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In this paper, we consider the role of inverse problems in metrology. We describe general 

methods of solving inverse problems which are useful in measurements practice. We also 

discuss how to modify these methods in situations in which there is a need for real -time 

data processing.  

1.   Introduction 

What mathematical physics calls inverse problems is, in effect, the class of 

problems which are fundamental in measurement theory and practice [1, 2]. The 

main objective of such problems is to develop procedures for acquiring 

information about objects and phenomena, by decreasing the distortion caused 

by the measuring instruments. Lord Rayleigh was the first to formulate such 

problem in 1871, on the example of spectroscopy. His purpose was to maximally 

decrease the influence of diffraction. Rayleigh showed that in mathematical 

terms, the problem of reconstructing the actual spectrum  νx  from the 

measured signal  uy  can be reformulated as the problem of solving an integral 

equation  

       ννν dxuKuy 




 , (1) 

where  νuK  is the apparatus function of the spectrometer – which describes 

the distortion caused by diffraction. 

The relation between inverse problems and measurements was emphasized 

by G. I. Vasilenko [3], who explicitly stated that the main objective of the 

inverse problem is  “restoring the signals” or “reduction to the ideal instrument”. 
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Eq. (1) is the integral Fredholm’s equation of first type; it can be 

represented in the form    vxuy A , where A is a compact linear operator of 

convolution – which describes a generic analog transformation of a signal inside 

a measuring instrument – and  νuK  is the kernel of this operator. From the 

mathematical viewpoint, the solution of Eq. (1) can be expressed as 

   uyvx 1 A , where 1
A  is the inverse operator to the compact operator A. 

From the practical viewpoint, however, we have a problem: it is known that such 

inverse operators are not bounded (see [4, p. 509]); as a result, a small noise in 

the measured signal can lead to drastic changes in the reconstructed solution 

 νx . Such problems are known as ill-posed. A general approach of generating a 

physically reasonable solution to this problem – known as regularization – was 

formulated by A. N. Tikhonov in 1963 [5]. 

2.   Inverse problems in metrology 

If we take into account the inaccuracy e(u) with which we register the output 

signal registration and the inaccuracy  vu   with which we know the 

apparatus function of the measurement device, then Eq. (1) will have the form 

       uedxuKuy  




ννν . This equation with infinite (symmetric) 

integration limits describes spatial distortion processes in spectroscopy, 

chromatography, and in acoustic and other antenna-based measurements. For 

dynamic measurements – i.e., for measuring dynamic signals – the measurement 

result can only depend on the past values of the signal, so integration starts at 0: 

            tetxtedxtKty  


 A

0

, (2) 

where A  is the convolution operator with the kernel   tK  (known with 

inaccuracy   t ) and e(t) is  the additive noise. 

The main idea behind Tikhonov’s regularization is that we look for an 

(approximate) solution  tx~  to Eq. (2) by minimizing an appropriate stabilizing 

functional   tx  in Sobolev’s space of smooth functions [5]. Usually, a 

functional          
 



0 0

2
1

2
0

~~ dttxdttxtx  , 1 >0 and 2 >0, is used on the 

condition that the difference between y(t) and A  tx~  is of the same order as the 

error Δ caused by e(t) and   t :     22~  tytxA . The Lagrange multiplier 
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techniques reduces this constrained optimization problem to the unconstrained 

optimization of the functional [5]: 

 
 

       txtytx
tx

 
2

min A , (3) 

where  is called a regularization parameter. 

2.1.   The minimal modulus principle 

  When we have an a priori information about the norm of the solution and/or its 

derivative, we can find . In particular, we can use fuzzy (imprecise) expert a 

priori information [6]. In the absence of such a priori information, we can use 

the principle of minimal modulus [7,8] to select . 

This method is based on the fact that in the frequency domain, the 

stabilizing functional takes the form        
 



0 0

22
1

2

0  djxdjxjx ,

 where j is imaginary unit and ω is circular frequency.  The minimum of this 

functional is attained when the modulus  jx  is minimal.  

Fourier transform of Eq. (2) leads to          jejxjKjy  . Based 

on 95% confidence intervals            95,095,0  KKK  and 

     tetete 95,095,0   in time domain, we can find the ellipses describing 

uncertainty in the frequency domain [9]. 
As a result, for every frequency i  we obtain two error-related ellipses in 

the complex plane: the first one centered in  ijy   (Fourier transform of output 

signal) and another one centered at the value  ijK   (Fourier transform of 

apparatus function), as shown on Fig. 1. As shown in [7], for all values i  the 

value  ijx ~  corresponding to the regularized solution is equal to 

     iii jKjyjx  *
* /~  , where  ijK *  is point on the ellipse which is the 

farthest from the coordinates origin, and  jy*  

is the point on the corresponding ellipse that is the 

closest to the coordinates origin. 

From Fig. 1, it is clear that this solution 

indeed minimizes the modulus  jx , and the 

condition     22~  tytxA  holds. After 

applying the inverse Fourier transform to the 

solution  ijx ~ , we get the desired regularized 

Fig. 1. 
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solution to the inverse problem – in other words, we achieve the desired 

reduction to the ideal measuring instrument. We have shown that this method 

works very well in many practical situations. This method also allows us to take 

into account the “objective” prior information about errors and also “subjective” 

information – as described by (possibly imprecise) expert estimates [6].  

2.2.   The inverse filter 

The principle of minimal modulus can only be 

used after the whole signal is measured. This is 

reasonable in spectroscopy and chromatography, 

but in processing dynamic signals, we often need to 

produce results in real time, before all the 

measurements are finished. This can be achieved 

by using an inverse filter, which can be physically 

implemented as one or several sequential 

dynamically stable circuits. An example is given on Fig. 2. If the amplifier gain 

is ampK  and R and C are the resistance and capacitance of inertial RC-circuit, 

then the complex frequency characteristic (CFC) of circuit on Fig. 2 is equal to 

    .
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This filter can be used if the modulus of CFC of the measuring instrument is 

monotonically decreasing. If the order of CFC for the measurement device is 

larger than one, then the positive result can be achieved with individual tuning of 

gain and parameters R and C for every circuit in the inverse filter. 

In the report examples will be presented of using such inverse filters of 

different orders for ΣΔ – Analog-Digital Conversion. 
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