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In this paper, we consider the role of inverse problems in metrology. We describe general 

methods of solving inverse problems which are useful in measurements practice. We also 

discuss how to modify these methods in situations in which there is a need for real -time 

data processing.  

1.   Introduction 

What mathematical physics calls inverse problems is, in effect, the class of 

problems, which are fundamental in measurement theory and practice [1, 2]. The 

main objective of such problems is to develop procedures for acquiring 

information about objects and phenomena, accompanied by decreasing the 

distortion caused by the measuring instruments. Lord Rayleigh was the first to 

formulate such problem in 1871, on the example of spectroscopy. His purpose 

was to maximally decrease the influence of diffraction. Rayleigh showed that in 

mathematical terms, the problem of reconstructing the actual spectrum  νx  

from the measured signal  uy  can be reformulated as the problem of solving an 

integral equation  

       ννν dxuKuy  




, (1) 

where  νuK  is the apparatus function of the spectrometer – which describes 

the distortion caused by diffraction. 
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The relation between inverse problems and measurements was emphasized 

by G. I. Vasilenko [3], who explicitly stated that the main objective of the 

inverse problem is  “restoring the signals” or “reduction to the ideal instrument”. 

Eq. (1) is the integral Fredholm’s equation of first type; it can be 

represented in the form    vxuy A , where A is a compact linear operator of 

convolution – which describes a generic analog transformation of a signal inside 

a measuring instrument – and  νuK  is the kernel of this operator. From the 

mathematical viewpoint, the solution of Eq. (1) can be expressed as 

   uyvx 1 A , where 1
A  is the inverse operator to the compact operator A. 

From the practical viewpoint, however, we have a problem: it is known that such 

inverse operators are not bounded (see [4, p. 509]); as a result, a small noise in 

the measured signal can lead to drastic changes in the reconstructed solution 

 νx . Such problems are known as ill-posed. A general approach of generating a 

physically reasonable solution to this problem – known as regularization – was 

formulated by A. N. Tikhonov in 1963 [5]. 

2.   Inverse problems in metrology 

If we take into account the inaccuracy e(u) with which we register the output 

signal registration and the inaccuracy  vu ε  with which we know the 

apparatus function of the measurement device, then Eq. (1) will have the form 

       uedxuKuy  




νννε . This equation with infinite (symmetric) 

integration limits describes spatial distortion processes in spectroscopy, 

chromatography, and in acoustic and other antenna-based measurements. For 

dynamic measurements – i.e., for measuring dynamic signals – the measurement 

result can only depend on the past values of the signal, so integration starts at 0: 

            tetxtedxtKty  


ετττε A

0

, (2) 

where εA  is the convolution operator with the kernel  τε tK  (known with 

inaccuracy  τt ) and e(t) is  the additive noise. 

The main idea behind Tikhonov’s regularization is that we look for an 

(approximate) solution  tx~  to Eq. (2) by minimizing an appropriate stabilizing 

functional   tx  in Sobolev’s space of smooth functions [5]. Usually, a 

functional          
 



0 0

2
1

2
0

~~ dttxdttxtx ββ , 0β >0 and 1β >0, is used on the 
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condition that the difference between y(t) and A  tx~  is of the same order as the 

error Δ caused by e(t) and  tε :     22~  tytxA . The Lagrange multiplier 

techniques reduces this constrained optimization problem to the unconstrained 

optimization of the functional [5]: 

 
 

      




  txtytx

tx
α

2
min A , (3) 

where  is called a regularization parameter. 

2.1.   The minimal modulus principle 

When we have an a priori information about the norm of the solution and/or 

its derivative, we can find . In particular, we can use fuzzy (imprecise) expert a 

priori information [6]. In the absence of such a priori information, we can use 

the principle of minimal modulus [7, 8] to select . 

This method is based on the fact that in the frequency domain, the 

stabilizing functional takes the form        
 



0 0

22
1

2
0 ωωωβωωβω djxdjxjx ,

 where j is imaginary unit and ω is circular frequency.  The minimum of this 

functional is attained when the modulus  ωjx  is minimal.  

Fourier transform of Eq. (2) leads to        ωωωω ε jejxjKjy  . Based 

on 95% confidence intervals          τετττετ ε 95.095.0  KKK  and 

     tetete 95.095.0   in time domain, we can find the ellipses describing 

uncertainty in the frequency domain [9]. 
As a result, for every frequency iω  we obtain two error-related ellipses in 

the complex plane: the first one centered in  ijy ω  (Fourier transform of output 

signal) and another one centered at the value  ijK ωε  (Fourier transform of 

apparatus function), as shown on Fig. 1. As shown in [7], for all values iω  the 

value  ijx ω~  corresponding to the regularized solution is equal to 

     iii jKjyjx ωωω *
* /~  , where  ijK ω*  is point on the ellipse which is 

the farthest from the coordinates origin, and  ijy ω*  is the point on the 

corresponding ellipse that is the closest to the coordinates origin. This prevents 

from the situation when there is zero value in denominator. So, the problem 

stops being incorrect, but numerator  ijy ω*  of the ratio  ijx ω~  sustains a 

step to zero value at some frequency. This causes Gibbs phenomenon when we 

perform inverse Fourier transform of  ωjx~ . In each concrete case, manual 
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adjustment of input data error characteristics may decrease effect’s influence. 

 

 
 

Fig. 1. Illustration of minimal modulus principle 
 

From Fig. 1, it is clear that this solution indeed minimizes the modulus 

 ωjx , and the condition     22~  tytxA  holds. After applying the inverse 

Fourier transform to the solution  ijx ω~ , we get the desired regularized solution 

to the inverse problem – in other words, we achieve the desired reduction to the 

ideal measuring instrument. We have shown that this method works very well in 

many practical situations [10, 11]. This method also allows us to take into 

account the “objective” prior information about errors and also “subjective” 

information – as described by (possibly imprecise) expert estimates [6].  

2.2.   The inverse filter 

The principle of minimal modulus can only be used after the whole signal is 

measured. This is reasonable in spectroscopy and chromatography, but in 

processing dynamic signals, we often need to produce results in real time, before 

all the measurements are finished. This can be achieved by using an inverse 

filter, which can be physically implemented as one or several sequential 

dynamically stable circuits. An example is given on Fig. 2.  

 

 
 

Fig. 2. Inverse filter circuit 
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If the amplifier gain is K  and R and C are the resistance and capacitance 

of inertial RC-circuit, then the complex frequency characteristic (CFC) of circuit 

on Fig. 2 is equal to 

    .
1

11
1

1

















 ωωω

К

CR
jCRj

К

K
jK f  

This filter can be used if the modulus of CFC of the measuring instrument is 

monotonically decreasing. For example, such property is usual for thermistors, 

thermocouples, Hall sensors for current strength etc. Such gauges have first 

order CFC:  

 
ω

ω
j

K
jK g




1

0 , 

where   is its time constant and 0K  is gain coefficient for static mode. In this 

case, if values of R and C for inverse filter (Fig. 2) are such that CR , then 

series of the gauge and the inverse filter placed after it will have CFC equal to 

   
1

0

1
1

1





















 ωωω

К

CR
j

К

KK
jKjK fg . 

We can see that time constant of such series is decreased in   11  К  

times versus  . This causes corresponded response acceleration with the same 

ratio and represents the solution for inverse problem of signal restoration. 

 If the order of CFC for the measurement device is larger than one, then the 

quantity of first-order inverse filters (Fig. 2) that should be concatenated one 

after another is the same as the order value. The positive result can be achieved 

with individual tuning of gain and parameters R and C for every first-order 

circuit. The inverse problem solution can be achieved using the similar inverse 

filters even for converters whose CFC order cannot be rated. 

Let us examine the example of using such inverse filter for ΣΔ – Analog-to-

Digital Conversion: let us consider approximation of frequency characteristic for 

ADC ADS1256 [12]. This ADC is used for digitizing analog signals with 

frequency bands (0÷25), (0÷50) and (0÷500) Hz. To construct inverse filter to 
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improve its metrological properties, we should use fractionally rational 

approximation to ADC frequency characteristics.  

To approximate ADS1256 CFC  ωjK , we can use separate values of its 

squared amplitude frequency characteristic (AFC)  2
ωjK  that is presented 

by ADC producer [12]:  

 
 
 

 
 

,
sin

sin

sin64

sin
5

ωπ

ωπ

ωπ

ωπ
ω











N

N
jK  

where ss ff //  ωωω  is relative frequency, f is ADC input signal 

frequency, sf  = 30 kHz is ADC maximum sampling frequency, N is quantity of 

averaging output values, fπω 2  and ss fπω 2  are angular frequencies. 

The mentioned data points are placed in the second row of table 1. 

Fractionally rational approximation was performed for function  2
ωjK . 

This function is real-valued, its argument is ω . So, we can apply traditional 

approximation techniques that are developed for real-valued functions.  

Two variants of approximation were considered: the case when N = 1 and 

frequency band for approximation is [0, 0.06666] for ω  or [0, 2000] Hz for f 

and the case when N = 8 and band is [0, 0.06] for ω  or [0, 1800] Hz for f. We 

use uniform meshes of 81 points for both of cases N = 1 and N = 8.  

The obtained approximations were factorized to get expression for CFC 

 ωjK . The used factorization method is described in [13]. Approximation 

accuracy was set to 0.3%. As a result, the following CFC were obtained:  

N = 1:   
ω

ω
j

jK



112.41

1~
, 

N = 8:   
 273.1473.148598.021

1~

ωω
ω




j
jK . 

In table 1 placed below, values of real AFC  jfK  and its obtained 

approximation  jfK
~  are presented for N = 1. Fig. 3 illustrates data 

presented in Table 1. Averaging, that takes a place during analog-to-digital 

conversation, causes this effect of AFC decreasing. 
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Table 1. Results of approximation of  jfK  for ADC ADS1256 (N = 1) 

 

f , Hz 0.0 50 100 200 300 400 500 1000 2000 

 jfK  1.0 0.99998 0.999909 0.99964 0.99918 0.99854 0.9977 0.9909 0.9641 

 jfK
~  1.0 0.99998 0.999906 0.99962 0.99916 0.99850 0.9977 0.9907 0.9644 

 

  
 

Fig. 3. Results of AFC approximation and correction for ADC ADS1256 (case N = 1) 

 

On Fig. 3, a curve for approximation error    jfKjfK
~

  is also 

presented. Its scale is put on the right side of the graph. 

In Table 2 the results are placed for the case N = 8. Fig. 4 contains graphical 

representation of data from this table. 

 
Table 2. Results of approximation of  jfK  for ADC ADS1256 (N = 8) 

 

f , Hz 0.0 60 300 600 900 1200 1500 1800 

 jfK  1.0 0.9996 0.9889 0.9559 0.9025 0.8311 0.7444 0.6463 

 jfK
~  1.0 0.9996 0.9895 0.9576 0.9035 0.8297 0.7426 0.6513 
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 Fig. 4. Results of AFC approximation and correction for ADC ADS1256 (case N = 8) 

 

We can see that for frequencies f less than 100 Hz the AFC is close to unit 

value (difference is less than 0.02%) for both of approximations that is 

acceptable. For frequencies from 500 to 1000 Hz, the AFC differs from 1.0 with 

error less than 0.5%. The approximate order of CFC is now determined. Further, 

our purpose is to construct physically realizable inverse filter that will describe 

obtained approximation. 

Let us take into consideration case N = 1. 

The CFC approximation has the first order. So, we can use the simplest 

inverse filter as presented on Fig. 2. Good AFC correction will be obtained if we 

choose amplifier’s gain equal to K  = 500 and time constant for filter in 

feedback circuit equal to CRf τ  =21.5 s. Let  jfK
~

 be AFC of inverse 

filter. Then, the AFC of inverse filter (first circuit in sequence) and ADC (second 

circuit in sequence) connection will be  jfK 
~

=    jfKjfK 
~

. 

Values of corrected AFC for some frequencies are presented in Table 3 and 

put on Fig. 3 (marked as squares and dashed curve) with the values of correction 

inaccuracy, equal to  jfK 
~

0.1  (its scale is on the right side of graph). 

 
Table 3. Correction with the inverse filter for ADC ADS1256 (N = 1) 

 

f , Hz 0 60 300 600 900 1200 1500 2000 

 jfK  1.00000 0.99997 0.9992 0.9967 0.9926 0.9869 0.9796 0.9641 

 jfK 
~  0.99800 0.99804 0.9980 0.9980 0.9979 0.9978 0.9976 0.9966 
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We see that corrected AFC has essentially wider frequency band. 

Let us now take into consideration case N = 8. 

The simplest realization of inverse filter for correction of second-order CFC 

that is used to describe ADC time-frequency characteristics is concatenation of 

two inverse filters of first order. Time constant f  for each of them should be 

about   sf f/0.50.1   for  ω1
~
K  and  ω2

~
K . Block-scheme of such 

complex inverse filter is presented on Fig. 5. 

Filter of such structure can be easily realized in analog or in digital form. 

But to obtain higher accuracy, it is better to put inverse filter before ADC and 

combine it with input gain amplifier. 

Time constant f  for each of first-order inverse filter on the Fig. 5 should 

be adjusted using filter mathematical model. It can happen that the best result 

will be when time constants will be different for these filters. Mathematical 

modeling can help to determine the best gain value K  for direct circuits on 

Fig. 5. They should have work frequency band wider than frequency diapason 

that is chosen for CFC correction. 

 

 
 

Fig. 5. Block-scheme for inverse filter of second order 

 

Mathematical modeling shows that for case N = 8 the satisfactory 

correction can be achieved if we use two inverse filter of first order, which 

parameters are K  = 1000, 1fτ  = 60 s and K  = 1000, 2fτ  = 58 s. 

Results of such correction are presented in Table 4 and put on Fig. 4 (marked as 

squares and dashed curve). 

 
Table 4. Correction with the inverse filter for ADC ADS1256 (N = 8) 

 

f , Hz 0 30 60 150 300 500 1000 1500 2000 

 jfK  1.00000 0.99989 0.99955 0.99721 0.98886 0.9692 0.8806 0.7445 0.5764 

 jfK 
~  0.99800 0.99802 0.99805 0.99829 0.99909 1.0005 0.9996 0.9728 0.8915 
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It is clear, that the AFC unevenness for frequency band [0, 1] kHz is less 

than 0.2%. We can conclude that described technique of inverse filter design 

allows obtaining measuring channel with wider frequency band and faster 

response. Such technique can be applied to any measurement instrument or 

converter with monotonically decreased amplitude frequency characteristics. 
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