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Abstract. In the 1980s, Krassimir Atanassov proposed an important
generalization of fuzzy sets, fuzzy logic, and fuzzy techniques – intu-
itionistic fuzzy approach, which provides a more accurate description of
expert knowledge. In this paper, we describe a natural way how the main
ideas behind the intuitionistic fuzzy approach can be expanded even fur-
ther, towards an even more accurate description of experts’ knowledge.

1 Fuzzy Logic: A Brief Reminder

The main objective of this paper is to describe the main ideas behind intuition-
istic fuzzy logic and to describe how these ideas can be expanded. To do that, we
need recall the main motivations and the main ideas behind the original fuzzy
logic; for details, see, e.g., [6, 10, 11].

It is important to describe and process expert knowledge. In many
practical situations, from medicine to driving to military planning to decisions
on whether to accept a paper for publication, we rely on expert opinions.

In every field, there are a few top experts. For example, in every medical area,
there are top specialists in this area. In the ideal world, every patient in need
of a surgery would be operated by the world’s top surgeon, and every person
would get an advice from the world’s top financial advisor on how to invest his
or her savings. Since it is not possible for a few top surgeons to perform all the
operations and for top financial advisors to advice everyone, it is desirable to
design computer-based system which would incorporate the advice of the top
experts – and thus help other experts provide a better quality advice. Such
computer-based systems are often called expert systems.

Experts can describe their knowledge in terms of statements S1, S2, . . . (e.g.,
“if the P/E ratio of a stock goes above a certain threshold t0, it is recommended
to sell it”). In some situations, when we have a query Q – e.g., whether to
sell a given stock – we can use one of the expert rules. In many other cases,
however, none of the expert rules can lead directly to the desired answer, but a
proper combination of the rules can help. For example, in medical expert systems,
we rarely have a rule directly linking patient’s symptoms with the appropriate
treatment, but we have rules which link symptoms with diseases, and we have



rules which link diseases with treatments. By combining the corresponding rules,
we can get an answer to the query. The part of an expert system which, given
a query, tries to deduce the corresponding statement or its negation from the
expert rules, is known as an inference engine.

Uncertainty of expert knowledge. In using expert knowledge, we need to
take into account that experts are usually not 100% confident that their state-
ments are universally valid. For example, if a patient sneezes and coughs, a
medical doctor will conclude that it is most probably cold, flu, or allergy, but
the doctor also understands that there is a possibility of some rarer situations
with similar symptoms.

A natural way to gauge the experts’ uncertainty is to ask the experts to mark
their uncertainty on a scale from 0 to some integer n (e.g., on a scale from 0 to
5), so that 0 corresponds to no certainty at all, and n correspond to the absolute
certainty. If an expert marks m on a scale from 0 to n, then we claim that the
expert’s degree of certainty in his/her statement is the ratio m/n.

How to process experts’ uncertainty: towards a precise formulation of
the problem. Since the experts are not 100% sure in their statements, we are
therefore not sure about the expert system’s conclusion either. It is therefore
important to make sure that the expert system not only provides a “yes” or
“no” (or more complex) answer to a given query, but that the user will also get
a degree with which we are confident in this answer.

For example, if a medical expert system recommends a surgery, and the
resulting confidence is 99%, then it is probably a good idea to undergo this
surgery. However, if the resulting degree of confidence that this answer is correct
is about 50%, maybe it is better to perform some additional tests so that we
may become clearer on the diagnosis.

It is thus important, once we have derived a statement Q from the expert
knowledge base {S1, S2, . . .}, to provide the user with the degree d(Q) that the
resulting statement Q is correct. In some cases, there is only one chain of reason-
ing leading to the conclusion Q, and this chain involves statements Si1 , . . . , Sik .
In this case, all these statements need to be true for Q to be true: if one of the
statements in the chain is false, then the whole chain of reasoning collapses. In
these cases, Q is true if the statement Si1 & . . . &Sik is true. Thus, to gauge
our degree of belief in Q, we must be able to estimate the degree of belief in a
statement Si1 & . . . &Sik .

In general, we may have several derivations of Q – e.g., we may have several
different observations supporting the same diagnosis. In this case, Q is deduced if
at least one of the corresponding derivation chains is valid, i.e., if a propositional
formula of the following type holds:

(Si1 & . . . &Sik) ∨
(
Si′1

& . . . &Si′
k′

)
∨ . . .

Approximate estimation is needed. In other words, we would like to esti-
mate the degree of belief in different propositional combinations of the original



statements Si. Of course, if we only know the expert’s degrees of belief d(S1)
and d(S2) of different statements S1 and S2, we cannot uniquely determine the
expert’s degree of certainty d(S1 &S2). For example, if S1 means that a fair coin
falls heads, and S2 = S1, then it is reasonable to take d(S1) = d(S2) = 0.5 and,
thus, d(S1 &S2) = d(S1) = 0.5. On the other hand, if we take S2 = ¬S1, then
still d(S1) = d(S2) = 0.5 but now d(S1 &S2) = 0.

Since we cannot uniquely determine the degrees of certainty in all possible
propositional combinations based only on the degrees d(Si), ideally, we should
also find the degrees of certainty in all these propositional combinations. The
problem is that for N original statements, we need > 2N different degrees to de-
scribe, e.g., the degrees of certainty in different combinations Si1 & . . . Sin (> 2N

because we have 2N − 1 possible non-empty subsets {i1, . . . , in} ⊆ {1, . . . , N}).
Even for middle-size N ≈ 100, the value 2N is astronomically high. It is not

possible to elicit all these degrees of certainty from the expert. Thus, no matter
how much information we elicit, we will always have propositional combinations
for which we do not know the corresponding degrees, combinations for which
these degrees must be estimated.

How to estimate the corresponding degrees: fuzzy-motivated idea of
negation-, “and”- and “or”-operations. A general propositional combina-
tion is obtained from the original statement by using the logical connectives ¬
(“not”), & (“and”), ∨ (“or”). Since we do not know the degrees of all composite
statements, we inevitable face the following problem:

– for some statements A and B, we know the expert’s degrees of certainty d(A)
and d(B) in these statements;

– we need to estimate the expert’s degree of certainty in the statements ¬A,
A&B and/or A ∨B.

Negation operations. In this situation, to come up with the desired estimate
d(¬A), the only information that we can use consists of a single number d(A).
Let us denote the estimate for d(¬A) corresponding to the given value d(A) by
f¬(d(A)). The corresponding function is usually known as an negation operation.

How can we choose this negation operation? Let us first describe some reason-
able properties that this function should satisfy. First, we can take into account
that ¬(¬A) usually means the same as A. By applying the negation operation
f¬ to the estimated degree of certainty d(¬A) ≈ f¬(d(A)), we can estimate the
expert’s degree of certainty in ¬(¬A)) as f¬(f¬(d(A)). It is reasonable to require
that this estimate coincide with the original value d(A): f¬(f¬(d(A)) = d(A).
This equality must hold for all possible values a = d(A) ∈ [0, 1], so we must have
f¬(f¬(a)) = a for all a. In mathematical terms, this means that the function
f¬(a) is an involution.

When A is absolutely false, and d(A) = 0, then ¬A should be absolutely true,
i.e., we should have f&(0) = 1. Similarly, if A is absolute true and d(A) = 1,
then ¬A should be absolutely false, i.e., we should have f&(1) = 0. In general,
the more we believe in A, the less we should believe in ¬A, so the function f&(a)
must be decreasing.



The most widely used negation operation is f&(a) = 1 − a, it satisfies all
these properties; there are also other negation operations which are sometimes
used in fuzzy systems.

“And”-operations. To come up with the desired estimate d(A&B), the only
information that we can use consists of two numbers d(A) and d(B). Let us
denote the estimate for d(A&B) corresponding to the given values d(A) and
d(B) by f&(d(A), d(B)). The corresponding function is usually known as an
“and”-operation, or t-norm.

How can we choose the “and”-operation? Let us first describe some reason-
able properties that the corresponding function f&(a, b) should satisfy. First,
since A&B means the same as B&A, it is reasonable to require that the two
estimates f&(d(A), d(B)) and f&(d(B), d(A)) corresponding to different orders
of A and B should be the same. This must be true for all possible values of
a = d(A) and b = d(B); this means that we must have f&(a, b) = f&(b, a) for all
real values a, b ∈ [0, 1]. In other words, an “and”-operation must be commutative.

Similarly, A&(B&C) means the same as (A&B)&C. If we follow the
first expression, then, to estimate the corresponding degree of certainty, we
first estimate d(A&B) as f&(d(A), d(B)) and then use the “and”-operation
to combine this estimate and the degree of certainty d(C) into an estimate
f&(f&(d(A), d(B)), d(C)). Alternatively, if we follow the second expression, we
end up with the estimate f&(d(A), f&(d(B), d(C)). It is reasonable to require
that, since A&(B&C) ≡ (A&B)&C, these two estimates should coincide,
i.e., that the “and”-operation be associative.

The expert’s degree of confidence d(A&B) that both A and B are true
should not exceed the degree of confidence that A is true. Thus, we should have
d(A&B) ≤ d(A). It is therefore reasonable to require that f&(a, b) ≤ a – and
thus, that f&(0, a) = 0 for all a.

It is also reasonable to require that when d(A) = 1 (i.e., when we are 100%
certain in A), then we should have A&B equivalent to B, so f&(1, b) = b for all
b. If we increase our degree of confidence in A and/or B, this should not lead
to a decrease in our confidence in A&B; this means that the “and”-operation
should be monotonic: a ≤ a′ and b ≤ b′ implies f&(a, b) ≤ f&(a

′, b′). Finally,
small changes in d(A) and d(B) should not lead to a drastic change in d(A&B),
so the “and”-operation must be continuous.

“Or”-operations. Similarly, if we denote by f∨(d(A), d(B)) the estimate for
d(A∨B), then the corresponding “or”-operation (also known, for historical rea-
sons, as t-conorm) must be commutative, associative, monotonic, continuous,
and satisfy the properties f∨(0, a) = a and f∨(1, a) = 1 for all a.

Selecting different propositional operations: an empirical task. There
are many different negation, “and”-, and “or”-operations which satisfy these
properties; for each application area, we select the operations which best describe
the reasoning of experts in this area, i.e., for which the resulting estimates for
the expert’s degrees of confidence in composite statement are the closest to the
estimates for d(¬A), d(A&B), and d(A ∨B) produced by the experts.



This idea was first implemented for the world’s first expert system MYCIN
– Stanford’s expert system for diagnosing rare blood diseases; see, e.g., [3]. The
authors of MYCIN tried different possible “and” and “or-operations and found
the one which was the best fit for the actual reasoning of medical experts. It is
worth mentioning that when they tried to apply their expert system to a different
application area – geophysics – it turned out that the medical-generated “and”-
and “or”-operations did not lead to good results, different operations had to be
used.

Common misunderstanding. The reason why in fuzzy techniques (and in
expert systems in general), we estimate the degree of confidence d(A&B) by
applying an “and”-operation to d(A) and d(B) is not because we are under an
illusion that the expert’s degree of confidence in A&B is uniquely determined
by his/her degrees of confidence in A and B. Everyone understands that there
is no uniqueness here, the above example of a coin falling heads or tails is clear.
What the “and”-operation produces is an approximation to the actual expert’s
degree of belief in A&B.

We do not use this approximation because we are under some erroneous be-
lief that “and”- and “or”-operations are truth-functional, but simply because
we cannot realistically elicit all the degrees of confidence in all the propositional
combinations from all the experts, and we therefore need to estimate the un-
known degrees of certainty based on the known ones.

2 From Fuzzy to Intuitionistic Fuzzy

How can we improve the traditional fuzzy approach? One of the main
ideas behind the traditional fuzzy approach is that, since we cannot elicit the
expert’s degrees of confidence in all possible propositional combinations of their
original statements S1, . . . , Sn, we:

– extract the degrees of confidence d(Si) in these statements, and then
– use negation, “and”-, and “or”-operations to estimate the expert’s degrees

of belief in different propositional combinations.

To make these estimates more accurate, a natural idea is to extract, from the
expert, not just his/her degrees of confidence in the original statements, but also
degrees of confidence in some propositional combinations of these statements –
at least the simplest ones.

This idea naturally leads to intuitionistic fuzzy logic.Which propositional
combinations are the simplest? The more original statements are involved in a
combination, the more propositional connectives are used, the more complex
the statements. From this viewpoint, the simplest propositional combinations
are the ones which has the smallest number of the original statements – one –
combined by the smallest possible number of possible connectives: one. There are
three possible connectives: negation, “and”, and “or”. “And” and “or” requires
at least two original statements to combine (since Si &Si and Si ∨ Si mean the



same as Si). So, the only way to have a single original statement is by using
negation. Thus, the simplest possible propositional combinations are negations
¬Si.

Thus, to come up with a more adequate description of expert’s degree of cer-
tainty, a natural next step is not only to elicit the expert’s degrees of confidence
d(Si) in their original statements, but also their degrees of confidence d(¬Si) in
their negations. In other words, to describe the expert’s certainty about his/her
statement Si, instead of a single number d(Si), we now use a pair of numbers
d(Si) and d(¬Si). This is, in a nutshell, the main idea behind Atanassov’s intu-
itionistic fuzzy logic; see, e.g., [1, 2].

This idea makes perfect sense. Intuitively, the above idea makes perfect
sense. In contrast to the traditional fuzzy logic, this idea enables us to distinguish
between two different situations:

– a situation when we know nothing about a statement S, and
– a situation in which we have some arguments in favor of S and equally strong

arguments in favor of the opposite statement ¬S.

In both situations, we have equally strong arguments in favor of S and in favor
of ¬S, so it is reasonable to conclude that d(S) = d(¬S). In the traditional
fuzzy logic, when we assume that d(¬S) = 1 − d(S), this implies that in both
situations, we have d(S) = d(¬S) = 0.5. In the intuitionistic fuzzy logic, we
describe the situation in which we have no arguments in favor by S by taking
d(S) = 0, and similarly d(¬S) = 0. Thus, this situation is described differently
from the second one when d(S) = d(¬S) > 0.

3 Beyond Intuitionistic Fuzzy

Beyond intuitionistic fuzzy logic: a natural next step. To get an even
more adequate description of expert’s knowledge, we need to also elicit the ex-
pert’s degree of confidence in some more complex composite statements.

As we have mentioned, the fewer statements are used in a propositional
combination, and the fewer propositional connectives are used, the simpler the
combination. If we use one statement S, then the only possible propositional
combination is ¬S – which is handled in the intuitionistic fuzzy approach. Thus,
if we want to go beyond intuitionistic fuzzy, we need to consider propositional
combinations of two original statements S and S′. Among such combinations,
the simplest case if when we use a single propositional connective. Thus, the
simplest such combinations are combinations of the type S&S′ and S ∨ S′.

So, we arrive at the following natural description of the next step: in addition
to eliciting, from the experts, their degrees of belief in the original statements Si,
we also elicit their degrees of belief in composite statements Si &Sj and Si ∨Sj .
Since we have already included negation, it thus makes sense to also consider the
expert’s degrees of belief combinations of the type ¬Si &Sj , ¬Si &¬Sj , ¬Si∨Sj ,
and ¬Si ∨ ¬Sj .



The idea in more detail. To describe an imprecise (“fuzzy”) property P
(e.g., “small”), in the traditional fuzzy logic, to each possible value x of the

corresponding quantity, we assign the degree µP (x)
def
= d(P (x)) to which this

quantity satisfies the property P . The corresponding function µP (x) from real
values to the interval [0, 1] is known as themembership function, or, alternatively,
as the fuzzy set.

In the intuitionistic fuzzy logic, to describe a property P , we need to assign,
for each x, two degrees:

– the degree d(P (x)) ∈ [0, 1] that the quantity x satisfies the property P , and
– the degree d(¬P (x)) ∈ [0, 1] that the quantity x does not satisfy the prop-

erty P .

This pair of functions forms an intuitionistic fuzzy set.
In the new approach, to describe an imprecise property P , we need to also

assign, to every pair of values x and x′:

– the degree d(P (x)&P (x′)) ∈ [0, 1] that both quantities x and x′ satisfy the
property P ;

– the degree d(P (x)∨P (x′)) ∈ [0, 1] that either the quantity x or the quantity
x′ satisfies the property P ;

– the degree d(¬P (x)&P (x′)) ∈ [0, 1] that the quantity x does not satisfy the
property P while the quantity x′ satisfies P ;

– the degree d(¬P (x)&¬P (x′)) ∈ [0, 1] that neither x nor x′ satisfy the prop-
erty P ;

– the degree d(¬P (x) ∨ P (x′)) ∈ [0, 1] that either x does not satisfy P or x′

satisfies P ; and
– the degree d(¬P (x)∨¬P (x′)) ∈ [0, 1] that either x or x′ does not satisfy the

property P .

The resulting collection of functions form the corresponding generalization of
the notion of a fuzzy set.

An interesting difference emerges when we want to consider two possible
properties P and P ′. In both traditional fuzzy approach and intuitionistic fuzzy
approach, all we can do is describe these two properties one by one. In the new
approach, we also need to describe the relation between the two properties. For
example, for each x and x′, we can now describe the degree d(P (x)&P (x′)) to
which x satisfies the property P and x′ satisfies the property P ′.

Comment. The idea of describing such degrees was first formulated – in the
probabilistic context – in [5]; see also [9].

This ideas also makes perfect sense. The above idea enables us to describe
features of the properties like “small” which are difficult to describe otherwise.
For example, while different experts may disagree on which values are small and
which are not small, all the experts agree that if x is small and x′ is smaller than
x, then x′ is small as well. In other words, if x′ < x, then it is not reasonable
to believe that x is small but the smaller value x′ is not small. In other words,



for P =“small” and x′ < x, the corresponding degree of belief d(P (x)&¬P (x′))
should be equal to 0.

This possibility is in contrast to the traditional fuzzy logic, where from
d(P (x)) > 0 and d(¬P (x′)) = 1 − P (x′) > 0, we would conclude that
d(P (x)&¬P (x′)) ≈ f&(d(P (x)), d(¬P (x′))). For most frequently used t-norms
such as f&(a, b) = min(a, b) and f&(a, b) = a · b, from d(P (x)) > 0 and
d(¬P (x′)) > 0, we deduce that the resulting estimate for d(P (x)&¬P (x′)) is
also positive – and not equal to 0 as common sense tells us it should.

We can go further. To get an even more adequate representation of expert
knowledge, we can also elicit expert;s degrees of belief in composite statements
which combine three or more original statements Si.

4 From Type-1 to Type-2 Fuzzy

Need for type-2: brief reminder. We are interested in situations in which an
expert is not 100% certain about, e.g., the value of the corresponding quantity.
In this case, we use, e.g., estimation on a scale to gauge the expert’s degree of
belief in different statements. The traditional fuzzy approach assumes that an
expert can describe his/her degree of belief by a single number.

In reality, of course, the expert is uncertain about his/her degree of certainty
– just like the same expert is uncertain about the actual quantity. In this case,
the expert’s degree of certainty d(P (x)) is no longer a single number – it is, in
general, a fuzzy set. This construction, in which, to each x, we assign a fuzzy
number d(P (x)) is known as a type-2 fuzzy set; see, e.g., [7, 8].

Need to combine intuitionistic and type-2 fuzzy sets. It is known that, in
many practical situations, the use of type-2 fuzzy sets leads to a more adequate
description of expert knowledge. Therefore, to achieve even more adequacy, it is
desirable to combine the advantages of type-2 and intuitionistic fuzzy set.

At first glance, such a combination is straightforward. At first glance, it
looks like the above combination is straightforward: all the above arguments did
not depend on the degree d(Si) being numbers; the exact same ideas – including
the possibility to go beyond the intuitionistic fuzzy sets – can be repeated for
the case when the values d(Si) are themselves fuzzy numbers – or, alternatively,
intuitionistic fuzzy numbers.

However, as we will see, the relation between intuitionistic and type-2 fuzzy
number is more complicated.

Observation: some intuitionistic fuzzy numbers can be naturally
viewed as a particular case of type-2 fuzzy numbers. To explain this
unexpected relation, let us start with the simplest possible extension of the clas-
sical two-valued logic, in which each statement is either true or false. The more
possible truth values we add to the original two, the more complex the resulting
logic. Thus, the simplest possible non-classical logic is obtained if we add, to the
two classical truth values “true” and “false”, the smallest possible number of



additional truth values – one. A natural interpretation of this new truth value
is “uncertain”. For simplicity, let us denote the corresponding truth values by T
(“true”), F (“false”), and U (“uncertain”).

To fully describe the resulting 3-valued logic, we need to supplement the
known truth tables for logical operations involving T and F with operations
including the “uncertain” degree U .

For negation, this means adding ¬U . For each truth value X, the meaning
of ¬X is straightforward: if our degree of belief d(S) in a statement S is equal
to X, then our degree of belief in its negation ¬S should be equal to ¬X. For
“uncertain”, the truth value d(S) = U means that we are not sure whether
the statement S is true or false. In this case, we are equally uncertain about
whether the negation ¬S is true or false; thus, d(¬S) = U . In other words, we
have ¬U = U .

Similarly, if we are uncertain about S, but we know that S′ is false, then the
conjunction S&S′ is also false; thus, U &F = F . On the other hand, if we know
that S′ is true (or if we are uncertain about S′), then, depending on whether S
is actually true or false, it is possible that the conjunction S&S′ is true and it is
also possible that this conjunction is false. Thus, we have U &T = U &U = U .

If we are uncertain about S, but we know that S′ is true, then the disjunction
S∨S′ is also true; thus, U∨T = T . On the other hand, if we know that S′ is false
(or if we are uncertain about S′), then, depending on whether S is actually true
or false, it is possible that the disjunction S ∨ S′ is true and it is also possible
that this disjunction is false. Thus, we have U ∨ F = U ∨ U = U .

In the spirit of type-2 logic, instead of selecting one of the three truth values
T , F , or U , we can assign degrees of certainty d(T ) ≥ 0, d(F ) ≥ 0, and d(U) ≥ 0
to these three values. One possible way to assign such degrees is to distribute
the same fixed amount of degree (e.g., 1) between these three options; in this
case, we always have d(T ) + d(F ) + d(U) = 1. Because of this relation, the
triple (d(T ), d(F ), d(U)) can be uniquely described by two values d(T ) ≥ 0 and
d(F ) ≥ 0 for which d(T ) + d(F ) ≤ 1; one can easily see that this is exactly the
definition of an intuitionistic fuzzy degree [1, 2].

Moreover, we will show that even some operations on intuitionostic fuzzy
degrees can be thus interpreted. Indeed, if we know the triples (d(T ), d(F ), d(U))
and (d′(T ), d′(F ), d′(U)) describing the expert’s degree of belief in statements
S and S′, then the triple (d′′(T ), d′′(F ), d′′(U)) corresponding to the composite
statements S′′ = ¬S, S′′ = S&S′, and S′′ = S ∨ S′ can be obtained by using
Zadeh’s extension principle. Let us describe this in detail.

In the 3-valued logic, S′′ = ¬S is true if and only if S is false, and S′′ = ¬S
is false if and only if S is true. Thus, d′′(T ) = d(F ) and d′′(F ) = d(T )). This is
in line with the usual definition of negation in the intuitionistic fuzzy logic, as
f¬((d(T ), d(F ))) = (d(F ), d(T )).

In the 3-valued logic, S′′ = S&S′ is true if and only if S is true and S′ is
true:

S′′ is T ⇔ ((S is T )& (S′ is T )).



We know the degree d(T ) to which S is true, and we know the degree d′(T )
to which S′ is true. Thus, by applying an appropriate “and”-operation (t-
norm), we can conclude estimate the desired degree d′′(T ) that S′′ is true as
f&(d(T ), d(T

′)). In particular, for a frequently used “and”-operation f&(a, b) =
a · b, we get d′′(T ) = d(T ) · d′(T ).

Similarly, S′′ = S&S′ is false if and only if:

– either S is false and S′ can take any possible value,
– or S′ is false and S can take any possible value.

Thus:
S′′ is F ⇔ (((S is F )& (S′ is T )) ∨ ((S is F )& (S′ is U))∨

((S is F )& (S′ is F )) ∨ ((S is T )& (S′ is F )) ∨ ((S is U)& (S′ is F ))).

By using the same “and”-operation and a frequently used “or”-operation
f∨(a, b) = min(a+ b, 1), we get the estimate

d′′(F ) = min(d(F )·d′(T )+d(F )·d′(U)+d(F )·d′(F )+d(T )·d′(F )+d(U)·d′(U), 1).

Substituting d(U) = 1−d(T )−d(F ) into this formula, we conclude that d′′(F ) =
d(F )+d′(F )−d(F ) ·d′(F ). This is in line with the usual definition of an “and”-
operation in the intuitionistic fuzzy case as

f&((d(T ), d(F )), (d′(T ), d′(F ))) = (f&(d(T ), d
′(T )), f∨(d(F ), d′(F ))),

where f∨(a, b)
def
= 1−f&(1−a, 1− b)). For f&(a, b) = a · b, we thus get f∨(a, b) =

a+ b− a · b, and therefore, d′′(T ) = f&(d(T ), d
′(T )) = d(T ) · d(T ′)) and d′′(F ) =

d(F ) + d′(F )− d(F ) · d′(F ), exactly as in the above type-2 formulas.
For S′′ = S ∨ S′, we similarly get

S′′ is F ⇔ ((S is F )& (S′ is F )),

and thus, d′′(F ) = d(F ) · d′(F ). Also, we get

S′′ is T ⇔ (((S is T )& (S′ is T )) ∨ ((S is T )& (S′ is U))∨

((S is T )& (S′ is F )) ∨ ((S is F )& (S′ is T )) ∨ ((S is U)& (S′ is T ))),

and hence, the degree d′′(T ) is equal to

min(d(T ) · d′(T ) + d(T ) · d′(U) + d(T ) · d′(F ) + d(U) · d′(T ) + d(F ) · d′(T ), 1) =

d(T ) + d′(T )− d(T ) · d′(T ).

This is also in perfect accordance with the intuitionistic fuzzy operation
f∨((d(T ), d(F )), (d′(T ), d′(F ))) = (f∨(d(T ), d

′(T )), f&(d(F ), d′(F ))).
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