Dealing with Uncertainties in Computing: from
Probabilistic and Interval Uncertainty to
Combination of Different Types of Uncertainty

Vladik Kreinovich

Abstract To predict values of future quantities, we apply algorithms to the current
and past measurement results. Because of the measurement errors and model in-
accuracy, the resulting estimates are, in general, different from the desired values
of the corresponding quantities. There exist methods for estimating this difference,
but these methods have been mainly developed for the two extreme cases: the case
when we know the exact probability distributions of all the measurement errors and
the interval case, when we only know the bounds on the measurement errors. In
practice, we often have some partial information about the probability distributions
which goes beyond these bounds. In this paper, we show how the existing methods
of estimating uncertainty can be extended to this generic case.
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1 Need to Deal with Uncertainty in Computing

Need for data processing. To make a proper decision, we need to be able to predict
the results of making a certain decision (or of not making any decision at all). In
many real-life situations, we know how the desired future value y of each corre-
sponding quantities depends on the current values of relevant quantities g, ..., qn;
in other words, we have an algorithm that, given the values qy,...,qg,, produces the
estimate y = A(qy,-..,q,). This algorithm can be as simple as a straightforward
computation by using an explicit formula, or it can be as complex as a solution of
the corresponding system of partial differential equations (as in weather prediction).
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Sometimes, the quantities ¢q1,...,q, can be measured directly; in such cases, to
predict the future value y, we measure the current values of these quantities and use
the algorithm f to predict the future value y.

In many practical situations, however, some of the quantities ¢; are difficult (or
even impossible) to measure directly. For example, to make predictions in geo-
sciences, we must know the densities and stresses at different depths, including areas
much deeper that current boreholes can reach. In such situations, instead of directly
measuring the corresponding quantity g;, we can measure it indirectly: namely, we
measure the auxiliary quantities ay, . . ., a,, which are related to g; by a known depen-
dence, and then use a known algorithm to estimate g; based on the results of these
measurements. For example, to estimate the density at different depths, we measure
gravity at different Earth locations, we measure travel times of seismic waves, etc.
As aresult, we arrive at the following problem:

e First, we (directly) measure some quantities; we will denote these quantities
by x1,...,x,. Some of these quantities may be the easy-to-measures quantities
qi, some may be auxiliary quantities whose measurement is needed to estimate
difficult-to-measure quantities g;.

e Then, we use the results X, .. .,X, of measuring the quantities xi,...,x, to com-
pute the estimate y for the desired future value y. We will denote the correspond-
ing algorithm by f, so that f = f(X1,...,X,). This algorithm usually consists of
two parts:

— first, we use the values X; to estimate the quantities ¢;, and
— then we use the estimated values of g; to predict the value y.

Computation of y from X; constitutes data processing.

Need to deal with uncertainty in data processing. Measurement are never ab-
solutely accurate. As a result, the measurement results X; are, in general, different
from the actual (unknown) values x; of the corresponding quantity. In other words,

in general, we have a non-zero measurement error Ax; déffi — x;. Because of this dif-
ference, even when the model is exact, i.e., when the actual values y and x; satisfy
the condition y = f(xi,...,x,), the estimated value y = f(x],...,X;) is, in general,
different from the actual value y.

In some cases, the model itself is only approximate, in the sense that y is only

approximately equal to f(xi,...,x,). In this case, there is an additional model in-

def . ~. .
accuracy Axg = f(x1,...,x,) —y, and hence, the estimate y is even more different
from y.

To make a proper decision based on the estimate y, it is important to know how
accurate is this estimate. For example, if the estimate for the amount of water is an
underground aquifer is 200 million tons, and it is 200 % 10, then it is a good idea to
start digging and exploiting this water; on the other hand, if it is 200 & 300, then it
may be that there is no water available at all — in which case, further measurements
may be needed before we invest money in exploiting this possible source of water.

In general, it is important to get some information about the estimation error

def ~
AyEy—y.
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2 Processing Uncertainty: General Formulation of the Problem

Towards the general formulation of the problem. We are interested in the differ-
ence Ay=y—y.

e We know that y = f(x1,...,X,).
e By definition of the model inaccuracy, we have y = f(xy,...,x,) — Axo. By defi-
nition of the measurement error, we have x; = x; — Ax;, so

y=f(x1 —Axy,..., X, — Ax,) — Axp.

Substituting these expressions for y and y into the above formula for Ay, we con-
clude that

Ay:f(fh...,)?n)—f(fl —Axl,...,fn—Axn)—l—AxO. (1)

Measurement errors are usually relatively small. The measurement errors are

usually relatively small, we may have measurement accuracy 10%, 5%, 1%. In all

these cases, the squares of the measurement errors can be safely ignored: e.g., for

Ax; = 10%, we have (Axi)2 ~ 1% < 10%. Because of this, we can expand the

formula (1) in Taylor series in Ax; and ignore terms which are quadratic (or of higher
n

order) in Ax;. We thus get f(X] — Axy,..., X — Axy) = f(X1,..., %) — ¥ ¢i- Ax;,
i=1
def 9f

where ¢; = —— and therefore, we get a linear dependence:

8x,~

n
Ay =Y ci-Ax;+ Axo. (2)
i=1

Measurement errors corresponding to different measurements are usually in-
dependent. Measurement errors Ax; corresponding to different measurements are
usually independent from each other — and from the model inaccuracy Axy. There-
fore, it makes sense to assume that all n+ 1 random variables Axy,...,Ax,, and Axg
are independent.

What we do in this paper. In this paper, we describe how to estimate Ay in a
general situation, when we may have a combination of probabilistic and interval
uncertainty. To provide this description, we need to first recall how uncertainty is
usually estimated — so that it will be clear what are the assumptions underlying the
usual techniques, and what needs to be modified when these assumptions are not
satisfied.
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3 Traditional Engineering Approach to Processing Uncertainty:
Brief Reminder

Usual assumptions: that all distributions are normal with zero mean. In engi-
neering practice, it is usually assumed that all the measurement errors are normally
distributed with zero mean.

The normality distribution comes form the fact that for each measurement, the
measurement error comes from many different sources. Usually, manufacturers of
the measuring instrument try their best to eliminate all major sources of measure-
ment errors. As a result, the remaining measurement error does not contain any large
components, it is a joint effort of numerous small error components coming from
different sources. According to the Central Limit Theorem (see, e.g., [16]), the dis-
tribution of the sum of a large amount of small independent random components
is close to Gaussian — and the more components we have, the closer the resulting
distribution to Gaussian. Thus, it make sense to assume that the measurement errors
are normally distributed — and indeed, empirical analysis shows that more than half
of measuring instruments have normal distribution [12, 13].

The zero mean assumption comes from the fact that the measuring instruments
are usually calibrated before their use; see, e.g., [14]. One of the purposes of the
calibration is to find the instrument’s bias — i.e., the mean value of the measurement
error — and to compensate for this bias. After the compensation, the mean is zero.

To describe a normal distribution, it is sufficient to describe the mean and the
standard deviation. Since the mean of the variable Ax; is zero, all we need to do to
describe the measurement error is to provide the standard deviation o;. Similarly,
we can eliminate the main sources of the model inaccuracy, and we can delete the
model’s bias as well. As a result, we can conclude that the model’s inaccuracy Axg
is also normally distributed, with zero mean. We will denote its standard deviation
by Op.

Estimating uncertainty under the usual assumptions: derivation of the result-
ing formulas. According to the formula (2), the estimation error Ay is a linear
combination of measurement errors Ax; and of the model inaccuracy Axg. These
quantities are independent, and (under the above assumptions) normally distributed.
It is known that a linear combination of independent Gaussian random variables is
also normally distributed, so Ay is also normally distributed.

To describe a normal distribution, it is sufficient to describe the mean and the
standard deviation. Since the means of all the variables Ax; and Axy are zeros, the
mean value of Ay is also equal to 0. Thus, under the usual engineering assumptions,
to describe the probability distribution for Ay, it is sufficient to describe its standard
deviation ¢. The variance of the sum of independent random variables is equal to
the sum of the variances, so from (2), we conclude that

n
o>=Y ;o7 +0;. (3)
1
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How to actually estimate ¢: towards the first algorithm. How can we actually
estimate ? To use this formula, we need to know the values ¢;. These values are
partial derivatives of the function f(xy,...,x,) describing the data processing algo-
rithm. When this algorithm consists of a straightforward application of an explicit
formula, we can simply differentiate this formula and get an explicit expression
for the corresponding derivatives. However, in general, the function f(xy,...,x,) is
given as a complex algorithm, so it is not possible to perform an explicit differenti-
ation.

A reasonable alternative is to use numerical differentiation. Numerical differen-
tiation is based on the definition of the derivative as a limit:

87]0 — lim f(xl,...,xi,l,x,-+h,-,xi+1,...,x,,)ff(xl,...,x,-,l,x,',xiﬂ,...,xn)
3x,» hi—0 h; '

By the definition of the limit, this means that for small &, we have

ﬁ - f(xl,...,xi,],xi—khi,xH],... ,xn) —f(xl,.. . ,Xi,1,xi,x,'+1,...,xn)
8x,- hi

For small &;, we expand the expression f(xi,...,Xx—1,X; + hi, Xit1,- - -,X,) in Taylor
series and keep only terms which are linear in &, getting

f(xl yeee s Xi—1 ,xi—|—h,~,xl~+| gees ,xn) = f(xl goe oy Xi— 13 Xiy Xit1ye - ,x,,) +/’ll’ < Ci.
From this formula, we can estimate c¢; as the ratio

= f(xla' .. 7-xi717xi+hiaxi+17' . 'axn) *f(X],. ey Xi—1, X0, X1y e - 7-xn) (4)
P = .
hi

Substituting these expressions into the formula (3), we get

2
o2 — i (f(- o Xim, X+ X, ) — f (- 7xi—1axi;xi+17---)> G2+ o
h.
i=1 i
Which values hy, ..., h, should we use? Once we know the values of the function
f, this formula uses subtraction, addition, multiplication, and division to estimate
o2. In the computer, division is the most time-consuming operation, so ideally, we
should select &; so as to avoid divisions. Division can indeed be avoided if we take
h; = o;. In this case, the above formula takes the simplified form:

(f( ey Xi—1,Xi + Oj, Xit 1, - ) — f( ey X1, Xy X 1y - - ))2 + Gg. (5)

Q
(S}
Il
.M=

i=1

Thus, we arrive at the following algorithm.

First algorithm: sensitivity analysis. We are given the values X, ...,X,, the algo-
rithm f, and the standard deviations o7, ..., 0,, and Op.
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First, we perform the original data processing, i.e., compute the value
Y= f(X1,..,%n)-
. def L/~ ~ o~ ~ ~
e Then, fori=1,...,n, we compute y; = S(X1, - X1, X+ O Xi 1y - - - 3 Xn)-

Finally, we compute 6% = ¥ (y; —¥)? + o3.
i=1

Limitations of the first algorithm. As we have mentioned, the data processing al-
gorithm f can be very time-consuming. Thus, the more times we call this algorithm,
the longer our estimation of o. The above algorithm requires n + 1 calls to the al-
gorithm f (n more calls than a simple data processing). In many practical problems
—e.g., in geosciences — we process thousands of data points, so n is in thousands. If
it takes several hours on a high performance computer to estimate each value of f,
then, to compute o, the above algorithm requires thousands time more time — i.e.,
several months. This is not realistic, we need a faster method.

Towards a second algorithm. The possibility to process uncertainty faster comes
from the fact that a similar expression for ¢ arises if we simulate normally dis-
tributed random errors. Namely, if we add, to the original values X;, simulated ran-
dom errors 6x; with are normally distributed with 0 mean and standard deviation
0;, and use a random variable 8xo which is normally distributed with mean 0 and
standard deviation op, then the difference

f(fl —‘1-5)61,...,35,14-6)(,,)—f(fl,...,fn)—l—(sxO = Zci-éxi—i—Sxo
i=1

is also normally distributed with O means and the desired standard deviation . We
can thus use the standard formulas for estimating standard deviation from a sample
to estimate ¢. We therefore arrive at the following algorithm:

Second algorithm: Monte-Carlo simulations. We are given the values X1, ..., X,

the algorithm f, and the standard deviations o1, ..., 0,, and Oy.

e First, we perform the original data processing, i.e., compute the value
V=Ff(X1,- %)

e Then, we select the number of iterations N. For each k from 1 to N, we generate
n+ 1 random numbers ryy, ..., ", ko €ach of which is normally distributed with

mean 0 and standard deviation 1.
e For each k, we compute y; = f(X] + O} - Fk1y- - -, Xn + O - Fin) + O0 - T'0-

1 N
e Finally, we estimate o= N . Z (yk — }7)2-
k=1

Advantages and limitations of the second algorithm. The above method requires
N + 1 calls to the algorithm f. The number of iterations N depends on the accuracy
with which we want to estimate o. In general, the relative standard deviation of

2
determining ¢ from a sample of size N is equal to N; so, e.g., to find o with

accuracy 20% and reliability 95% (which corresponds to two standard deviations),
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/2
we need to make sure that 2 - N <0.2,1i.e., N > 200. For n > 1,000, this is much

faster than the sensitivity analysis — this is the main advantage of this method.
The limitation is that, in contrast to the sensitivity analysis method, we do not get
the exact value o, only an approximate value.

Possibility of parallelization. In both methods for estimating ¢, the most time-
consuming step is calling the algorithm f. If we have at our disposal several pro-
cessors which can work in parallel, then we can make all these calls in parallel and
thus, drastically decrease the computation time.

4 Case of Interval Uncertainty

Need for interval uncertainty. The traditional approach is based on the assump-
tion that for each measuring instrument, we know the exact distribution of the cor-
responding measurement error Ax;. In practice, this probability distribution can be

established if we compare the results )?Sk)

with the results )Acf]?t produced by a much more accurate (“standard”) measuring in-
strument. Since the standard measuring instrument is much more accurate, we can
ignore its measurement errors and assume that its measurement results are equal
to the exact values of the corresponding quantity: 79 ~x®1n this approxima-

ist
tion, the differences )“cgk) —)AC{]O

1,8t
Axgk) = chk) —xfk). By accumulating a sample of such values, we get a probability

distribution for Ax;.

Howeyver, there are two situations when we cannot do it. First is the case of state-
of-the-art measurements. For example, it would be nice if near the Hubble telescope,
there would be another one, five times more accurate, which we could use to cali-
brate the Hubble telescope — but the Hubble telescope is the best we have. Similarly,
it would be nice if we had geophysical methods which were five times more accu-
rate than the current ones — but our methods are the best we have. In such situations,
at best, we can have upper bounds A; on the corresponding measurement errors. We
know that |Ax;| < A;, i.e., that Ax; is located on the interval [—A;, A;], but we do not
have any information about which values from this interval and more probable and
which values are less probable. this situation is known as interval uncertainty; see,
e.g., [5, 10, 14].

Interval uncertainty also occurs in manufacturing, where, in principle, we can
calibrate every sensors, but since sensors are relatively cheap and their calibration
is very expensive, they are not calibrated — instead, we rely on the upper bounds A;
provided by the manufacturer.

Similarly, we only know a bound A on the model inaccuracy Axy: |[Axp| < Ap.

produced by our measuring instrument

are equal to the corresponding measurement errors
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Estimating uncertainty under interval uncertainty: derivation of the resulting
formulas. The sum (2) is the largest when each term c; - Ax; attains its largest pos-
sible value on the corresponding interval [—A;, A;].

e When ¢; > 0, the function ¢; - Ax; is increasing, so its largest value is attained for
the largest possible value Ax; = A;. This largest value is equal to ¢; - A;.

e When ¢; <0, the function ¢; - Ax; is decreasing, so its largest value is attained for
the smallest possible value —Ax; = A;. This largest value is equal to —c; - A;.

In both cases, the largest possible value is |¢;| - A;. Similarly, in both cases, the small-
est possible value is —|c;| - A;. Thus, the range of possible values of Ay is equal to
[—A,A], where

N

A= |Ci|-Ai+A0. (6)

i=1

Why not use Maximum Entropy approach? In statistics, situations when we do
not know the exact probability distribution are frequent. In this case, if we have sev-
eral possible distributions consistent with our knowledge, a reasonable idea is to se-

lect the distribution with the largest value of the entropy S o Jp(x)-In(p(x))dx,
where p(x) is the probability density; see, e.g., [6]. If we only know that the ran-
dom variable is located on an interval, then this Maximum Entropy approach leads
to a uniform distribution on this interval. (For several variables, if we know noth-
ing about their correlation, the Maximum Entropy approach implies that they are
independent.)

At first glance, this makes perfect sense — and this is how many practitioners deal
with interval uncertainty. However, we can show that this approach can drastically
underestimate the uncertainty Ay. We can illustrate it on the example of the simplest
possible dependence, when f(xi,...,x,) =x; +...+x, and therefore, Ay = Ax; +
...+ Ax,. For simplicity, we can assume that all the upper bounds are the same:
Ay =...=A,. In this case, the formula (6) implies that A = n- A;. This is possible,
e.g., if each measurement error is exactly equal to A;.

On the other hand, according to the Maximum Entropy approach, each value Ax;
is uniformly distributed on the interval [—A;, A;]. This distribution has mean 0 and

1
variance 3 -A12 . For large n, the sum Ay of these independent random variables is

approximately normally distributed (the same Central Limit Theorem that we cited
earlier). The mean of Ay is equal to the sum of Os, i.e., to 0, and its variance is equal

2:

to the sum of the variances, i.e., O - ~A12. For a normal distribution, the values

are located in the six-sigma interval with practically absolute certainty; thus, we can
take 60 ~ +/n as an upper bound for Ay. For large n, this is much smaller than the
above upper bound 7 - A;. Thus, the Maximum Entropy approach is not applicable,
and we have to use the formula (6).

How to actually estimate A: towards the first algorithm. How can we actually
estimate A? If we substitute the above numerical differentiation formula for ¢; into
the formula (6), we conclude that
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-Ai+ Ap.

A= i FCosxion X+ higxip, ) = F X1, XX, )
i=1 hi

Which values Ay, ..., h, should we use? Similarly to the traditional case, we select
the values /; for which we can avoid dvision and thus, speed up computations. Divi-
sion can indeed be avoided if we take h; = A;. In this case, the above formula takes
the simplified form:

n
Gz = Z |f( . .,xi,l,xiJrA,',x,-Jr],...) 7f( .. ,xi,l,xi,xi+1,...)| + Ap. (7)
i=1

Thus, we arrive at the following algorithm.

First algorithm: sensitivity analysis. We are given the values x,...,x,, the algo-
rithm f, and the bounds deviations Ay,...,A,, and &.

e First, we perform the original data processing, i.e., compute the value
Y=F(X1,. %)
; def L/~ ~ o~ ~ ~
e Then, fori=1,...,n, we compute y; = SO, X1, X+ AL Xk 1y -y X))

n
e Finally, we compute A = Y |y; — y| + Ao.
=1

Limitations of the first algorithm. Similarly to the traditional case, this algorithm
requires n+ 1 calls to the algorithm f and is, thus, often too slow.

Towards a second algorithm. The possibility to process uncertainty faster comes

from the fact that for random variables distributed according to the Cauchy dis-
1

1
T-A (x/A)2+1
(2) of variables Ax; which are Cauchy distributed with parameters A; is Cauchy-
distributed with parameter A determined by the formula (7). We therefore arrive at
the following algorithm [7, 8]:

tribution, with probability density p(x) = , a linear combination

Second algorithm: Monte-Carlo simulations. We are given the values x1,...,X,,
the algorithm f, and the bounds Ay, ...,A,, and s,.

e First, we perform the original data processing, i.e., compute the value

Y=F (X1, %)
e Then, we select the number of iterations N. For each k from 1 to N, we generate
n+ 1 random numbers 7y, ..., rr, €ach of which is uniformly distributed on the

interval [0, 1].
e Then, we compute Cauchy distributed values c; = tan(7 - (ry; —0.5)).
e We compute the maximum K; = max|cy;| so that we will be able to normalize
]

the simulated approximation errors and apply f to the values that are within the
box of possible values.
e For each k, we compute

~ Cr1 ~ Ck -
Ay = Ky - <f<x1+A| 'Kk,--wxn+An'K:> —}’)-
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e We compute A’ by applying the bisection method to solve the equation

1 1 N
+...4 =

AvDN 2 AvMNZ 2
1+( i,) 1+ =

e Finally, we return A = A’ + A.

Advantages and limitations of the second algorithm. The above method requires
N +1 calls to the algorithm f. Similarly to the usual Monte-Carlo method, the num-
ber of iterations N depends on the accuracy with which we want to estimate o. For
n > 200, this is much faster than the sensitivity analysis — this is the main advantage
of this method. The limitation is that, in contrast to the sensitivity analysis method,
we do not get the exact value A, only an approximate value.

Possibility of parallelization. Similarly to the statistical case, in both methods for
estimating o, the most time-consuming step is calling the algorithm f. So, if we
have at our disposal several processors which can work in parallel, then we can
make all these calls in parallel and thus, drastically decrease the computation time.

5 Need to go Beyond Traditional and Interval Cases

What we have considered so far. Up to now, we considered two extreme cases:

o the traditional case, when all measurement errors are normally distributed with
zero mean, and

e the interval case, when we only know the upper bounds on the measurement
errors.

Need to go beyond these cases. In practice, we often have cases in between.

e In some cases, we know the distributions, and these distributions are non-
Gaussian. This is actually the case for almost half (40%) of the measuring in-
struments; see, e.g., [12, 13].

e In some other cases, we do not know the exact probability distributions — but we
have some partial information about these distributions which goes beyond the
upper bounds.

What we do in this paper. In this paper, we describe how to estimate uncertainty
in the general case.
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6 Case of Known Non-Gaussian Distributions

Formulation of the problem. Let us first consider the case when we know the
probability distributions of all the measurement errors Ax;, and the probability dis-
tribution of the model error Axy. For example, these probability distributions are
represented in terms of the probability density functions p;(Ax;) and po(Axp).

We know that the corresponding variables are independent. Our goal is to find
the probability distribution of the quantity Ay — as described by the formula (2).

Two types of algorithms. Similarly to the above two cases, we will consider two
types of algorithms for solving this problem: algorithms which produce the exact an-
swer, and faster Monte-Carlo-type algorithms which produce approximate answers.

Algorithm for exact computation: general idea.

e First, we use numerical differentiation (4) to estimate the coefficients c;.
e For each i, we can then compute the probability density functions corresponding
tot; d;fci -Ax; as dl'(t,') = l - Pi (tl> .
Ci Ci
e Then, we can apply several times the known convolution formula p.(x) =
J pa(t) - pp(x —t)dt for the probability density of the sum ¢ = a + b of inde-
pendent random variables to find the probability density corresponding to the

sum Ay = Y t; + Axo:
i=1

— first, we combine the probability distributions of #; and #, to compute the prob-
ability density of the sum #; +t5;

— then, we combine the probability distributions of #; 4+, and #3 to compute the
probability density of the sum #; 41, +13;

— finally, we combine the probability distributions of Y #; and Ax( to compute
i=1

the probability density of Ay = ¥ t;+ Axp.
i=1

How to compute convolutions faster. One possibility to compute the probability

density function of the sum is to perform a straightforward computation of each

convolution integral p.(x) = [ p,(¢) - pp(x — 1) dt. If we represent each of the prob-

ability density functions by its values at M different points p,(vx) and pp(v¢) for

Vg = k- Av, then each computation takes the form p.(vi) = ¥ pa(ve) - po(vie) - Av.
L

This computation requires M> computational steps: M steps for each value k.

It is known, however, that we can speed up the computation of convolution if we
use Fourier transforms, i.e., if instead of the original probability density functions
Pa(x) and pp(x), we use the corresponding characteristic functions

tal@) & Elexp(i-0-a)] = [exp(i-x @) pa()dx
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and
def

xp(®) = Elexp(i-w-b)] = /exp(i-x-a)) - pp(x) dx.
Namely, it is known that the characteristic function of the sum is equal to the product
of the characteristic functions. Thus, we can compute the convolution as follows;
see, e.g., [1]:

e First, we the use the Fast Fourier Transform algorithm to compute the Fourier
transforms x,(®) and (@) of the corresponding probability density functions.
This computation takes O(M -log(M)) computational steps.

e Then, we multiply the corresponding values of the Fourier transform element-by-
element to compute X (@) = ¥, (®) - x»(®). To compute M values of this new
characteristic function, we need M computational steps.

e Finally, we apply the Inverse Fast Fourier Transform algorithm to the function
X.(®) and thus, find the desired probability density function p.(x). This compu-
tation also takes O(M -log(M)) computational steps.

Thus, overall, we need O(M -log(M)) + O(M) + O(M -log(M)) = O(M -log(M))
computational steps to compute the convolution, which, for large M, is much smaller
than M? steps needed for the straightforward computation of the convolution.

Faster computation of the convolution can speed up the computation of the
probability density function p(Ay). For the sum Ay of n+ 1 random variables
f1,...,t;, and Axp, the characteristic function Y (®) is equal to the product of the
characteristic functions x;(®) and xo(®) of these random variables. Thus:

e First, we the use the Fast Fourier Transform algorithm to compute the Fourier
transforms j;(®) and x,,,(®) of the corresponding probability density functions
d;(t;) and po(Axo). This computation takes (n+1)-O(M -log(M)) computational
steps.

e Then, we multiply the corresponding values of the Fourier transform element-
by-element to compute X (@) = x1(®) ... X (@) - X0(®). To compute M values
of this new characteristic function, we need n - M computational steps.

e Finally, we apply the Inverse Fast Fourier Transform algorithm to the function
x(®) and thus, find the desired probability density function corresponding to
Ay. This computation takes O(M -log(M)) computational steps.

Overall, we thus need O(n-M -log(M)) computational steps.

Possible use of Central Limit Theorem: discussion. The larger the number n of
inputs xi,. .., X, the more computation time we need. On the other hand, when 7 is
large, this means that most of the contributions #; = c; - Ax; to the overall error Ay
are relatively small. In this case, as we have mentioned earlier, we can invoke the
Central Limit Theorem and conclude that the probability distribution for the sum of
these small contributions is close to Gaussian.

A Gaussian distribution is uniquely determined by its mean and standard devi-
ation (or, equivalently, variance), and the mean and variance of the sum of several
independent random variables is equal to the sum of the corresponding means and
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variances. Thus, for the small components, there is no need to use their full probabil-

ity density functions: it is sufficient to estimate their means and variances, then add

them, and then add the resulting Gaussian sum to the few non-small components.
Thus, we arrive at the following algorithm.

Use of the Central Limit Theorem: resulting algorithm. This algorithm requires
that we know the list of non-small components. Without losing generality, let us
assume that the components 71, ...,#, k < n (and Axg) are non-small, and that all
the other components #;. 1,...,#, are small.

For each small component #;, we use the probability distribution d;(¢;) to compute
the mean W; = [ x-d;(x)dx and the variance 67 = [(x — ;)? - d;(x)dx. Then, we
compute the overall mean and variance of the sum of all the small components as

n n
pu= Y mando’= Y Giz, and we form a probability distribution function
i=k+1 i=k+1

_ 1 (x—p)?
psm—ﬁ.c'exp<_ ) .

n
This is a probability distribution for the sum ) # of all small components.
i=k+1

n
Then, we combine the probability distributions for ¢, ..., %, Y, t;, and Axp.
i=k+1
Monte-Carlo-type algorithm. To decrease the number of calls to the algorithm f
and thus, to speed up the computations, we can simulate the measurement errors.
To simulate a measurement error ¢; distributed according to the probability density
d;(1;), we can perform the following preliminary computations:

e form the cumulative distribution function F;(x) = [*d;(r) dt,
e form its inverse function F; ' (p) — by computing, for every value p € [0,1], the
value x = F~!(p) for which F;(x) = p.

After that, on each iteration k, we generate a random number ry; which is uniformly
distributed on the interval [0, 1], and compute c;; = F~!(ry;). Similarly, we simu-
late a number ¢y which is distributed according to the probability density function
po(Axo).

We then compute simulated values

AYW) = (F(F = chr, -, X — Con) +Cr0) — 3

Based on the sample of these values, we can now determine the probability distri-
bution for Ay.

Use of the Central Limit Theorem. Due to the Central Limit Theorem, for small
components, instead of simulating their exact distributions, we can simulate nor-
mally distributed random variables with the same values of mean and standard de-
viation.

Parallelization can lead to a further speed-up. In all these methods, the most
time-consuming step is calling the algorithm f. If we have at our disposal several
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processors which can work in parallel, then we can make all these calls in parallel
and thus, drastically decrease the computation time.

It is also possible to parallelize further processing of these values. For example,
in the algorithm using Fourier transforms, we can compute each of n+ 1 Fourier
transforms in parallel — and if we have more than n+ 1 processors, then we can also
perform each Fast Fourier Transform in parallel. In the case of unlimited number of
processors, this can be done in time O(log(M)).

Similarly, each of the products ) (®) can be computed in parallel, and, if needed,
each computation of a product can also be parallelized:

first, we multiply all the neighboring pairs xz;—1 (@) - x2i(®);
then, we multiply product of neighboring pairs into products of neighboring 4-
tuples,

e efc.

In this manner, in the ideal case of unlimited number of processors, we compute
all the products in time O(log(M)) — and thus, finish all the computations in time

O(log(M)).

7 Case of Partial Information about Probabilities: How to
Represent this Partial Information?

Need to select a representation. In many real-life situations, we have only partial
information about the probability distribution of measurement errors. How can we
represent this partial information?

In principle, we can represent a probability distribution in many different forms:

e Dby its probability density function,
e Dby its cumulative distribution function,
e Dby its moments, etc.

Which representation should we use?

To select a representation, we need to take into account the ultimate goal: of
decision making. As we have mentioned, one of the main reasons why we need to
take into account uncertainty in data processing is that this uncertainty affects our
decisions. From the viewpoint of decision making, what is the best way to represent
partial information about the probabilities?

It is known that a consistent decision making can be described as optimizing an
expected value of a special function u(x) known as utility; see, e.g., [4, 9, 11, 15].
The utility function u(x) describes the user preferences. Thus, it makes sense to
select characteristics of the probability distribution which can help us compute this
expected utility [ p(x)-u(x)dx.

In particular, for measurement errors Ax; = X; — x;, the loss of utility is caused
by the fact that while the only information that we can use about x; is the mea-
surement result X;, the actual value x; is, in general, different from X;. For exam-
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ple, if we want to dress appropriately for the weather, we must know the exact
temperature; if we know it approximately, then there is a strong chance that we
will dress either too warm or too cold. In general, the expected utility has the form
fp,-(Ax,-) . u(Axi) dAx;.

Ideally, the perfect situation is when Ax; = 0 and the actual value x; is exactly
equal to the measurement result x;. In this case, we prepare for exactly the proper
conditions, so the utility attains its maximum value.

It is, however, possible that we know that the measuring instrument has a bias,
and we know the approximate value of this bias b. In this case, when the measure-
ment result is x;, we prepare for the de-biased value x; = X; — b. So, even if Ax; =0,
the actual condition x; = X; is somewhat different from the value x; = Xx; — b for
which we are prepared.

Case of smooth utility functions: analysis of the problem. Let us first consider
the case when the utility function smoothly changes with Ax;. We consider the case
when measurement errors are relatively small. This means that the values Ax; are
close to 0, so we can expand the utility function u(Ax;) in Taylor series and keep
only the first few terms in this expansion.

In Section 2, we made a similar statement about the function f, and for this func-
tion, we decided to keep only linear terms, terms determined by its first derivatives
c; taken at the point x; (i.e., at the point x; = X; — Ax; corresponding to Ax; = 0). For
the utility function, this is not always possible: as we have mentioned, for the un-
biased measuring instrument, the utility function attains its maximum when Ax; =0
and thus, its first derivative is equal to 0. So, for the utility function, we also need to
take into account second-order terms: u(Ax;) = ug + uy - Ax; +us - (Ax;)> + ..., for
some values ug and u5.

Since the values Ax; are assumed to be small, we can thus ignore cubic and higher
order terms in this expansion, and conclude that u(Ax;) = ug +uy - Ax; +us - (Ax;)>.
For this utility function, the expected utility has the form

/pi(Axi)~u(Axi)dAxizuo+u1-/Axi-pi(Axi)dAxi+u2-/(Axi)z-pi(Axi)dAxi,

i.e., the form ug+uy - W; +uo - M;, where ; is the expected value of the measurement
error (bias) and M; is the second moment of the measurement error. So, in the case
of a smooth utility function, to describe the probability distribution, it is reasonable
to use its first two moments.

Our goal is not just to represent these measurement errors Ax;, we also want to
use this information to characterize the linear combination (2) of these measurement
errors. From this viewpoint, it is more convenient, instead of the second moments
M;, to use variances Giz =M;— ,ul-z, since the variance is the easiest to process: the
variance of the sum of two independent random variables is equal to the sum of
the corresponding variances. Therefore, a reasonable representation of a probability
distribution should consist of the mean y; and the standard deviation o;. Similarly,
a reasonable way to describe the probability distribution of the model error Axy is
to describe its mean Ly and standard deviation oy.
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In terms of metrology (measurement theory and practice), l; is a systematic error
component, and o; is known as a strandard deviation of the random error compo-
nents; see, e.g., [14].

Partial information means that we do not know the exact values of y; and o;. In-
stead, we only know the bounds on these values, i.e., we know the intervals [Ei,ﬁi]
and [0;,0;] that contain the actual (unknown) values of mean and standard devia-
tion.

Which characteristics of Ay should we compute based on these values? A similar
analysis shows that we want to know the values of the corresponding mean pt and
standard deviation ©.

Different possible values t; and o; from the corresponding intervals lead, in gen-
eral, to different values of u and o; so, what we really want to compute are the
ranges of possible values of u and o. Thus, we arrive at the following problem.

Case of a smooth utility function: precise formulation of the resulting compu-
tational problem. We know:

e theintervals [u ,11;] and [0;,G;] containing the means and standard deviations of
n+ 1 independent random variables Ax;, and
e the algorithm f.

We want to find the ranges [, 1] and [0, ] of possible values of the mean p and

standard deviation o of the quantity Ay described by the formulas (1) and (2).

How to compute the range of possible values of 1i: analysis of the problem. The
mean of a linear combination is equal to the linear combination of the means, so we
have

= Zci'ui+#o-
i=1

We want to use the above interval-computation formulas from Section 4 to find the
range of values of this linear function. For that purpose, we need to represent the
corresponding intervals in the form [i; — A;, l1; + A;]. By equating 1; — A; with M,
and [I; + A; with IT;, we get a system of two equations with two unknowns [; and
A;, from which we can conclude that:

e the value [, is equal to the midpoint and
o the value A; is equal to the half-width of the corresponding interval:

~ Hi+ﬁi Hiiﬂi
W= 5 and A; = T

For the differences A y; &ef i — i, we have a limitation |A ;| < A;. Thus, the general

formulas for the range of a function f (from Section 4) lead to a conclusion that the

range of possible values of U is equal to [l — A, L + A], where i = i i Wi + Ho
i=1

n
and A =Y |Ci‘ -Ai + Ag.
i=1
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Because of the formulas (1) and (2), the value [i can be computed simply as
y—f(X1 — ;- --,X, — ) + Ho. The value A can be computed by using one of the
two interval computations algorithms. Thus, we arrve at the following algorithms.

How to compute the range of possible values of Li: algorithm.

e First, we perform the original data processing, and compute the value

V=Ff(X1, %) B
M+ M1 Hi—H,

e Then, for all i, we compute i, = = and A; = 5 =3

e After that, we compute the value fl =y — f(X] — l1,...,%, — ) + Ho, and we
use one of the two interval computation algorithms from Section 4 to compute

n
A= ‘):1 |cil - Ai + Ao.
=

e Finally, we compute the desired range [t — A, 1 + A].

How to compute the range of possible values of o: analysis of the problem.
The variance of the sum is equal to the sum of the variances, so we have 6% =
i ¢} - 07 + o7 This expression is increasing in oy, so:
i=
e itslargest possible value G is attained when each of the values o; attains its largest
possible value G;, so we have (G)* = f‘,l - (6:)*+(G0)%
i=

e its smallest possible value ¢ is attained when each of the values o; attains its
n
smallest possible value o;, so we have (0)> = ¥ ¢ (0;)> + (0,)>.
i=1
Each of these formulas is of type (3), so we can use the two algorithms from Sec-
tion 3 to perform these computations. In other words, we arrive at the following
algorithm.

How to compute the range of possible values of c: algorithm.

e First, we use one of the algorithms from Section 3 to compute the value ¢ from
the formula (5)% = ¥, ¢2- () + (Go)?.

e Then, we use the sla:r;e algorithm to compute the value o from the formula
(€)= ¥ () +(00)*

Case of discontinuous utility function. In some cases, the utility function is not
smooth, but discontinuous. For example, at a manufacturing plant, we want to make
sure that the possible pollution does not exceed a certain legal level. In such situa-
tions, there are stiff penalties for exceeding the level.

The expected value of this utility function is thus proportional to the probability
of exceeding (or not exceeding) a certain level. For a random variable 7, the corre-
sponding probabilities F (x) def Prob(n < x) form a cumulative distribution function

(cdf). For such utility functions, an appropriate representation of the probability dis-
tribution is thus the cdf F(x).
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Partial information means that we may not know all the values F(x) of the cdf;
instead, we only know bounds [F (x), F (x)]. Such bounds are known as a probability
box, or a p-box, for short; see, e.g., [2, 3]. So, we arrive at the following problem.

Case of a discontinuous utility function: precise formulation of the resulting
computational problem. We know:

o the p-boxes [F;(x),F;(x)] describing the probability distribution of 7+ 1 inde-
pendent random variables Ax;, and
e the algorithm f.

We want to find the ranges [F(x),F (x)] of possible values of the cdf F(x) for the
quantity Ay described by the formulas (1) and (2).

How to compute the corresponding p-box: analysis of the problem. The desired
quantity A is the sum of severallerms t; = c¢;- Ax; and ty) = Axg. Thus, it makes sense

to first find the p-boxes [G,(t), G;(r)] which describe the range of possible values of
the cdf G;(x) characterizing each term ;.

. . . . t
For ¢; > 0, the inequality ¢; - Ax; <t is equivalent to Ax; < —, so

G;(t) = Prob(t; <t) = Prob (Axi < t) =F (t) .

Ci
In this case:

e the smallest possible value of G;(¢) corresponding to the smallest possible values
F; of F;, and
e the largest possible value of G;(t) corresponding to the largest possible values F;
of F;.
t — — (1
So, we have G;(t) = F; () and G;(t) = F; ()

Ci Ci

For ¢; < 0, the inequality c; - Ax; <t is equivalent to Ax; > —, so
Ci

Gi(t) =Prob(s; <t) = 1 —Prob (Ax,- > t) =1-F <t> .

Ci Ci
In this case:

e the smallest possible value of G;(¢) corresponding to the largest possible values
F;of F;, and
e the largest possible value of G;() corresponding to the smallest possible values
F,of F,.
— [t — t
So, we have G;(f) =1 —F; <> and G;(t)=1—F; ()
Ci i
In general, the lower bound F (x) corresponds to the smallest possible probability
of smaller values — and thus, to the largest possible probability of larger values.
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Similarly, the upper bound F(x) corresponds to the largest possible probability of
smaller values. Thus:

e To find the lower bound F (x) corresponding to Ay, we must use probability dis-
tributions G;(Ax;) for which the values 7; are the largest, i.e., the values G,(t).

e Similarly, to find the upper bound F(x), we must use probability distributions
Gi(Ax;) for which the values #; are the smallest, i.e., the values G;(t).

So, we arrive at the following algorithm.
Algorithm for exact computation of p-box [F(x), F(x)]: general idea.

e First, we use numerical differentiation (4) to estimate the coefficients c;.

e For each i, we can then compute the p-boxes [G;(¢), G;(t)] corresponding to

def
t; = ¢; - Ax; as follows:

t — i
— when ¢; > 0, we take G;(t) = F; () and G;(t) = F; <),

Ci Ci

_ t — t
— when ¢; <0, we take G;(t) =1 — F; () and G;(t) = 1—F; ()

Ci Ci

J— n
e Then, to find the p-box [F(x),F (x)] corresponding to the sum Ay = ¥ #; + Axo,
i=1
we do the following:

— to compute F(x), we apply the convolution formula

pelx) = [ pult)-pox—1)ds

for the probability density of the sum ¢ = a+ b to independent random vari-
ables with cdf’s G;(¢); and

— to compute F (x), we apply the same convolution formula to independent ran-
dom variables with cdf’s G;(t).

To compute convolutions, we use the above algorithm based on Fast Fourier Trans-
form.

Possible use of the Central Limit Theorem. Similarly to the case when we know
the exact non-Gaussian distributions, we can speed up computations if we know the
list of non-small components. In this case, we know the sum ;| + ...+, of small
components is normally distributed. Normal distribution can be described by the
mean U and standard deviation o; ranges [i, 1] and [0, T] for 1 and & can be found

by using the same methods as in the case of smooth utility function.
t —
In general, cdf for a normal distribution has the form F(r) = Fy G“) , where

Fy(r) is the cdf of the “standard” normal distribution, with mean O and standard
deviation 1. The function Fy(¢) is increasing. Thus, if we know the bounds on y and
on o:

e the smallest value of F(7) is attained when p and ]sigma are the largest, and
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o the largest value of F(t) is attained when u and ]sigma are the smallest.

r—u — r—u
In other words, F,,(x) = F = and Fgn(x) = Fy < /)

The p-box for Ay can then be obtained by combining p-boxes corresponding to

J— n
f1, ..., to, and the above Gaussian p-box [F, (x), Fsm(x)] for Y .
i=k+1
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