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ABSTRACT

Whether a structure is stable depends on the values of the parameters θ =
(θ1, . . . , θn) which describe the structure and its environment. Usually, we know the
limit function g(θ) describing stability: a structure is stable if and only if g(θ) > 0. If
we also know the probability distribution on the set of all possible combinations θ, then
we can estimate the failure probability P .

In practice, we often know that the probability distribution belongs to the known
family of distributions (e.g., normal), but we only know the approximate values p̃i
of the parameters pi characterizing the actual distribution. Similarly, we know the
family of possible limit functions, but we have only approximate estimates of the
parameters corresponding to the actual limit function. In many such situations, we
know the accuracy of the corresponding approximations, i.e., we know an upper bound
∆i for which |p̃i − pi| ≤ ∆i. In this case, the only information that we have about the
actual (unknown) values of the corresponding parameters pi is that pi is in the interval
[p̃i −∆i, p̃i +∆i]. Different values pi from the corresponding intervals lead, in general,
to different values of the failure probability P . So, under such interval uncertainty, it is
desirable to find the range

[
P , P

]
. In this paper, we describe efficient algorithms for

computing this range.
We also show how to take into account the model inaccuracy, i.e., the fact that the

finite-parametric models of the distribution and of the limit function provide only an
approximate descriptions of the actual ones.

ESTIMATING FAILURE PROBABILITY UNDER INTERVAL UNCER-
TAINTY: CASE OF EXACT MODEL WITH UNCERTAIN PARAMETERS

Textbook case of full knowledge: a description. The textbook approach to estimat-
ing the failure probability of mechanical structures makes the following two assump-
tions:



• We assume that we know the probability distribution on the set of all possi-
ble values of the quantities θ = (θ1, . . . , θn) describing the structure and its
environment. This distribution is usually described by the probability density
function f(θ).

• We also assume that we know which combinations of the quantities θi corre-
spond to stability and which to failure. The corresponding set ΩF is usually
described by a limit function g(θ) such that stable states correspond to g(θ) > 0
while failures correspond to g(θ) < 0.

Once we know this information, we can find the desired failure probability P as the
integral P =

∫
ΩF

f(θ) dθ.

Textbook case of full knowledge: how to estimate the probability of failure. In
realistic situations, when the number of quantities is large, P can be computed by a
(somewhat time-consuming) Monte-Carlo algorithm (MCA); see, e.g., (Sheskin 2011).

Case of interval uncertainty: a description. In practice, we often do not know the
exact probability distribution, and we do not know the exact expression for the limit
function. Usually, we know that the distribution belongs to a certain family (e.g., that it
is normal), but we do not know the exact values of the parameters corresponding to the
given distribution; at best, we know the intervals containing these parameters.

Similarly, we know the general parametric expression for the limit function (e.g.,
we know that the function g(θ) is linear or quadratic), but we do not know the exact
values of the corresponding parameters, we only know the intervals of possible values
of these parameters.

Let us list all the parameters corresponding to the probability distribution and to the
limit function as p1, . . . , pm. For each of these parameters pi, we know the interval of
possible values by pi =

[
p
i
, pi

]
.

Case of interval uncertainty: formulation of the problem. In the case of interval
uncertainty, we assume that:

• we know the expression Pf (p1, . . . , pm) which describes the failure probability
corresponding to parameters pi; and

• we know the intervals pi of possible values of each parameter pi.

Different values pi from the corresponding intervals pi lead, in general, to different
values of the failure probability. We are therefore interested in the range

[
P , P

] def
=

{Pf (p1, . . . , pn) : pi ∈ pi} of all possible values of failure probability.

A midpoint representation of an interval is often helpful. For many quantities pi,
the containing interval comes from the fact that we know the approximate value p̃i and
we know the upper bound ∆i on the approximation error ∆pi

def
= pi − p̃i: |∆pi| ≤ ∆i.

In this case, the only information that we have about the actual (unknown) value pi is
that this value belongs to the interval [p̃i −∆i, p̃i +∆i].



Since a lot of algorithms have been developed for processing approximate estimates,
it is often convenient to represent a general interval

[
p
i
, pi

]
in this form. To get such

a representation, we can take the midpoint of this interval by p̃i
def
=

p
i
+ pi

2
and the

half-width ∆i
def
=

pi − p
i

2
. In these terms, the original interval takes the desired form

[p̃i −∆i, p̃i −∆i], and each value pi from the corresponding interval can be represented
in the form p̃i +∆pi, where the difference ∆pi = pi − p̃i satisfies |∆pi| ≤ ∆i.

Linearization is usually possible. The values ∆i are usually reasonable small, hence
the values ∆pi are also small. Thus, we can expand the expression Pf (p1, . . . , pm) =
Pf (p̃1 + ∆p1, . . . , p̃m + ∆pm) into Taylor series and keep only linear terms in this

expansion: Pf (p̃1 +∆p1, . . .) = P̃ +
m∑
i=1

ci ·∆pi, where P̃ def
= Pf (p̃1, . . . , p̃m) and ci

def
=

∂P

∂pi
.

Linearized problem. We are interested in the range
[
P , P

]
of possible values of the

probability Pf (p1 +∆p1, . . . , pm +∆pm) when |∆pi| ≤ ∆i.

Towards solving the problem. One can easily check that for ci ≥ 0, the largest
possible value of ci ·∆pi is attained when ∆pi takes the largest possible value ∆i, and
for ci < 0, when ∆pi = −∆i. In both cases, the largest possible value of the product
ci ·∆pi is equal to |ci| ·∆i. Similarly, the smallest possible value of ci ·∆pi is equal to
− |ci| ·∆i. Thus, we arrive at the following formulas.

Resulting formula. The desired range
[
P , P

]
has the form P = P̃ − ∆ and P =

P̃ +∆, where ∆ =
m∑
i=1

|ci| ·∆i; see, e.g., (Rabinovich 2005; Kreinovich 2009).

Towards an algorithm. To compute the above expression, we need to know the
values ci. How to compute them?

If we modify one of the parameters pi, and modify it to the maximally possible
value p̃i +∆i, then, due to linearization, we get

Pi
def
= Pf (p̃1, . . . , p̃i−1, p̃i +∆i, p̃i+1, . . . , p̃m) = P̃ + ci ·∆i.

Thus, |ci| ·∆i =
∣∣∣Pi − P̃

∣∣∣ and hence ∆ =
m∑
i=1

∣∣∣Pi − P̃
∣∣∣.

Resulting algorithm for computing the desired range. After computing P̃ =
Pf (p̃1, . . . , p̃m), we compute m values Pi = Pf (p̃1, . . . , p̃i−1, p̃i + ∆i, p̃i+1, . . . , p̃m),

and then compute ∆ =
m∑
i=1

∣∣∣Pi − P̃
∣∣∣ and the desired range

[
P̃ −∆, P̃ +∆

]
.

This algorithm requires m+ 1 calls to MCA: to compute P̃ and m values Pi.



Towards a faster algorithm. When the number of parameters m is large, m+1 calls
may be too long. It is possible to speed up the process if we take into account a known

property of Cauchy distribution, with probability density ρδ(x) =
δ

π
· 1

1 +
x2

δ2

. It is

known that if ηi are independently Cauchy-distributed with parameters ∆i, then η
def
=

m∑
i=1

ci · ηi is Cauchy-distributed with parameter ∆ =
m∑
i=1

|ci| ·∆i. Once we get simulated

Cauchy-distributed values η, we can then estimate ∆ by using the Maximum Likelihood
method. (We may also need to scale the values ηi to the interval [−∆i,∆i] on which
the linear approximation is applicable.) Thus, we arrive at the following algorithm.

Faster algorithm (Kreinovich and Ferson 2004; Kreinovich 2009) . First, we com-
pute P̃ = Pf (p̃1, . . . , p̃m). Then, for some N (e.g., for N = 200), for k = 1, 2, . . . , N ,
repeat the following:

• use the standard random number generator to compute n numbers r(k)i ,
i = 1, 2, . . . ,m, which are uniformly distributed on the interval [0, 1];

• compute Cauchy distributed values as c(k)i = tan(π · (r(k)i − 0.5));
• compute the largest value K of the values

∣∣∣c(k)i

∣∣∣: K = maxi

∣∣∣c(k)i

∣∣∣;
• compute the simulated approximation errors δp(k)i =

∆i · c(k)i

K
;

• compute the simulated “actual values” p
(k)
i = p̃i + δp

(k)
i ;

• apply MCA to the simulated measurement results and compute

∆P (k) = K ·
(
Pf

(
p
(k)
1 , . . . , p

(k)
i , . . . , p(k)m

)
− P̃

)
.

Then, we compute ∆ by applying the bisection method to the equation

1

1 +

(
∆P (1)

∆

)2 + . . .+
1

1 +

(
∆P (k)

∆

)2 + . . .+
1

1 +

(
∆P (N)

∆

)2 =
N

2

for ∆ ∈
[
0,max

k

∣∣∆P (k)
∣∣]. We stop when we get ∆ with accuracy ≈ 20% (we are com-

puting accuracy, and accuracy 1% and 1.2% is approximately the same). This usually
requires a few iterations, 5–10 at most. Finally, we return the range

[
P̃ −∆, P̃ +∆

]
.

Computation of each value Pf (·) requires much more time that any other computa-
tions (such as bisection); thus, the computation time of any algorithm using these values
is practically proportional to the number of calls to Pf . The Cauchy-variant algorithm
requires N ≈ 200 calls to f , so when m ≫ 200, it is much faster than the above
linearization-based algorithm.



NEED TO TAKE MODEL INACCURACY INTO ACCOUNT

In practice, the original model is approximate. In practice, the finite-parametric
family of distribution often usually provides only an approximate description of the
actual probability distribution; similarly, the family of limit functions often provides
only an approximate description of the actual limit function. As a result of the model
uncertainty, the value C = Cf (p1, . . . , pm) produced by the approximate model is, in
general, different from the actual failure probability P = Pf (p1, . . . , pm).

In some cases, the only information that we have about the model inaccuracy C−P
is the upper bound δ, for which |C − P | ≤ δ. Let us analyze how this inaccuracy affects
our estimations.

What if we use the above linearized algorithm. In the linearized case, the de-

sired upper endpoint P has the form P = P̃ +
m∑
i=1

∣∣∣P̃ − Pi

∣∣∣. In practice, due to

the model inaccuracy, instead of the exact values P̃ = Pf (p̃1, . . . , p̃m) and Pi =

Pf (p̃1, . . . , p̃i−1, p̃i + ∆i, p̃i+1, . . . , p̃n), we only know approximate values C̃ and Ci

corresponding to these combinations of probabilities: |Pi − Ci| ≤ δ and
∣∣∣P̃ − C̃

∣∣∣ ≤ δ.

Based on these approximate values, we compute C = C̃ +
m∑
i=1

∣∣∣C̃ − Ci

∣∣∣. Due to

|Pi − Ci| ≤ δ and
∣∣∣P̃ − C̃

∣∣∣ ≤ δ, we have
∣∣C − P

∣∣ ≤ (2m + 1) · δ and similarly,
|C − P | ≤ (2m+ 1) · δ.

In other words, as an interval which is guaranteed to contain the actual failure
probability P , we take an interval

[
C − (2m− 1) · δ, C + (2m− 1) · δ

]
.

Need for more accurate estimations. When the number m of parameters is large,
the approximation error (2m+ 1) · δ becomes significant.

How can we decrease this error?

Analysis of the problem. As we have mentioned earlier, the actual maximum P is
attained when ∆pi = εi · ∆i, where εi

def
= sign(ci) (when ci = 0, we take either

εi = 1 or εi = −1). For these εi, we have Cf (p̃1 + ε1 · ∆1, . . .) ≥ P − δ. Thus, for
C

def
= max

ε
Cf (p̃1 + ε1 · ∆1, . . .), where max is taken over all possible combinations

ε = (ε1, . . .) of values εi ∈ {−1, 1}, we get C ≥ P − δ.
On the other hand, for each such combination ε, we have Cf (p̃1 + ε1 · ∆1, . . .) ≤

Pf (p̃1 + ε1 ·∆1, . . .) + δ. Since Pf (p̃1 + ε1 ·∆1, . . .) ≤ P , we conclude that
Cf (p̃1+ε1·∆1, . . .) ≤ P+δ. Therefore, for the maximum C = max

ε
Cf (p̃1+ε1·∆1, . . .),

we have C ≤ P + δ. So, the maximum C provides a δ-approximation to P .

First new algorithm. For all 2m possible combinations of values ε1 ∈ {−1, 1}, . . . ,
εm ∈ {−1, 1}, we estimate Cf (p̃1 + ε1 · ∆1, . . .), and compute the largest of these
estimates C. We can then guarantee that

∣∣C − P
∣∣ ≤ δ.



Similarly, the smallest of the values Cf (p̃1 + ε1 ·∆1, . . .) is δ-close to P :
|C − P | ≤ δ.

Need for faster algorithms. The above algorithm requires at least 2m estimates,
which for large m is unrealistically large. It is known that if we want to find P̃ with
accuracy δ, we cannot use fewer than exponentially many calls (Kreinovich 1994;
Kreinovich et al. 1997).

How can we decrease the uncertainty in estimating without increasing the number
of calls too much?

Analysis of the problem. Instead of the difference Pf (. . . , p̃i + ∆i, . . .) −
Pf (. . . , p̃i, . . .) = ci · ∆i, we can consider the difference Pf (. . . , p̃i + ∆i, . . .) −
Pf (. . . , p̃i − ∆, . . .) = 2ci · ∆i. Then, when both probabilities Pf (. . .) are estimated
with accuracy δ, we will have the difference 2ci ·∆i with accuracy 2δ and thus, the value
|ci| ·∆i with accuracy δ (and not 2δ as before). This leads to the following algorithm.

Second new algorithm. For each i = 0, . . . ,m, we compute the estimate

Ei = Cf (p̃1 +∆1, . . . , p̃i +∆i, p̃i+1 −∆i+1, . . . , p̃m −∆m).

Then, we take the arithmetic average Ẽ of all these values as an estimate for P̃ , and

∆̃
def
=

1

2
·

m∑
i=1

|Ei − Ei−1| as an estimate for ∆. Finally, E = Ẽ − ∆̃ and E = Ẽ + ∆̃

are returned as the estimates for P and P .
This new algorithm requires m + 1 calls to Cf . Let us show that it is indeed more

accurate that the second new algorithm.

Analysis of the second new algorithm. The values Ei and δ-approximations for the
quantities

Qi
def
= Pf (p̃1 +∆1, . . . , p̃i +∆i, p̃i+1 −∆i+1, . . . , p̃m −∆m).

Substituting the linear expression for Pf (. . .) into this formula, we can conclude that
the arithmetic average all the values Qi is equal to P̃ . From the fact that |Ei −Qi| ≤ δ,
we can conclude that∣∣∣Ẽ − P̃

∣∣∣ = ∣∣∣∣∣ 1

m+ 1
·

m∑
i=0

Ei −
1

m+ 1
·

m∑
i=0

Qi

∣∣∣∣∣ =
∣∣∣∣∣ 1

m+ 1
·

m∑
i=0

(Ei −Qi)

∣∣∣∣∣ ≤
1

m+ 1
·

m∑
i=0

|Ei −Qi| ≤
1

m+ 1
· (m+ 1) · δ = δ.

So, the Ẽ is a δ-accurate estimate for P̃ . We have already mentioned that each i, the

value
1

2
· |Ei − Ei−1| is a δ-accurate estimate for |ci| ·∆i.



Thus, E = Ẽ +
1

2
·

m∑
i=1

|Ei − Ei−1| is an (m+ 1) · δ-approximation to

P = P̃ +
m∑
i=1

|ci| ·∆i. Similarly, E is an (m+ 1) · δ-approximation to P .

Accuracy of the second new algorithm. We have
∣∣E − P

∣∣ ≤ (m + 1) · δ and
|E − P | ≤ (m+ 1) · δ.

Thus, the new algorithms is almost twice more accurate than the second new
algorithm – while using the same number of calls to Cf .

Further analysis of the problem. We have already mentioned that when ci ≥ 0,
then the maximum P is attained when ∆pi = ∆i and the minimum P is attained when
∆pi = −∆i. Similarly, if ci ≤ 0, then the maximum P is attained when ∆pi = −∆i

and the minimum P is attained when ∆pi = ∆i.
When can we conclude that ci > 0? We know that the difference Ei − Ei−1 is a

2δ-approximation to 2ci ·∆i. Thus, 2ci ·∆i ≥ Ei −Ei−1 − 2∆. So, if Ei −Ei−1 ≥ 2δ,
we can conclude that 2ci ·∆i ≥ 0 and therefore, that ci ≥ 0. Let S+ denote the list of
all such indices i.

Similarly, if Ei−Ei−1 ≤ −2δ, then we can conclude that ci ≤ 0. Let S− denote the
list of all such indices i. Let S0 denote the list of the indices for which |Ei − Ei−1| < 2δ,
and let s denote the total number of indices in S+ and S−.

We know that the maximum P is attained when pi = p̃i + ∆i for i ∈ S+ and
pi = p̃i−∆i for i ∈ S−; we thus only need to consider the remaining parameters pi, i ∈
S0. For the above values, the general linear formula takes the form Pf (p1, . . . , pm) =

P+ +
∑
i∈S0

ci · ∆pi, where P+ def
= Pf (p

+
1 , . . . , p

+
m), p

+
i = p̃i + ∆i when i ∈ S+, p+i =

p̃i −∆i when i ∈ S−, and p+i = p̃i when i ∈ S0. Thus, the largest possible value P is
equal to P+ +

∑
i∈S0

|ci| ·∆i. We know that C+ def
= Cf (p

+
1 , . . .) is an δ-approximation to

P+ = Pf (p
+
1 , . . .), and we also know that for each i, the half-difference

1

2
· |Ei − Ei−1|

is an δ-approximation to |ci| ·∆i.

Thus, C+ +
1

2
·
∑
i∈S0

|Ei − Ei−1| is an (m − s + 1) · δ-accurate estimate for P . A

similar estimate can be proposed for P . So, we arrive at the following algorithm.

Third new algorithm. For each i = 0, . . . ,m, we compute the estimate

Ei = Cf (p̃1 +∆1, . . . , p̃i +∆i, p̃i+1 −∆i+1, . . . , p̃m −∆m).

Let us mark each index i as belonging to S+ if Ei − Ei+1 ≥ 2δ, as belonging to S−

if Ei − Ei+1 ≤ −2δ, and as belonging to S0 in all other cases. We also count the total
number s of all the indices for which i ∈ S+ or i ∈ S−.

Then, we compute the values p+i as follows: p+i = p̃i +∆i when i ∈ S+, p+i = p̃i −
∆i when i ∈ S−, and p+i = p̃i when i ∈ S0. We then compute C+ = Cf (p

+
1 , . . . , p

+
m)



and E = C+ +
1

2
·
∑
i∈S0

|Ei − Ei−1|.

Similarly, we compute the values p−i as follows: p−i = p̃i − ∆i when i ∈ S+,
p−i = p̃i + ∆i when i ∈ S−, and p−i = p̃i when i ∈ S0. We then compute C− =

Cf (p
−
1 , . . . , p

−
m) and E = C− − 1

2
·
∑
i∈S0

|Ei − Ei−1|.

The estimates E and E approximate P and P with accuracy (m + 1 − s) · δ. This
algorithm requires m+ 3 calls to Cf .

Comments. When s is large, i.e., when there are many parameters which significantly
affect the failure probability, we get a drastic improvement in accuracy – at the expense
of having only two additional calls to Cf .

A similar idea can be applied to the first new algorithm: first, we compute Ei and
find s indices for which we know that ci ≥ 0 or that ci ≤ 0. Then, for computing
the desired estimate for P , it is sufficient to only consider all 2m−s combinations of
the remaining parameters. Thus, we get the following modified version of the first new
algorithm.

Modified version of the first algorithm. For each i = 0, . . . ,m, we compute the
estimate

Ei = Cf (p̃1 +∆1, . . . , p̃i +∆i, p̃i+1 −∆i+1, . . . , p̃m −∆m).

Let us mark each index i as belonging to S+ if Ei − Ei+1 ≥ 2δ, as belonging to S−

if Ei − Ei+1 ≤ −2δ, and as belonging to S0 in all other cases. We also count the total
number s of all the indices for which i ∈ S+ or i ∈ S−.

To estimate P , we estimate 2m−s values Cf (p̃1+ ε1 ·∆1, . . .), where we take εi = 1
for i ∈ S+, εi = −1 for i ∈ S−, and we take all possible combinations of the values
εi ∈ {−1, 1} for the remaining m − s indices i ∈ S0. The largest of these estimates is
then returned as an estimate C for P .

To estimate P , we estimate 2m−s values Cf (p̃1+ε1·∆1, . . .), where we take εi = −1
for i ∈ S+, εi = 1 for i ∈ S−, and we take all possible combinations of the values
εi ∈ {−1, 1} for the remaining m− s indices i ∈ S0. The smallest of these estimates is
then returned as an estimate C for P .

These are δ-accurate, just like for the original version of the first algorithm. How-
ever, this algorithm requires only (m + 1) + 2 · 2m−s calls to Cf . For s ≫ 1, this is
much faster than the original version of the first new algorithm.

Towards a fourth algorithm. If we want the best possible accuracy δ, we need to
consider all 2m−s possible combinations of m− s values εi = ±1. If we only have time
for ≤ m + 3 combinations (i.e., for changing only one value εi at a time), then we can
gain accuracy ≤ (m− s + 1) · δ. What if we have more computation time but still not
enough to try all 2m−s combinations?



In this case, it makes sense to select some integer g and divide m− s parameters

i ∈ S0 into
m− s

g
groups Gℓ of size g. For each group, we try all possible combina-

tions, to estimate s+1
def
= P̃ +

∑
i∈G1

|ci| ·∆i (for the first group) and sℓ
def
=

∑
i∈Gℓ

|ci| ·∆i (for

all other groups ℓ > 1), and then add up the resulting estimates.
For the first group, we can use the first new algorithm (which was described above

for g = m−s) and produce an estimate s̃+1 . For every other group of parameters, we can
use a similar algorithm to estimate the corresponding values P and P with accuracy δ,

and then take into account that sℓ =
1

2
·(P −P ); thus, by using the δ-accurate estimates

for P and P , we can produce a δ-accurate estimate s̃ℓ for sℓ.
Similar estimates can be obtained for P . As a result, we arrive at the following

algorithm.

Fourth new algorithm. For each i = 0, . . . ,m, we compute the estimate

Ei = Cf (p̃1 +∆1, . . . , p̃i +∆i, p̃i+1 −∆i+1, . . . , p̃m −∆m).

Let us mark each index i as belonging to S+ if Ei − Ei+1 ≥ 2δ, as belonging to S−

if Ei − Ei+1 ≤ −2δ, and as belonging to S0 in all other cases. We also count the total
number s of all the indices for which i ∈ S+ or i ∈ S−.

We fix a value g, and divide all m − s indices i ∈ S0 into
m− s

g
groups Gℓ. We

then compute estimates s̃+1 , s̃−1 and estimates s̃ℓ for ℓ = 2, . . . ,
m− s

g
as follows.

To compute s̃+1 , for all 2g possible combinations of values εi ∈ {−1, 1} for i ∈ G1,
we estimate Cf (p̃1 + ε1 ·∆1, . . .), where εi = −1 for i ∈ S+, εi = 1 for i ∈ S−, and
εi = 0 for i ∈ S0 −G1. We then take the largest of these values as s̃+1 .

To compute s̃−1 , for all 2g possible combinations of values εi ∈ {−1, 1} for i ∈ G1,
we estimate Cf (p̃1 + ε1 ·∆1, . . .), where εi = 1 for i ∈ S+, εi = −1 for i ∈ S−, and
εi = 0 for i ∈ S0 −G1. We then take the smallest of these values as s̃−1 .

For each ℓ > 1, for all 2g possible combinations of values εi ∈ {−1, 1}, i ∈ Gℓ, we
estimate Cf (p̃1 + ε1 ·∆1, . . .), where εi = 0 for all i ̸∈ Gℓ. We find the largest v+ℓ and

the smallest v−ℓ of these values, and compute s̃ℓ =
1

2
· (v+ℓ − v−ℓ ).

Finally, we estimate P and P by E = s̃+1 +
∑
ℓ>1

s̃ℓ and E = s̃−1 −
∑
ℓ>1

s̃ℓ.

This algorithm requires
(
m− s

g
+ 1

)
· 2g calls to Cf , with a very small (linear-

time) overhead on groups and combinations.

The resulting estimates have accuracy
(
m

g
+ 1

)
· δ.



Towards a similar modification of the Cauchy deviate algorithm. Due to model
inaccuracy, we only know the values P (p

(k)
1 , . . .) and P̃ with accuracy δ. Thus, the

computed value ∆̃(k) = K ·
(
Cf

(
p
(k)
1 , . . .

)
− C̃

)
are (2K · δ)-close to the desired

values ∆P (k). Therefore, we only know that ∆P (k) ∈
[
∆̃(k) − 2K · δ, ∆̃(k) + 2K · δ

]
.

In the above formula, ∆ increases with each sk
def
=

(
∆P (k)

)2. Thus, to find the
largest possible value of ∆, we need to solve the corresponding equation with the
largest possible value sk of

(
∆P (k)

)2. One can check that this value is equal to

sk =
(∣∣∣∆̃(k)

∣∣∣+ 2K · δ
)2

. Thus, we arrive at the following algorithm.

First, we estimate C̃ = Cf (p̃1, . . . , p̃m). Then, we compute K and p
(k)
i as in the

original Cauchy deviate algorithm, and estimate ∆̃(k) and sk. After that, we compute ∆

by applying the bisection method to the equation
1

1 +
s1
∆2

+ . . . +
1

1 +
sN
∆2

=
N

2
for

∆ ∈
[
0,
√

max
k

sk

]
. Finally, we return the range

[
C̃ −∆, C̃ +∆

]
.

Parallelization: general comment. One can easily see that the above algorithms are
easily parallelizable.
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