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ABSTRACT

To estimate the future value of a quantity y or a present value of a difficult-to-
measure quantity y, we measure easier-to-measure quantities x1, . . . , xn related to y by
a known dependence y = f(x1, . . . , xn), and then use this dependence to compute an
estimate ỹ for y. Measurements are never absolute accurate: each measurement result
x̃i is, in general, different from the actual (unknown) value of the quantity xi. Because
of this, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different from the actual value
y. In many practical situations, we only the upper bound ∆i on the measurement error
∆xi

def
= x̃i − xi: |∆xi| ≤ ∆i. In this case, possible values of xi form an interval

[x̃i −∆i, x̃i +∆i]. Different values xi from these intervals lead, in general, to different
values y = f(x1, . . . , xn); thus, we need to find the range y of all such values.

Computing this range is, in general, NP-hard (computationally intractable), so it is
only feasibly possible to compute an enclosure Y ⊇ y. In the dynamic case, when
we want to predict the values y(t) for different moments of time t, we have enclosures
Y(t) corresponding to different moments of time. Different methods produce different
enclosures Y(t), Y′(t), etc.; which one should we choose? In this paper, we show how
symmetry-based ideas can help in making this choice.

FORMULATION OF THE PROBLEM

Need for data processing. In many practical situations, we are interested in the future
value of a quantity y or in its current value which is not easy to measure directly. In such
situations, we find easier-to-measure quantities x1, . . . , xn which are related to y in a
known way y = f(x1, . . . , xn), and then use the measured values x̃i of the auxiliary
quantities xi to estimate y as ỹ = f(x̃1, . . . , x̃n). This is usually called data processing.

Need to take measurement uncertainty into account. Measurements are never
absolutely accurate; thus, the measured values x̃i are somewhat different from the
actual (unknown) values xi and therefore, even when the model is exact, the estimate
ỹ = f(x̃1, . . . , x̃n) is, in general, different from the desired value y = f(x1, . . . , xn).
It is important to gauge this difference.



Interval uncertainty: important case of measurement uncertainty. Often, the only
information that we have about each measurement error ∆xi

def
= x̃i − xi is the upper

bound ∆i, for which |∆xi| ≤ ∆i; see, e.g., (8). In this case, the only information that
we know about each xi is that xi belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i]. We
therefore need to find the range y of f(x1, . . . , xn) when xi ∈ xi.

The exact computation of this range is known to be NP-hard (5), so, in general, we
estimate the enclosure Y ⊇ y. Techniques for computing such enclosures have been
developed as part of interval computations; see, e.g., (7).

Dynamic case. Often, instead of a single quantity y, we are interested in the values
y(t) corresponding to different values of the parameter t; for example, we may be
interested in the value of the quantity y at different future moments of time, or in the
values of y at different locations. In this case, interval computations helps us find an
enclosure Y(t) for each t.

Need to select the best technique. There are many different interval techniques.
By applying different techniques, we get different enclosures Y(t), Y′(t), . . . Each
technique is better for different problems.

Theoretically, we can apply all the techniques and get an intersection of the resulting
enclosures. However, in practice, this would be too time-consuming. So, for each class
of problem, we need to select the most appropriate technique – the most appropriate
within a given limitation on computation time.

To make this selection, it is reasonable to apply different techniques to several
sample problems from the given class, and then select a technique based on the results.
How can we compare these results? Of course, if one the techniques leads to narrower
bounds for all t (e.g., if Y(t) ⊆ Y′(t) for all t and Y(t) ̸= Y′(t) for some t), this means
that the technique that leads to Y(t) is clearly better. However, often, one technique is
better for some t while another technique is better for other t.

What we do in this paper. In this paper, we propose a symmetry-based approach to
comparing two methods.

The mathematics behind this approach is similar to the mathematics used in (3)
to explain the efficiency of the use of entropy (and generalized entropy) as criteria in
selecting the best image among all images consistent with observations.

ANALYSIS OF THE PROBLEM

How preferences are described in decision theory: the notion of utility. To de-
scribe preferences in our specific case, let us recall how preferences are described in
the general case – as covered by decision theory (1; 4; 6; 9). In general, to describe
preferences in numerical terms, we can select a very bad alternative A0 and a very good
alternative A1. Then, for each probability p ∈ [0, 1], we can form a lottery L(p) in
which we get A1 with probability p and A0 with the remaining probability 1− p. When
p = 1, the lottery coincides with the alternative A1; when p = 0, the lottery coincides
with the alternative A0. The larger p, the better the lottery L(p).



For each alternative A between A0 and A1, for small p, the lottery L(p) is worse
than A, while for p ≈ 1, the lottery L(p) is better than the alternative A.

• If L(p) < A for some p, then L(p′) < A for all smaller probabilities p′.
• Similarly, if A < L(p), then A < L(p′) for all larger probabilities p′ > p.

Thus, there exists a threshold value u such that:

• for all probabilities p < u, we have L(p) < A, and
• for all probabilities u > p, we have L(p) > A.

This threshold value can described, e.g., as sup{p : L(p) < A}. The corresponding
threshold value is called the utility of the alternative A and denoted by u(A).

One can easily check that if u(A) > u(A′), then A is better than A′. Thus, in terms
of the utility function, selecting the best alternative means selecting the alternative with
the largest possible value of utility. In these terms, describing the user’s preference
means describing the user’s utility function.

How unique is utility. The numerical value of the utility depends on the selection of
the alternatives A0 and A1. One can show that if we select a different pair of alternatives
A′

0 < A′
1, then the new utility values u′(A) are related to the original utility values u(A)

by an appropriate linear transformation: u′(A) = a · u(A) + b for some real numbers
a > 0 and b which do not depend on A.

Application to our problem. Usually, we only describe the bounds Y(t) =
[Y (t), Y (t)] for the values t from a grid, i.e., for values of the type ti = t0 + i · ∆t,
for some small time quantum ∆t. In this case, the utility describing the quality of each
estimation has the form u(Y(t0),Y(t1), . . .).

Let us describe common sense properties of preference in terms of utility functions.

Localness property. Let us start with the following “localness” property. Let us
assume that the two enclosures Y(t) and Y′(t) differ only for moments t from an
interval [t, t], and that Y is preferred to Y′ (Y ≥ Y′). Since for all the values t ̸∈ [t, t],
the bounds Y(t) and Y′(t) coincide, this means that, for the user, on the interval [t, t],
the bounds Y(t) are better than the bounds Y′(t). From the common sense viewpoint,
this preference should not depend on whatever common bounds Y(t) = Y′(t) we have
for t ̸∈ [t, t].

Formally, if we have bounds Z(t) and Z′(t) for which:

• Z(t) = Z′(t) for all ̸∈ [t, t], and
• Z(t) = Y(t) and Z′(t) = Y′(t) for all t ∈ [t, t],

then Z should be preferable to Z′: Z ≥ Z′.

How to describe localness property in terms of utility. The “localness” property
(also known as “independence” property) is a frequent feature in practical problems. It
has been shown that when alternatives are characterized by n groups of parameters



x1, . . . , xn, then the localness of the preference is equivalent to the utility function
u(x1, . . . , xn) being of one of the two types (2):

• additive u(x1, . . . , xn) = u1(x1) + . . .+ un(xn) for some functions ui(xi); or
• multiplicative u(x1, . . . , xn) = u1(x1) · . . . · un(xn) for some functions ui(xi).

In our case, this means that we either maximize the sum
∑
i

u(Y(ti), ti) or the product∏
i

u(Y(ti), ti), where we denoted ui(Y(ti)) by u(Y(ti), ti).

Maximizing the product is equivalent to maximizing its logarithm
∑
i

ℓ(Y(ti), ti),

where ℓ(Y(ti), ti)
def
= ln(u(Y(ti), ti)). Thus, in both cases, we maximize the sum∑

i

u(Y(ti), ti) for some function u(Y, t).

In the limit when ∆t → 0, the sum tends to an integral u(Y)
def
=

∫
u(Y(t), t) dt.

Thus, due to localness, we must maximize this integral.
So, to specify preferences, we must find an appropriate function u(Y, t). Let us

show that other common-sense properties enable us to describe this function.

Smoothness. Small changes in time t and enclosure Y(t) should lead to small
changes in utility. It is therefore reasonable to require that the function u(Y, t) is
smooth. Specifically, we require that this function is at least twice differentiable.

Using different time units and different starting points for measuring time. Pref-
erences should not change if we simply change the unit for measuring time (e.g., from
minutes to seconds), or change the starting point.

In precise terms, changing a starting point means replacing the original value t with
t+ t0, and changing the measuring unit means changing t to λ · t.

Using different units and different starting points for the quantity y. Similarly,
we can use different starting points and different units for describing the quantity y. It
is reasonable to require that the resulting preference relation should not change if we
replace y with y + y0 or with λ · y.

In contrast to time whose direction is fixed, for many quantities y, the direction is
relative: for example, the fact that some electric charges are considered to be positive
and some negative does not have physical meaning, we could as well switch signs, and
all formulas will remain the same. As a result, for re-scaling y, we can use negative
values λ.

Let us formalize these conditions and see what we can deduce from them.

MAIN RESULT

Definition 1.

• By an additive utility function, we mean an expression of the type
u(Y) =

∫
u(Y(t), t) dt, where u(Y, t) is a twice differentiable function.



• By a multiplicative utility function, we mean an expression of the type
u(Y) = exp(

∫
u(Y(t), t) dt), where u(Y, t) is a twice differentiable function.

• By a utility function, we mean either an additive utility function or a multiplica-
tive utility function.

• We say that the functionals u(Y) and u′(Y) are equivalent if there exist real
numbers a > 0 and b for which u′(Y) = a · u(Y) + b for all functions Y(t).

Definition 2.

• By a t-rescaling, we mean a transformation Tλ,t0(t) = λ · t+ t0 for some λ > 0
and t0.

• For each function Y(t), by the result Z = Tλ,t0(Y) of applying the transforma-
tion Tλ,t0(t) to this function, we mean a function Z(t)

def
= Y(λ · t+ t0).

• We say that a utility function u(Y) is t-invariant if for every λ > 0 and t0, the
functional u(Tλ,t0(Y)) is equivalent to u(Y).

Definition 3.

• By a y-rescaling, we mean a transformation Yλ,y0(y) = λ ·y+y0 for some λ > 0
and y0.

• For each function Y(t) = [Y (t), Y (t)], by the result Z = Yλ,y0(Y) of applying
the transformation Yλ,y0(t) to this function, we mean a function

Z(t)
def
= [λ · Y (t) + y0, λ · Y (t) + y0].

• We say that a utility function u(Y) is y-invariant if for every λ ̸= 0 and y0, the
functional u(Yλ,y0(Y)) is equivalent to u(Y).

Proposition 1. Every t-invariant and y-invariant utility function is equivalent either
to a functional

∫ (
Y (t)− Y (t)

)p
dt for some real number p > 0, or to the functional∫

ln
(
Y (t)− Y (t)

)
dt.

Discussion.

• For p = 1, we select a method with the smallest average width.
• For p = 2, we select a method based on the mean square width.
• For p → ∞, we select a method with the smallest worst-case width

max
t

(
Y (t)− Y (t)

)
.

Proof: main ideas. As we have mentioned, the mathematics of this proof is similar
to the mathematics from (3). Because of this similarity (and due to page limitations),
we will concentrate on the main ideas behind our proof, with a main emphasis on the
differences between our problem and the problem solved in (3).

For an additive utility function, invariance relative to a time shift t → t+ t0 means



that for every t0, there exist values a(t0) and b(t0) for which∫
u(Y(t), t+ t0) dt = a(t0) ·

∫
u(Y(t), t) dt+ b(t0).

Taking a variation derivative of both sides of this equality over Y(t), we conclude that

for every t, t0, and Y, we have D(t + t0) = a(t0) ·D(t), where D(t)
def
=

∂u

∂Y
(Y, t) (a

similar functional equation holds for a partial derivative relative to Y ).
Since we assumed that the function u(Y, t) is twice differentiable, its derivative

D(t) is differentiable. Thus, a(t0) =
D(t+ t0)

D(t)
is also differentiable, as a ratio of two

differentiable functions. Differentiating the equality D(t + t0) = a(t0) · D(t) relative

to t0 and setting t0 = 0, we conclude that
dD

dt
= a · D, where a

def
=

da

dt0 |t0=0

; hence,

D(t) = C · exp(a · t).
On the other hand, invariance relative to t → λ · t means that for every λ > 0, there

exist values A(λ) and B(λ) for which∫
u(Y(t), λ · t) dt = A(λ) ·

∫
u(Y(t), t) dt+B(λ).

Taking a variation derivative of both sides of this equality over Y(t), we conclude that
for every t, λ, and Y, we have D(λ · t) = A(λ) · D(t). Since the derivative D(t) is
differentiable, the function A(λ) is also differentiable, as a ratio of two differentiable
functions. Differentiating the equality D(λ · t) = A(λ) ·D(t) relative to λ and setting

λ = 1, we conclude that t · dD
dt

= A ·D, where A def
=

dA

dλ |λ=1
. For D(t) = C ·exp(a · t),

this is only possible when a = 0, i.e., when the partial derivative D(t) =
∂u

∂Y
(Y, t)

does not depend on t at all.
A similar statement holds for the partial derivative relative to Y (t). Thus, we can

conclude that the utility function is equivalent to an expression
∫
u(Y(t)) dt in which

the integrated function u(Y(t)) does not have any explicit dependence on time t.
Instead of a function u(Y , Y ), it is convenient to consider an equivalent function

v(s, w), where:

• m
def
=

Y + Y

2
is the midpoint of the interval Y,

• w
def
= Y − y is the width of this interval, and

• v(s,m)
def
= u

(
m− w

2
,m+

w

2

)
.

The advantage of this representation is that with respect to y-shifts y → y + y0, only
the midpoint m changes, and m → m + y0. Thus, invariance with respect to y-shifts



means that ∫
v(m(t) + y0, w(t)) dt = a(y0) ·

∫
v(m(t), w(t)) dt+ b(y0)

for appropriate functions a(y0) and b(y0). Differentiating both sides of this equality
relative to m(t), we conclude that, for the corresponding derivative D(m), we have
D(m+ y0) = a(y0) ·D(m). Similarly to the case of time shifts, this implies that D(m)
exponentially depends on m – which, if we take into account scale-invariance, implies
that there is no dependence on the midpoint m(t) at all.

Therefore, the utility function takes the form
∫
v(w(t)) dt, where w(t) = Y (t) −

Y (t). In terms of the width m(t), the transformation y → λ·y leads to m(t) → λ ·m(t).
Thus, invariance relative to this transformation implies that∫

v(λ · w(t)) dt = A(λ) ·
∫

v(w(t)) dt+B(λ).

For the corresponding variational derivatives D(w), we get λ ·D(λ ·w) = A(λ) ·D(w).

Hence D(λ·w) = c(λ)·D(w), where we denoted c(λ)
def
=

A(λ)

λ
. Here, the function c(λ)

is differentiable as a ratio of two differentiable functions. Differentiating the equality

D(λ·w) = c(λ)·D(w) with respect to λ and taking λ = 1, we get w · dD
dw

= c·D, where

c
def
=

dc

dλ |λ=1
. Moving all the terms related to D to one side and all the terms related to w

to another side, we get
dD

D
= c·dw

w
. Integrating both sides, we get ln(D) = c·ln(w)+c0

for some constant c0. Thus, for D = exp(ln(D)), we get D(w) = const · wc.

Let us now recall that D(w) =
∂v

∂w
. Thus, to recover the expression for v(w), we

must integrate this derivative D(w) with respect to w.

• For c ̸= −1, integration leads to the power dependence v(w) = wp for p = c+1.
• For c = −1, we get the logarithmic dependence.

Thus, for additive utility functions, the proposition is proven.
For multiplicative utility functions, the proof is similar.

HOW TO COMPARE ESTIMATES REQUIRING DIFFERENT COMPUTA-
TION TIME?

Formulation of the problem. In the previous section, we compared estimates Y
and Y′ produced by two estimation methods requiring the same computation time T .
A similar approach can be used to compare estimates corresponding to different values
of the computation time T ̸= T ′.



Analysis of the problem. In this case, we need to explicitly describe the dependence
of the utility value on T . To deal with this dependence, we can take into account that
the computation time T can also be described by using different units of time.

Definition 4.

• By an additive utility function, we mean an expression of the type u(Y, T ) =∫
u(Y(t), t, T ) dt, where u(Y, t, T ) is a twice differentiable function.

• By a multiplicative utility function, we mean an expression of the type
u(Y, T ) = exp(

∫
u(Y(t), t, T ) dt), where u(Y, t, T ) is a twice differentiable

function.
• By a utility function, we mean either an additive utility function or a multiplica-

tive utility function.
• We say that the functionals u(Y, T ) and u′(Y, T ) are equivalent if there exist

real numbers a > 0 and b for which u′(Y, T ) = a ·u(Y, T )+b for all functions
Y(t) and values T > 0.

Definition 5.

• We say that a utility function u(Y, T ) is t-invariant if for every λ > 0 and t0,
the functional u(Tλ,t0(Y), T ) is equivalent to u(Y, T ).

• We say that a utility function u(Y, T ) is y-invariant if for every λ ̸= 0 and y0,
the functional u(Yλ,y0(Y), T ) is equivalent to u(Y, T ).

• By a T -rescaling, we mean a transformation Tλ,y0(T ) = λ · T + T0 for some
λ > 0 and T0.

• We say that a utility function u(Y, T ) is T -invariant if for every λ > 0 and T0,
the functional u(Y, λ · T + T0) is equivalent to u(Y, T ).

Proposition 2. Every t-invariant, y-invariant, and T -invariant utility function is
equivalent either to a functional T−q ·

∫ (
Y (t)− Y (t)

)p
dt for some real number p > 0

and q > 0, or to a functional T−q ·
∫
ln
(
Y (t)− Y (t)

)
dt for some q > 0.

Comment. The proof of this proposition (and of the following Proposition 3) is similar
to the proof of Proposition 1.

AUXILIARY RESULT: HOW TO COMPARE DIFFERENT ESTIMATIONS
FOR THE PARETO-OPTIMAL FRONT

What is Pareto-optimal front: brief reminder. In many practical problems, we have
several objective functions f1(x), . . . , fn(x). In this situation, it makes sense to dismiss
a solution x if there exists a better (dominating) solution x′ (i.e., the one for which
fi(x

′) ≤ fi(x) for all i and fi(x
′) < fi(x) for some i), and keep only non-dominated

solutions.
From this viewpoint, it is desirable to find the Pareto optimal front, i.e., the set

of all the tuples (y1, . . . , yn) = (f1(x), . . . , fn(x)) corresponding to non-dominated



alternatives x.

How to estimate Pareto-optimal front. A natural way to estimate the Pareto-optimal
front is to compute the values of all the objective functions fi(x) for several different
alternatives x. Based on these computations, we then dismiss the dominant solutions,
and keep the tuples (f1(x), . . . , fn(x)) corresponding to non-dominant alternatives. The
resulting surface yn = f(y1, . . . , yn−1) is then returned as an approximation to the
actual Pareto-optimal front. (Due to the finiteness of the sample, this surface provides
only an approximate description of the actual Pareto optimal front.)

There exist several different techniques for such am estimation. Which one should
we select?

What we do in this section. We show that for n = 2, a symmetry-based approach
(similar to the approach from the previous section) can help us in selecting the best
estimation method – as a method which leads to a function y2 = f(y1) which is the
best estimation for the Pareto optimal front.

Definition 6.

• By an additive utility function, we mean an expression of the type
u(f) =

∫
u(f(y1), y1) dy1, where u(y2, y1) is a twice differentiable function.

• By a multiplicative utility function, we mean an expression of the type u(f) =
exp(

∫
u(f(y1), y1) dy1), where u(y2, y1) is a twice differentiable function.

• By a utility function, we mean either an additive utility function or a multiplica-
tive utility function.

• We say that the functionals u(f) and u′(f) are equivalent if there exist real
numbers a > 0 and b for which u′(f) = a · u(f) + b for all functions f(y1).

Definition 7.

• By a y1-rescaling, we mean a transformation Fλ,y0(y1) = λ · y1 + y0 for some
λ > 0 and y0.

• For each function f(y1), by the result g = Fλ,y0(f) of applying the transforma-
tion Fλ,y0(y1) to this function, we mean a function g(y1)

def
= f(λ · y1 + y0).

• We say that a utility function u(f) is y1-invariant if for every λ > 0 and y0, the
functional u(Fλ,y0(f)) is equivalent to u(f).

Definition 8.

• By a y2-rescaling, we mean a transformation Sλ,y0(y2) = λ · y2 + y0 for some
λ > 0 and y0.

• For each function f(y1), by the result g = Dλ,y0(f) of applying the transforma-
tion Sλ,y0(y2) to this function, we mean a function h(y1)

def
= λ · f(y1) + y0.

• We say that a utility function u(f) is y2-invariant if for every λ > 0 and y0, the
functional u(Sλ,y0(f)) is equivalent to u(f).



Proposition 3. Every y1-invariant and y2-invariant utility function is equivalent to
the functional

∫
f(y1) dy1.

Discussion. So, we should select a method for which the area under the curve y2 =
g(y1) is the smallest.
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