([v, v]).

Similar, if we dismiss some low-gain alternatives, this
should increase (or at least not decrease) the fair price. So,
in general, if u ≤ v and u ≤ v, then we should have
P ([u, u]) ≤ P ([v, v]).

To describe the third requirement, let us consider the
situation when we have two different alternatives. If these
alternatives are independent, in the sense that the overall gain
u+v of selecting both alternatives is equal to the sum of the
gains u and v obtained by selecting each of them, then it is
reasonable to require that the fair price of the joint selection
should be equal to the sums of fair prices corresponding to
both alternatives. Let us describe this requirement for the case
when the consequences of each alternative are only known
with interval uncertainty. About the gain u from the first
alternative, we only know that this (unknown) gain value
belongs to the interval [u, u]. About the gain v from the
second alternative, we only know that this gain belongs to
the interval [v, v]. The overall gain u+ v can thus take any
value from the interval [u, u] + [v, v] = [u+ v, u+ v]. Thus,
the above requirement takes the form

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]).

Thus, we arrive at the following definition.

Definition 1. By a fair price under interval uncertainty, we
mean a function P ([u, u]) that assigns, to every interval, a
real number, and which satisfies the following properties:

• u ≤ P ([u, u]) ≤ u for all u (conservativeness);
• if u = v and u < v, then P ([u, u]) ≤ P ([v, v])

(monotonicity);
• for all u, u, v, and v, we have

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v])



(additivity).

Proposition 1 [6] . Each fair price under interval uncertainty
has the form

P ([u, u]) = αH · u+ (1− αH) · u

for some real number αH ∈ [0, 1].

Comment. This expression was first proposed by the Nobelist
L. Hurwicz; it is known as the Hurwicz optimism-pessimism
criterion [3], [5].

Proof.

1◦. Let us first consider the value αH
def
= P ([0, 1]) cor-

responding to the simplest possible interval [0, 1]. Due to
conservativeness, we have 0 ≤ αH ≤ 1.

2◦. Let us now compute the value P ([0,m]) for positive
integer values m.

The interval [0,m] can be represented as the sum of m
intervals equal to [0, 1]: [0,m] = [0, 1]+. . .+[0, 1] (m times).
Thus, due to additivity, we have P ([0,m]) = P ([0, 1])+. . .+
P ([0, 1]) (m times) = αH + . . .+αH (m times) = αH ·m.

3◦. Now, let us compute the value z
def
= P

([
0,

1

n

])
for a

positive integer n.

In this case, the interval [0, 1] can be represented as the

sum of n intervals equal to
[
0,

1

n

]
: [0, 1] =

[
0,

1

n

]
+ . . .+[

0,
1

n

]
(n times). Thus, due to additivity, we have αH =

z+ . . .+z (n times), i.e., αH = z ·n and hence, z = αH · 1
n

.

4◦. For every two positive integers m > 0 and n > 0, the
interval

[
0,

m

n

]
can be represented as the sum of m intervals

equal to
[
0,

1

n

]
. Thus, P

([
0,

m

n

])
= m · P

([
0,

1

n

])
=

m ·
(
αH · 1

n

)
= αH · m

n
.

5◦. We have proved that for rational values r =
m

n
, we

have P ([0, r]) = αH · r. Let us prove that the same property
P ([0, x]) = αH · x holds for every positive real value x.

To prove this property, we use monotonicity. Each real
number x can be approximated, with arbitrary accuracy, by
two rational numbers r < x < r′. Due to monotonicity, we
have P ([0, r]) ≤ P ([0, x]) ≤ P ([0, r′]). Due to Part 4 of this
proof, we thus conclude that αH · r ≤ P ([0, x]) ≤ αH · r′.
When r → x and r′ → x, we get αH · r → αH · x and
αH · r′ → αH · x and thus, P ([0, x]) = αH · x.

6◦. Now, we are ready to prove the proposition. For each
u and u, we have [u, u] = [u, u] + [0, u − u]. Thus, due to
additivity,

P ([u, u]) = P ([u, u]) + P ([0, u− u]).

For the first term, due to conservativeness, we have u ≤
P ([u, u]) ≤ u and thus, P ([u, u]) = u. For the second term,
due to Part 5 of this proof, we get P ([0, u−u]) = αH ·(u−u).
Thus, the above additivity formula leads to

P ([u, u]) = u+ αH · (u− u),

which is exactly αH · u + (1 − αH) · u. The proposition is
proven.

III. CASE OF SET-VALUED UNCERTAINTY

Description of the case. In some cases, in addition to
knowing that the actual gain belongs to the interval [u, u],
we also know that some values from this interval cannot be
possible values of this gain. For example, if we gamble on
a situation with an unknown probability, we either get the
price or lose the money but we cannot gain any value in
between.

In general, instead of a (bounded) interval of possible
values, we can consider a more general bounded set of
possible values. It makes sense to consider closed bounded
sets, i.e., bounded sets S that contain all their limits points.
Indeed, if xn ∈ S for all n and xn → x, then, for any given
accuracy, x is undistinguishable from some possible value
xn – thus, in effect, the value x itself is possible.

Assigning fair price under set-valued uncertainty: de-
scription of the problem. We want to assign, to each
bounded closed set S, a number P (S) describing the fair
price of this set. There are several reasonable requirements
that this function must satisfy.

First, for the case when the set S is an interval, we must
get the fair price as described by Proposition 1.

Second, if we have two independent alternatives described
by sets S and S′, then we should have P (S+S′) = P (S)+
P (S′), where

S + S′ def
= {x+ x′ : x ∈ S&x′ ∈ S′}

is the set of all possible sums x+ x′.
Thus, we arrive at the following definition.

Definition 2. By a fair price under set-valued uncertainty,
we mean a function P (S) that assigns, to every bounded
closed set A, a real number, and which satisfies the following
properties:

• a restriction of this function to intervals S = [u, u] is
a fair price under interval uncertainty – in the sense of
Definition 1 (conservativeness);

• for every two sets S and S′, we have P (S + S′) =
P (S) + P (S′) (additivity).

Proposition 2. Each fair price under interval uncertainty has
the form P ([u, u]) = αH · supS+(1−αH) · inf S for some
real number αH ∈ [0, 1].

Proof. Due to conservativeness, for intervals S = [u, u]),
the function P (S) is a fair price under interval uncertainty
and thus, due to Proposition 1, has the form P ([u, u]) =
αH · u+ (1− αH) · u.



For each bounded set S, its infimum s
def
= inf S and its

supremum s
def
= supS are finite. By definition, inf S is a

lower bound (it is the greatest lower bound) and supS is
an upper bound (it is the least upper bound); thus, we have
S ⊆ [s, s]. Both inf S and supS are limits of points from
the set S; since the set S is closed, it contains these limits:
{s, s} ⊆ S ⊆ [s, s].

Let us prove that [s, s]+S = [2s, 2s]. Indeed, by definition
of set addition, if S′ ⊆ S′′, then S + S′ ⊆ S + S′′. In
particular, {s, s} ⊆ S ⊆ [s, s] implies that

[s, s] + {s, s} ⊆ [s, s] + S ⊆ [s, s] + [s, s].

Here, [s, s] + {s, s} = [2s, 2s] and similarly [s, s] + [s, s] =
[2s, 2s]. Thus,

[2s, 2s] ⊆ [s, s] + S ⊆ [2s, 2s]

and so, indeed, [s, s] + S = [2s, 2s].
Now, additivity implies that P (S) = P ([2s, 2s]) −

P ([s, s]). Substituting the expression P ([u, u]) = αH · u +
(1− αH) · u for the fair price of intervals into this formula,
we get the desired expression for P (S). The proposition is
proven.

IV. (CRISP) Z-NUMBERS, Z-INTERVALS, AND Z-SETS:
CASES WHEN THE PROBABILITIES ARE CRISP

Description of the case. In the previous sections, we
assumed that we are 100% certain that the actual gain is
contained in the given interval (or set). In reality, mistakes
are possible, so usually, we are only certain that u belongs
to the corresponding interval or set with some probability
0 < p < 1. In such situations, to fully describe our
knowledge, we need to describe both the interval (or set)
and this probability p.

In the general context, after supplementing the information
about a quantity with the information of how certain we are
about this piece of information, we get what L. Zadeh calls
a Z-number [11]. Because of this:

• we will call a pair consisting of a (crisp) number and a
(crisp) probability a crisp Z-number;

• we will call a pair consisting of an interval and a
probability a Z-interval; and

• we will call a pair consisting of a set and a probability
a Z-set.

In this section, we will describe fair prices for crisp Z-
numbers, Z-intervals, and Z-sets for situations when the
probability p is known exactly.

Operations on the corresponding pairs. When we have two
independent sequential decisions, and we are 100% sure that
the first decision leads to gain u and the second decision leads
to gain v, then, as we have mentioned earlier, the user’s total
gain is equal to the sum u+ v. In this section, we consider
the situation in which:

• for the first decision, our degree of confidence in the
gain estimate u is described by some probability p;

• for the second decision, our degree of confidence in the
gain estimate v is described by some probability q.

The estimate u + v is valid only if both gain estimates are
correct. Since these estimates are independent, the probability
that they are both correct is equal to the product p · q of the
corresponding probabilities. Thus:

• for crisp Z-numbers (u, p) and (v, q), the sum is equal
to (u+ v, p · q);

• for Z-intervals ([u, u], p) and [v, v], q), the sum is equal
to ([u+ v, u+ v], p · q);

• finally, for Z-sets (S, p) and (S′, q), the sum is equal to
(S + S′, p · q).

Let us analyze these cases one by one.

Case of crisp Z-numbers. Since the probability p is usually
known with some uncertainty, it makes sense to require that
the fair price of a crisp Z-number (u, p) continuously depend
on p, so that small changes in p lead to small change in the
fair price – and the closer our estimate to the actual value of
the probability, the closer the estimated fair price should be
to the actual fair price.

Thus, we arrive at the following definitions.

Definition 3. By a crisp Z-number, we mean a pair (u, p) of
two real numbers such that 0 < p ≤ 1.

Definition 4. By a fair price under crisp Z-number uncer-
tainty, we mean a function P (u, p) that assigns, to every
crisp Z-number, a real number, and which satisfies the
following properties:

• P (u, 1) = u for all u (conservativeness);
• for all u, v, p, and q, we have P (u+v, p·q) = P (u, p)+

P (v, q) (additivity);
• the function P (u, p) is continuous in p (continuity).

Proposition 3. Each fair price under crisp Z-number uncer-
tainty has the form P (u, p) = u − k · ln(p) for some real
number k.

Proof.

1◦. By additivity, we have P (u, p) = P (u, 1) + P (0, p). By
conservativeness, we have P (u, q) = u; thus, P (u, p) = u+
P (0, p). So, to find the general expression for the fair price
function P (u, p), it is sufficient to find the values P (0, p)
corresponding to u = 0.

2◦. For the values P (0, p), additivity implies that P (0, p·q) =
P (0, p) + P (0, q).

3◦. Let us first consider the value p = e−1 which corresponds
to ln(p) = −1. The corresponding value of P (0, p) will be
denoted by k

def
= P (0, e−1). Then, for p = e−1, we have the

desired expression P (0, p) = −k · ln(p).

4◦. Let us now consider the values P (0, e−m) for positive
integer values m. The probability e−m can be represented as
a product of m values e−1:

e−m = e−1 · . . . · e−1(m times).

Thus, due to additivity, we have

P (0, e−m) = P (0, e−1)+ . . .+P (0, e−1)(m times) = m ·k.



Since for p = e−m, we have ln(p) = −m, we thus have
P (0, p) = −k · ln(p) for these values p.

5◦. Now, let us estimate the value P (0, p) for p = e−1/n,
for a positive integer n.

In this case, the value e−1 can be represented as a product
of n probabilities equal to e−1/n: e−1 = e−1/n · . . . · e−1/n

(n times). Thus, due to additivity, we have k = P (0, e−1) =
P (0, e−1/n) + . . .+ P (0, e−1/n) (n times), i.e.,

k = n · P (0, e−1/n)

and hence, P (0, e−1/n) =
k

n
. Therefore, for p = e−1/n, we

also have P (0, p) = −k · ln(p).

6◦. For every two positive numbers m > 0 and n > 0,
the probability e−m/n can be represented as the product of
m probabilities equal to e−1/n. Thus, due to additivity, we
have P (0, e−m/n) = m · P (0, e−1/n) = k · m

n
. Hence, for

the values p = e−m/n for which the logarithm ln(p) is a
rational number, we have P (0, p) = −k · ln(p).

7◦. Every real number ℓ def
= ln(p) can be approximated, with

arbitrary accuracy, by rational numbers ℓn → ℓ for which
pn

def
= e−ℓn → e−ℓ = p. For these rational numbers, we have

P (0, pn) = −k · ln(pn). Thus, when n → ∞ and pn → p,
by continuity, we have P (0, p) = −k · ln(p).

From Part 1, we know that P (u, p) = u + P (0, p); thus,
indeed, P (u, p) = u− k · ln(p). The proposition is proven.

Cases of Z-intervals and Z-sets. Similar results hold for
Z-intervals and Z-sets; in both results, we will use the fact
that we already know how to set a fair price for the case
when p = 1.

Definition 5. By a Z-interval, we mean a pair ([u, u], p)
consisting of an interval [u, u] and a real numbers p such
that 0 < p ≤ 1.

Definition 6. By a fair price under Z-interval uncertainty, we
mean a function P ([u, u], p) that assigns, to every Z-interval,
a real number, and which satisfies the following properties:

• for some αH ∈ [0, 1] and for all u ≤ u, we have
P ([u, u], 1) = αH ·u+(1−αH) ·u (conservativeness);

• for all u, u, v, v, p, and q, we have

P ([u+ v, u+ v], p · q) = P ([u, u], p) + P ([v, v], q)

(additivity).

Proposition 4. Each fair price under Z-interval uncertainty
has the form P ([u, u], p) = αH · u+(1−αH) · u− k · ln(p)
for some real numbers αH ∈ [0, 1] and k.

Proof. By additivity, we have P ([u, u], p) = P ([u, u], 1) +
P (0, p). By conservativeness, we have

P ([u, u], 1) = αH · u+ (1− αH) · u.

For P (0, p), similarly to the proof of Proposition 3, we
conclude that P (0, p) = −k · ln(p) for some real number
k. The proposition is proven.

Definition 7. By a Z-set, we mean a pair (S, p) consisting
of a closed bounded set S and a real numbers p such that
0 < p ≤ 1.

Definition 8. By a fair price under Z-set-valued uncertainty,
we mean a function P (S, p) that assigns, to every Z-interval,
a real number, and which satisfies the following properties:

• for some αH ∈ [0, 1] and for all sets S, we have

P (S, 1) = αH · supS + (1− αH) · inf S

(conservativeness);
• for all S, S′, p, and q, we have P (S + S′, p · q) =

P (S, p) + P (S′, q) (additivity).

Proposition 5. Each fair price under Z-set-valued uncer-
tainty has the form

P (S, p) = αH · supS + (1− αH) · inf S − k · ln(p)

for some real numbers αH ∈ [0, 1] and k.

Proof. By additivity, we have P (S, p) = P (S, 1)+P ({0}, p).
By conservativeness, we have P (S, 1) = αH · supS +
(1 − αH) · inf S. For P ({0}, p), similarly to the proof of
Proposition 3, we conclude that P ({0}, p) = −k · ln(p) for
some real number k. The proposition is proven.

V. (CRISP) Z-NUMBERS, Z-INTERVALS, AND Z-SETS:
CASES WHEN PROBABILITIES ARE KNOWN WITH

INTERVAL OR SET-VALUED UNCERTAINTY

Motivations. When we know the exact probabilities p and
q that the corresponding estimates are correct, then the
probability that both estimates are correct is equal to the
product p · q.

Similarly to the fact that we often do not know the exact
gain, we often do not know the exact probability p. Instead,
we may only know the interval [p, p] of possible values of
p, or, more generally, a set P of possible values of p. If
we know p and q with such uncertainty, what can we then
conclude about the product p · q?

For positive values p and q, the function p · q is increasing
as a function of both variables: if we increase p and/or in-
crease q, the product increases. Thus, if the only information
that we have the probability p is that this probability belongs
to the interval [p, p], and the only information that we have
the probability q is that this probability belongs to the interval
[q, q], then:

• the smallest possible of p · q is equal to the product p · q
of the smallest values;

• the largest possible of p · q is equal to the product p · q
f the largest values; and

• the set of all possible values p·q is the interval [p·q, p·q].
For sets P and Q, the set of possible values p · q is the set

P · Q def
= {p · q : p ∈ P and q ∈ Q}.

Let us find the fair price under such uncertainty.

Case of crisp Z-numbers. Let us start with the case of crisp
Z-numbers under such uncertainty.



Definition 9. By a crisp Z-number under interval p-
uncertainty, we mean a pair (u, [p, p]) consisting of a real
number u and an interval [p, p] ⊆ (0, 1].

Definition 10. By a fair price under crisp Z-number p-interval
uncertainty, we mean a function P (u, [p, p]) that assigns, to
every crisp Z-number under interval p-uncertainty, a real
number, and which satisfies the following properties:

• for some real number k, we have

P (u, [p, p]) = u− k · ln(p)

for all u and p (conservativeness);
• for all u, v, p, p, q, and q, we have

P (u+ v, [p · q, p, q]]) = P (u, [p, p]) + P (v, [q, q])

(additivity);
• the function P (u, [p, p]) is continuous in p and p (con-

tinuity).

Proposition 6. Each fair price under crisp Z-number p-
interval uncertainty has the form

P (u, [p, p]) = u− (k − β) · ln(p)− β · ln(p)

for some real number β ∈ [0, 1].

Proof.

1◦. By additivity, we have P (u, [p, p]) = P (u, p) +

P (0, [p, 1]), where p
def
= p/p. By conservativeness, we know

that P (u, p) = u− k · ln(p). Thus, P (u, p) = u− k · ln(p)+
P (0, [p, 1]). So, to find the general expression for the fair
price function P (u, [p, p]), it is sufficient to find the values
P (0, [p, 1]) corresponding to u = 0 and p = 1.

2◦. For the values P (0, [p, 1]), additivity implies that

P (0, [p · q, 1]) = P (0, [p, 1]) + P (0, [q, 1]).

3◦. Let us first consider the value p = e−1 which corresponds
to ln(p) = −1. The corresponding value of P (0, [e−1, 1])
will be denoted by β=P (0, [e−1, 1]). Then, for p = e−1, we
have the expression P (0, [p, 1]) = −β · ln(p).

4◦. Let us now consider the values P (0, [e−m, 1]) for positive
integer values m. The probability e−m can be represented as
a product of m values e−1: e−m = e−1 · . . . · e−1 (m times).
Thus, due to additivity, we have

P (0, [e−m, 1]) =

P (0, [e−1, 1]) + . . .+ P (0, [e−1, 1]) (m times) = m · β.

Since for p = e−m, we have ln(p) = −m, we thus have
P (0, [p, 1]) = −β · ln(p) for these values p.

5◦. Now, let us estimate the value P (0, [p, 1]) for p = e−1/n,
for a positive integer n.

In this case, the value e−1 can be represented as a product
of n probabilities equal to e−1/n:

e−1 = e−1/n · . . . · e−1/n (n times)

Thus, due to additivity, we have β = P (0, [e−1, 1]) =
P (0, [e−1/n, 1]) + . . .+ P (0, [e−1/n, 1]) (n times), i.e.,

β = n · P (0, [e−1/n, 1])

and hence, P (0, [e−1/n, 1]) =
β

n
. Therefore, for p = e−1/n,

we also have P (0, [p, 1]) = −β · ln(p).

6◦. For every two positive numbers m > 0 and n > 0, the
probability e−m/n can be represented as the product of m
probabilities equal to e−1/n. Thus, due to additivity, we have
P (0, [e−m/n, 1]) = m ·P (0, [e−1/n, 1]) = β · m

n
. Hence, for

the values p = e−m/n for which the logarithm ln(p) is a
rational number, we have P (0, [p, 1]) = −k · ln(p).

7◦. Every real number ℓ def
= ln(p) can be approximated, with

arbitrary accuracy, by rational numbers ℓn → ℓ for which
pn

def
= e−ℓn → e−ℓ = p. For these rational numbers, we

have P (0, [pn, 1]) = −β · ln(pn). Thus, when n → ∞ and
pn → p, by continuity, we have P (0, [p, 1]) = −β · ln(p).

From Part 1, we know that

P (u, [p, p]) = u− k · ln(p) + P (0, [p, 1]);

thus,
P (u, [p, p]) = u− k · ln(p)− β · ln(p).

Substituting p = p/p into this formula and taking into
account that ln(p) = ln(p) − ln(p), we get the desired
formula.

Definition 11. By a crisp Z-number under set-valued p-
uncertainty, we mean a pair (u,P) consisting of a real
number u and a bounded closed set P ⊆ (0, 1] for which
inf P > 0.

Definition 12. By a fair price under crisp Z-number p-set-
valued uncertainty, we mean a function P (u,P) that assigns,
to every crisp Z-number under set-valued p-uncertainty, a
real number, and which satisfies the following properties:

• for some real numbers k and β, we have P (u, [p, p]) =
u − (k − β) · ln(p) − β · ln(p) for all u, p, and p
(conservativeness);

• for all u, v, P , and Q, we have

P (u+ v,P · Q) = P (u,P) + P (v,Q) (additivity).

Proposition 7. Each fair price under crisp Z-number p-set-
valued uncertainty has the form

P (u,P) = u− (k − β) · ln(supP)− β · ln(inf P)

for some real number β ∈ [0, 1].

Proof. By additivity, we have P (u,P) = P (u, 1)+P (0,P),
i.e., due to conservativeness, P (u,P) = u+P (0,P). So, to
find the expression for P (u,P), it is sufficient to find the
values P (0,P). Similarly to prove of Proposition 2, we can
prove that P · [inf P, supP] = [(inf P)2, (supP)2]. Due to
additivity, this implies that

P (0, [(inf P)2, (supP)2] = P (0,P) + P (0, [inf P, supP]),



hence

P (0,P) = P (0, [(inf P)2, (supP)2]− P (0, [inf P, supP]).

Due to conservativeness, we know the values in the right-
hand side of this equality. Substituting these values, we get
the desired formula.

Case of Z-intervals and Z-sets. Let us extend the above
results to Z-sets (and to their particular case: Z-intervals).

Definition 13. By a Z-set under set-valued p-uncertainty, we
mean a pair (S,P) consisting of a bounded closed set S and
a bounded closed set P ⊆ (0, 1] for which inf P > 0.

Definition 14. By a fair price under Z-set p-set-valued
uncertainty, we mean a function P (S,P) that assigns, to
every Z-set under set-valued p-uncertainty, a real number,
and which satisfies the following properties:

• for some real number αH ∈ [0, 1], we have

P (S, 1) = αH · supS + (1− αH) · inf S

for all S (conservativeness);
• for some real numbers k and β, we have

P (u,P) = u− (k − β) · ln(supP)− β · ln(inf P)

for all u and P (conservativeness);
• for all S, S′, P , and Q, we have

P (S + S′,P ·Q) = P (S,P) +P (Q,Q) (additivity).

Proposition 8. Each fair price under Z-set p-set-valued
uncertainty has the form

P (S,P) = αH · supS + (1− αH) · inf S−

(k − β) · ln(p)− β · ln(p).

VI. CASE OF FUZZY AND Z-NUMBER UNCERTAINTY

Fuzzy numbers: reminder. In the above text, we first
considered situations when about each value of gain u, the
expert is either absolutely sure that this value is possible or
absolutely sure that this value is not possible. Then, we took
into account the possibility that the expert is not 100% certain
about that – but we assumed that the expert either knows
the exact probability p describing his/her degree of certainty,
or that the expert is absolutely sure which probabilities can
describe his/her uncertainty and which cannot.

In reality, an expert is often uncertain about the possible
values, and uncertain about possible degrees of uncertainty.
To take this uncertainty into account, L. Zadeh introduced the
notion of a fuzzy set [4], [9], [10], where, to each possible
value of u, we assign a degree µ(u) ∈ [0, 1] to which this
value u is possible. Similarly, a fuzzy set µp : [0, 1] → [0, 1]
can describe the degrees to which different probability values
are possible.

In this paper, we restrict ourselves to fuzzy numbers s, i.e.,
fuzzy sets for which the membership function is different
from 0 only on a bounded set, where it first monotonically

increases until it reaches a point s at which µ(s) = 1, and
then monotonically decreases from 1 to 0.

Operations on fuzzy numbers. Operations on fuzzy num-
bers are usually described in terms of Zadeh’s extension
principle: if two quantities u and v are described by
membership functions µ1(u) and µ2(v), then their sum
w = u + v is described by the membership function
µ(w) = max

u,v:u+v=w
min(µ1(u), µ2(v)), and their product

w = u · v is described by the membership function µ(w) =
max

u,v:u·v=w
min(µ1(u), µ2(v)).

It is known that these operations can be equivalently
described in terms of the α-cuts. An α-cut of a fuzzy number
µ(u) is defined as an interval u(α) = [u−(α), u+(α)], where

u−(α)
def
= inf{u : µ(u) ≥ α} and

u+(α)
def
= sup{u : µ(u) ≥ α}.

The α-cuts corresponding to w = u + v can be described,
for every α, as

[w−(α), w+(α)] = [u−(α), u+(α)] + [v−(α), v+(α)],

or, equivalently, as

[w−(α), w+(α)] = [u−(α) + v−(α), u+(α) + v+(α)].

Similarly, when both fuzzy numbers u and v are limited to
the interval [0, 1], the α-cuts corresponding to the product
w = u · v can be described as

[w−(α), w+(α)] = [u−(α), u+(α)] · [v−(α), v+(α)],

or, equivalently, as

[w−(α), w+(α)] = [u−(α) · v−(α), u+(α) · v+(α)].

Fair price of fuzzy numbers. Let us start with describing
the fair price of fuzzy numbers. Similarly to the interval case,
a natural requirement is monotonicity: if for all α, we have
s−(α) ≤ t−(α) and s+(α) ≤ t+(α), then the fair price of
t should be larger than or equal to the fair price of s. It is
also reasonable to require continuity: that small changes in
µ(u) should lead to small changes in the fair price.

Definition 15. By a fair price under fuzzy uncertainty, we
mean a function P (s) that assigns, to every fuzzy number s,
a real number, and which satisfies the following properties:

• if a fuzzy number s is located between u and u, then
u ≤ P (s) ≤ u (conservativeness);

• if a fuzzy number w is the sum of fuzzy numbers u and
v, then we have P (w) = P (u) + P (v) (additivity);

• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α),

then we have P (s) ≤ P (t) (monotonicity);
• if a sequence of membership functions µn uniformly

converges to µ, then we should have P (µn) → P (µ)
(continuity).



Riemann-Stieltjes integral: reminder. As we will see,
the fair price of a fuzzy number is described in terms
of a Riemann-Stieltjes integral. This integral is a natural
generalization of the usual (Riemann) integral.

In general, an intuitive meaning of a Riemann integral∫ b

a
f(x) dx is that it is an area under the curve y = f(x).

To compute this integral, we select points a = x1 < x2 <
. . . < xn−1 < xn = b, and approximate the curve by a piece-
wise constant function f̃(x) = f(xi) for x ∈ [xi, xi+1). The
subgraph of this piece-wise constant function is a union of
several rectangles, so its area is equal to the sum of the areas
of these rectangles

∑
f(xi) ·(xi+1−xi). This sum is known

as the integral sum for the integral
∫ b

a
f(x) dx. Riemann’s

integral can be formally defined as a limit of such integral
sums when max(xi+1 − xi) → 0.

A Riemann-Stieltjes integral
∫ b

a
f(x) dg(x) is similarly

defined as the limit of the sums
∑

f(xi) · (g(xi+1)− g(xi))
when max(xi+1 − xi) → 0.

Proposition 9. For a fuzzy number s with a continuous
membership function µ(x), α-cuts [s−(α), s+(α)] and a
point s0 at which µ(s0) = 1, the fair price is equal to

P (s) = s0 +

∫ 1

0

k−(α) ds−(α)−
∫ 1

0

k+(α) ds+(α),

for appropriate functions k−(α) and k+(α).

Discussion. When the function g(x) is differentiable, the
integral

∫ b

a
f(x) dg(x) is equal to the usual integral

∫ b

a
f(x) ·

g′(x) dx, where g′(x) denotes the derivative. When the
function f(x) is also differentiable, we can use integration
by part and get yet another equivalent form

f(b) · g(b)− f(a) · g(a) +
∫ b

a

F (x) · g(x) dx,

with F (x) = −f ′(x). In general, a Stieltjes integral can be
represented in a similar form for some generalized function
F (x) (see, e.g., [2]; generalized function are also known as
distributions; we do not use this term to avoid confusion with
probability distributions). Thus, the above general formula
can be described as

P (s) =

∫ 1

0

K−(α) · s−(α) dα+

∫ 1

0

K+(α) · s+(α) dα

for appropriate generalized functions K−(α) and K+(α).
Conservativeness means that for a crisp number located at

s0, we should have P (s) = s0. For the above formula, this
means that ∫ 1

0

K−(α) dα+

∫ 1

0

K+(α) dα = 1.

For a fuzzy number which is equal to the interval [u, u], the
above formula leads to

P (s) =

(∫ 1

0

K−(α) dα

)
· u+

(∫ 1

0

K+(α) dα

)
· u.

Thus, Hurwicz optimism-pessimism coefficient αH is equal
to

∫ 1

0
K+(α) dα. In this sense, the above formula is a

generalization of Hurwicz’s formula to the fuzzy case.

Proof.

1◦. For every two real numbers u ≥ 0 and γ ∈ [0, 1],
let us define a fuzzy number sγ,u(x) with the following
membership function: µγ,u(0) = 1, µγ,u(x) = γ for
x ∈ (0, u], and µγ,u(x) = 0 for all other x. For this fuzzy
numbers, α-cuts have the following form: sγ,u(α) = [0, 0]
for α > γ, and sγ,u(α) = [0, u] for α ≤ γ.

Based on the α-cuts, one can easily check that sγ,u+v =
sγ,u + sγ,v . Thus, due to additivity, P (sγ,u+v) = P (sγ,u)+
P (sγ,v). Due to monotonicity, the value P (sγ,u) mono-
tonically depends on u. Thus, similarly to the proof of
Proposition 1, we can conclude that P (sγ,u) = k+(γ) · u
for some value k+(γ).

By definition, the fuzzy number sγ,u is located between 0
and u, so, due to conservativeness, we have 0 ≤ P (sγ,u) ≤ u
for all u. This implies that 0 ≤ k+(γ) ≤ 1.

2◦. Let us now consider a fuzzy number s whose membership
function is equal to 0 for x < 0, jumps to 1 for x = 0, and
then continuously decrease to 0. For this fuzzy number, all α-
cuts have the form [0, s+(α)] for some s+(α). By definition
of an α-cut, the value s+(α) decreases with α.

For each sequence of values α0 = 1 < α1 < α2 < . . . <
αn−1 < αn = 1, we can define a fuzzy number sn with the
following α-cuts:

• s−n (α) = 0 for all α; and
• when α ∈ [αi, αi+1), then s+n (α) = s+(αi).

Since the membership function of s is continuous, when
max(αi+1 − αi) → 0, we have sn → s, and thus,
P (sn) → P (s).

One can check that the fuzzy number sn can be repre-
sented as a sum of n fuzzy numbers

sn = sαn−1,s+(αn−1) + sαn−2,s+(αn−2)−s+(αn−1) + . . .+

sα1,α1−α2 .

Thus, due to additivity, we have

P (sn) = P (sαn−1,s+(αn−1
)+

P (sαn−2,s+(αn−2)−s+(αn−1)) + . . .+ P (sα1,α1−α2
).

Substituting the expression for P (sγ,u) from Part 1 of this
proof, we conclude that

P (sn) = k+(αn−1) · s+(αn−1)+

k+(αn−2) · (s+(αn−2)− s+(αn−1)) + . . .+

k+(α1) · (α1 − α2).

The right-hand side is minus the integral sum for the
Riemann-Stieltjes integral

∫ 1

0
k+(γ) ds+(γ). Since we have

P (sn) → P (s), this means that the integral sums always
converges, the Riemann-Stieltjes integral is defined, and the
limit P (s) is equal to this integral.

3◦. Similarly, for fuzzy numbers s whose membership func-
tion µ(x) continuously increases from 0 to 1 as x increases
to 0 and is equal to 0 for x > 0, the α-cuts are equal to



[s−(α), 0], and P (s) =
∫ 1

0
k−(γ) ds−(γ) for an appropriate

function k−(γ).

4◦. A general fuzzy number g, with α-cuts [g−(α), g+(α)]
and a point g0 at which µ(g0) = 1, can be represented as a
sum of three fuzzy numbers:

• a crisp number g0;
• a fuzzy number whose α-cuts are equal to

[0, g+(α)− g0]; and

• a fuzzy number whose α-cuts are equal to

[g0 − g−(α), 0].

By conservativeness, the fair price of the crisp number is
equal to g0. The fair prices of the second and the their fuzzy
numbers can be obtained by using the formulas from Parts 2
and 3 of this proof. By additivity, the fair price of the sum
is equal to the sum of the prices. By taking into account
that for every constant g0, d(g(x) − g0) = dg(x) and thus,∫
f(x) d(g(x) − g0) =

∫
f(x) dg(x), we get the desired

expression.

Case of Z-number uncertainty. In this case, we have two
fuzzy numbers: the fuzzy number s which describes the
values and the fuzzy number p which describes our degree
of confidence in the piece of information described by s.

Definition 16. By a fair price under Z-number uncertainty,
we mean a function P (s, p) that assigns, to every pair of two
fuzzy numbers s and p such that p is located on an interval
[p0, 1] for some p0 > 0, a real number, and which satisfies
the following properties:

• if a fuzzy number s is located between u and u, then
u ≤ P (s, 1) ≤ u (conservativeness);

• if w = u+ v and r = p · q, then

P (w, r) = P (u, p) + P (v, q)

(additivity);
• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α),

then we have P (s, 1) ≤ P (t, 1) (monotonicity);
• if sn → s and pn → p, then P (sn, pn) → P (p, s)

(continuity).

Proposition 10. For a fuzzy number s with α-cuts
[s−(α), s+(α)] and a fuzzy number p with α-cuts
[p−(α), p+(α)], we have

P (s, p) =

∫ 1

0

K−(α) · s−(α) dα+

∫ 1

0

K+(α) · s+(α) dα+∫ 1

0

L−(α) · ln(p−(α)) dα+

∫ 1

0

L+(α) · ln(p+(α)) dα

for appropriate generalized functions K±(α) and L±(α).

Proof. Due to additivity, we have

P (s, p) = P (s, 1) + P (0, p).

We already know the expression for P (s, 1); we thus need
to find the expression for P (0, p). For logarithms, we have
ln(p ·q) = ln(p)+ln(q), so in terms of logarithms, additivity
takes the usual form

P (0, ln(p) + ln(q)) = P (0, ln(p)) + P (0, ln(q)).

Thus, similarly to the proof of Proposition 9, we conclude
that

P (0, p) =

∫ 1

0

L−(α) · ln(p−(α)) dα+∫ 1

0

L+(α) · ln(p+(α)) dα.

By applying additivity to this expression and to the known
expression for P (s, 1), we get the desired formula.

VII. REMAINING PROBLEMS

In this paper, we described how to define fair price when
we have one piece of information: a fuzzy set S of gains
with a fuzzy set P describing how confident we are in S.
In practice, we may several such pieces of information. It is
desirable to come up with formulas which describe fair price
under such multiple pieces of information – formulas which
are uniquely determined by additivity and similar reasonable
conditions.

Another open question is how to extend the above formulas
for fair price to the case of interval-valued and, more general,
type-2 fuzzy sets; see, e.g., [7], [8].
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