Developing 3-D shear wave models uisng a
multi-objective joint inversion scheme

Lennox Thompson, Aaron A. Velasco, and Vladik Kreinovich

Abstract For this research, our main purpose is to obtain a better understanding
of the Earths tectonic processes in the Texas region, which requires us to analyze
the Earth structure. We expand on a constrained optimization approach for a joint
inversion least-squares (LSQ) algorithm to characterize a one-dimensional Earth’s
structure of Texas with the use of multiple geophysical data sets. We employed a
joint inversion scheme using multiple geophysical datasets for the sole purpose of
obtaining a three-dimensional velocity structure of Texas in order to identify an an-
cient rift system within Texas. In particular, we use data from the USArray, which is
part of the EarthScope experiment, a 15-year program to place a dense network of
permanent and portable seismographs across the continental United States. Utilizing
the USArray data has provided us with the ability to image the crust and upper man-
tle structure of Texas. We simultaneously inverted multiple datasets from USArray
data, to help us to better obtain an estimate of the true Earth Structure model. We
prove through numerical and experimental testing that our Multi-Objective Opti-
mization (MOP) scheme performs inversion in a more accurate, robust, and flexible
matter than traditional inversion approaches.
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1 Introduction

For this research, we propose to combine multiple geophysical datasets for the pur-
pose of assisting us in better determining physical properties of the Earth struc-
ture. By simultaneously inverting multiple datasets, we obtain a better estimate of
the true Earth Structure. In general, there are two reasons why the estimated Earth
Structure model differs from the true Earth structure. The first reason is the inherent
non-uniqueness of the inverse problem that causes several (usually infinitely many)
models to satisfy the data. The second reason is that real geophysical data is al-
ways affected by noise, which introduces error associated with the estimation of
the Earth Structure model after inversion. By jointly inverting multiple geophysical
data sets, we avoid the inherent non-uniqueness typical for the geophysical datasets
(e.g., receiver functions, surface wave dispersion, teleseismic delay travel times, and
gravity) individually [Vozoff et al., 1975]. For this research, we use receiver func-
tions, surface wave dispersion measurements, travel times, and gravity data sets to
characterize the crust and upper mantle of various region such as Texas.

In general, geophysical data sets such as receiver functions are suited to constrain
the depth of discontinuities and are sensitive to relative changes in S-wave veloci-
ties in different layers. Surface waves measurements on the other hand, constrain the
absolute shear velocities between discontinuities whereas receiver functions are un-
able to do that [Shen et al., 2013]. Seismic first-arrival travel times and gravity data
are complementary to each other because one can recover the causative slowness
and density distributions of the Earth structure. The complementary information
provided by the following datasets, reduces the inherent ambiguity or non-uniquess
of performing inversion [e.g., Haber & Oldenburg 1997]. By jointly inverting seis-
mic data along with gravity data, we will be able to overcome the difficulties of
non-uniqueness and be able to facilitate the construction of the true Earth model.

When we process a single data set (e.g., Surface Wave Dispersion), we use the
least squares method to find the best-fit model. For multiple data sets (e.g., Surface
Wave Dispersion and Receiver Functions), if we knew the variance (uncertainty of
data) of the different measurements of the multiple data sets, we could still be able
to use the least squares approach to finding the model space. In practice, we only
have an approximate knowledge of the variances. So, instead of producing a sin-
gle model, we want to generate several models corresponding to different possible
variances. Once several models corresponding to different possible variances are
computed, we can then proceed to select the most geophysical meaningful model
from the Pareto Front. The reason we will use an optimization technique is to find
the best possible solution for nonlinear geophysics inverse problem. For example,
in geophysics, most inverse problems require finding some minimization and that
is why we will use an optimization technique called MultiObjective Optimization
Problem (MOP). The MOP technique generates several possible models. This is
what sets it apart from other various joint inversion techniques. We will be able to
select the final solution from a population of alternative solutions from the model
space. Such methods are described in [Sambridge 1999a,b; Kozlovskaya 2000].



MOP inversion 3

There are two types of seismic waves that travel through the Earth: the body
waves and the surface waves. Both types of waves give us different sensitivities
and information about the Earth Structure, since they are sampling the interior and
surface of the medium with different velocities and directions. The information col-
lected from the body waves travels deeper into the Earth and translates into teleseis-
mic P-wave receiver functions. In order to obtain information about the Earth sur-
face, surface waves are analyzed, in our case, by means of surface waves dispersion.
On one hand we have receiver functions, which resolve discontinuities (impedance
contrasts) in seismic velocities, and provide good measurement of crustal thick-
ness, without providing a good average of shear wave velocity. On the other hand,
we have surface (Love and Rayleigh) waves whose energy is concentrated near the
Earth’s surface, and provide good average of absolute shear wave velocity, without
a good shear-wave velocity contrasts in layered structures. Therefore these two data
sets can be considered as complimentary and consistent, as long as we sample the
same medium. Hence, we expect a mutually consistent estimate of the Earth’s struc-
ture.Since both data sets are sensitive to shear wave velocity structure [Julia et al.,
2000], we can assume a forward operator F depending nonlinearly on our model
parameter x € R” that represents the different shear velocities of a half space with
n horizontal layers (a standard way of modeling Earth’s structure). In the next sub-
sections we explain in more detail the nonlinear relationship with respect to shear
wave velocities of this operator and the techniques used to compute each synthetic
dataset.

1.1 Receiver Functions

A receiver function is simply a time series representation of the Earths response rela-
tive to an incoming P-wave propagating near a recording station. Positive or negative
spike amplitudes represent positive or negative seismic velocity contrast. A receiver
function technique can model the structure of the earth by using seismograms from
three component (vertical, north, and east) seismic stations from teleseismic earth-
quakes. The receiver function technique takes advantage of the fact that part of the
energy of seismic P waves is converted into S waves at discontinuities along the
ray path [Dzierma et al., 2011], and has been utilized in many studies [e.g., Wilson
et al., 2005; Bailey et al., 2012; Wilson and Aster, 2005]. For data collection and
processing, we use the Standing Order for Data (SOD) [Owens et al., 2004; Bailey
et al., 2012] to request three component seismograms for P-wave arrivals and for
events with a minimum magnitude 5.5, depth in the range of 1600 km, and an epi-
central distance ranging from 30° — 95° [e.g., Bailey et al., 2012].

Receiver functions were first applied in the late 1970s at solitary stations to ob-
tain local one-dimensional structural estimates [Langston, 1981]. Since then, there
was an increase in the number of stations deployed seismic experiments. It is now
possible to generate detailed two or three-dimensional images of structures, such as
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the moho and upper mantle transition zone discontinuities near 410 km and 670 km
depth [e.g., Wilson et al., 2003].

Receiver functions are derived using deconvolution, a mathematical method used
to filter a signal and isolate the superimposed harmonic waves. Specially, receiver
functions are calculated by deconvolving the vertical component of a seismogram
from the radial component, resulting in the identification of converted phases where
there is an impedance contrast (crustal-mantle boundary). The receiver functions are
sensitive to Vp/Vs ratios and crustal thickness.

Deconvolution is again, a mathematical method used to filter signals and isolate
harmonic waves. For example, when given a convolved signal u(t) = s(t) * p(t) *
i(t), the system should isolate the components s(t), the source, p(t), the earth struc-
ture, and i(t), the instrumentation so that they can be analyzed individually from the
seismogram u(t).

Convolution of the source S(t), propagation P(t), instrument I(t), will result in the
seismogram denoted as in the time domain.

Ue(r) = S(1)  P(1) +1(¢) (D
U(t) =S(t)«P.(t) *1(t)
Taking the Fourier transform [Spiegel, 1974] of the vertical U,(¢) and radial U,(¢)

component of the seismogram will result in the vertical and radial components from
time domain to frequency domain,

FlU(1)] = U(@) = S(@) + P.(0) x I () 2

By performing deconvolution (spectral division) of the vertical component from the
radial component,

= Plo) 3)

then taking the inverse Fourier transform of R(®),results in the approximation of a
receiver function ().
Pz(w)]

P (o)

r(t)=F"" [ ©))
1.2 Receiver function stacking

We used the receiver function stacking technique introduced by Zhu and Kanamori
(2000), which estimates the crustal thickness and a Vp/Vs ratio based on the radial
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Fig. 1 (Left)[llustration of a simplified ray diagram, which identifies the Ps, converted phases,
which comprise the receiver function for a single layer. (Right) Vertical and radial seismograms
and the corresponding receiver function resulting from the deconvolution of the vertical component
from the radial component

receiver function. This technique is the standard approach used by EARS. Assum-
ing that no lateral velocity heterogeneities exist, the time separation between the
Ps converted wave and the direct P-wave obtained from receiver functions (zpy) can
then be used to estimate crustal thickness (H), given the average crustal velocities
Vp and a Vp /Vs ratio (x), and the constant ray parameter p of the incident wave
[e.g., Gurrola et al., 1995]. The trade-off between the thickness and the crustal ve-
locities presents an ambiguity that can be reduced by using the later multiple phases
tppps and tpgpg + ppss, which provide additional constraints to both Vp/Vs and the
crustal thickness [e.g., Gurrola et al., 1995; Zhu and Kanamori, 2000]. Using and
stacking multiple events helps to increase the signal-to-noise ratio (SNR), which
may be caused by background noise, scattering from crustal heterogeneities, and
P-to-S multiple conversions from other velocity discontinuities [Lodge and Helf-
frich, 2009].The H-x domain stacking weights each phase and plots the stacked
phases as a gridded image s(H, k),which reaches a maximum when all three phases
(tps, tppps, tpsps + ppss) are stacked coherently with the correct H and x [Zhu and
Kanamori, 2000]. The main advantage of this grid-search based technique is that (1)
large amounts of receiver functions can be processed without the need of picking P;
arrival times, and (2) the stacking results in an enhancement of the signal/noise ratio
and a suppression of lateral variations in the vicinity of the recording station [Lodge
and Helffrich, 2009]. We will use this technique to derive an average crustal model
including H and Vp/Vs (k). An example of this technique is shown in Figure 5 for
one of the Earthscope USArray stations, 219A. The dark dot with the white circle
around the dot represents the possible solution in H and Vp/Vs space (Figure 3).
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Fig. 2 This is a receiver function stack of station 219A, Vp/Vs vs H (km). The black dot with the
white circle around it represents the preferred value. Note the multiple shaded regions might result
in a poor choice of crustal thickness.

1.3 Surface Wave Dispersion

Surface waves in general differ from body waves in many respects they travel
slower, lower frequencies, largest amplitudes, and their velocities are in fact depen-
dent on frequency [Shearer, 2009]. The surface wave velocities vary with respect
to depth being sampled by each period of the surface wave. The sampling by each
period of the surface wave is known as dispersion [Sosa et al., 2013]. Valuable infor-
mation can be inferred by measuring surface wave dispersion because it will allow
you to be able to better understand the Earths crustal and mantle velocity structure
[Obrebski et al., 2010, Sosa, 2013]. In particular, Love and Rayleigh wave group dis-
persion observations generally account for average velocity structure as a function
of depth [Julia et al., 2000; Maceira and Ammon 2009]. The dispersion curves for
surface waves are extracted from station records of three component seismograms
for different frequencies and distances, by using reduction algorithms that rely on
spectral analysis techniques. The important fact here is that, based on Rayleigh’s
principle, surface wave velocities are more sensitive to S wave velocity, although
they are also theoretically sensitive to P wave velocity and density. The Rayleigh’s
principle states that the phase velocity perturbation, denoted by % can be viewed as
a function of (K¢, Kp,K)p), the sensitivity coefficients for P wave velocity, S wave
velocity and density, respectively, i.e.
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2e(T) (. da(z) . IBE) . Ip)
/(K"‘ a) B Tk )

where T is the period and z is the depth. By investigating sensitivity function varia-
tion in depth, the relative contribution of each property to dispersion can be shown.
This subject is beyond the scope of our work, thus we just mention here that such
analysis allows geophysicists to show that the relative contribution of P wave ve-
locity, and density to dispersion is smaller than the one for S wave velocity [Julia et
al., 2000]. This is, surface wave dispersion is much more sensitive with respect to S
wave velocity, and therefore we have established the dependence of this data set on
shear wave velocity.

®)

p=003
p=0.05

Rift velocity model 3 %r

Fig. 3 (Left) S-wave synthetic velocity model (Rift) [Laske et al., 2000]. (Right: top) Receiver
functions for three different ray parameters p, and (Right: bottom) surface wave dispersion curves
(Love and Rayleigh) computed for the velocity model on the left.

1.4 Delay Travel Times

The traveltime T between a source and receiver along a ray L is given in integral
form for a velocity field as
ds

ATO)

(6)
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where s is the position vector in 2D or 3D media. Travel times are considered a
nonlinear inverse problem given the relationship between the measured data (travel
times) and the unknown model parameters (the velocity field). However, by trans-
forming variables to use slowness, the reciprocal of velocity, instead of velocity as
the unknown, a seemingly linear inversion problem is created:

/Au(s)ds =AT = Typs — Tpred (7
L

However, the ray is also dependent on the velocity (or slowness) model, thus making
the inverse problem nonlinear regardless of what form of model variable or param-
eterization is used. If the medium is subdivided into blocks, the path length /; in the
jth block and can be discretize to

AT:leAuj (8)
J

The model can be parameterized any number of ways using velocity or slowness,
and cells, nodes, or splines, since the problems nonlinearity must be dealt with re-
gardless of the parameterization. Most often a linearized gradient approach is ap-
plied in which a starting model is used and both the model and rays are updated
over a series of iterations with the hope that there will be convergence to an accept-
able model (the final model). The model is almost always discretized using cells,
nodes, or other interpolating functions; in the latter two cases, the discrete model
parameters are the coefficients of the interpolating functions. For the formulation of
travel times for a tomography problem, the model is parameterized using constant-
slowness cells, in which case the equation for the ith data becomes

ATi:ZlijA”‘j (9)
J

where /;; is the length of the ith ray in the jth model cell and Au; is the slowness
in the jth cell. In this case the path length of each ray in a block,/;; is the partial
derivative, d7;/du; of the travel time with respect to the slowness of that block
[Stein and Wysession, 2006].

1.5 Gravity Anomalies

In geophysics gravity anomalies are generally defined as the difference between ob-
served gravity field and the field of a reference model. Depending on the reference
gravity model, two different types of anomaly variations are considered: gravity
anomalies and gravity disturbances. The geodetic gravity anomaly is defined as the
difference between gravity on the geoid and normal gravity on the reference ellip-
soid [Heiskanen and Moritz, 1967]. On the other hand, the gravity disturbance is
defined as the difference of the fields at the same point on the reference ellipisoid.
It has been demonstrated that the gravity disturbances are more appropriate for geo-
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physical purposes [e.g., Hackney and Featherstone, 2003]. In any case, its necessary
to take into account the difference in the interpretation.

The observed gravity anomalies reflect the effect of density variations relative to
the homogeneous reference model. Interpretation of the gravity anomalies implies
an estimation of the density heterogeneities. The density model should reproduce the
observed gravity field, taking into account that the observations may be affected by
measurement errors. Density heterogeneity of the Earth, associated with thermal and
compositional variations or with deflected boundaries separating layers of different
density, is one of the main factors that control dynamic processes and deformations
at both shallow and deep levels. Therefore, interpretation of the gravity anomalies
or gravity modeling is one of the principal methods, which help to understand the
nature and origin of the tectonic processes and the Earths dynamics.

2 Forward Problem

If we know the layered shear velocity distribution x = (xi,...,x,) at n different hor-
izontal layers, then we can evaluate the measured quantities y = (xp,...,x,) (e.g.,
the travel times) by applying an appropriate nonlinear operator F(x) that uses the
velocities x to predict the Earth’s response y = F(x);

F(x) = (Fi(x),...Fu(x)) € R",x = (x1,...,x,) € R"(m >> n) (10)

The operator F relates the data space and the model space. In other words, if we
know the velocity model x, then we can predict the Earths response based on the
velocity model.

3 Inverse Problem

Given an observed data vector, y € R™,we want to find the unknown model, x, such
that F(x) approximates as much as possible. For each specific type T of observa-
tions, this means that we are minimizing

min [|F7(x) —y"| > = min (F] (x) =] )’ (11)
X X

to match measurements of different types, researchers traditionally use weighted
non-linear least squares method (LSQ). For example, to simultaneously match the
teleseismic receiver functions (RF), surface wave dispersion velocities (SW), travel
times (TT), and gravity (GR), we minimize mxin J, where
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7= whe IR ) = 3| Py |15 () [ 2+ w177 () 7T P+

Wi | IFOR(x) K|

12)
This minimization problem can be reformulated as
min||F (x) —y| (13)
where
FSW(.X)
FRF (x) m
F()C)—W FTT(X) €R )
FGR(x)
YW
YRF
y=Ww VT ER"
yOR
where
. 1. 2 . 3
W:dlag(wi)7wi: nTvlzlv"'ap;Wi: nTal:P+1,~~,P+C],wi: nT
Gip qu Gl-}"
1—1 — 1y —
i=p+q+l,....p+q+rwi= in:l?+q+r+l,...,m:P+q+r+s
Al
(14)

with W a weighted diagonal matrix used to equalize the contribution of each
dataset with respect to physical units and number of data points, 1; € [0, 1] are influ-
ence parameters that measures the reliability of each dataset used for the inversion,
61»2 is the approximate standard deviation of each point, and p, g, r and s are the
number of RF, SW, TT, and GR observations [Sosa et al., 2013].

4 Need for mult-objective optimization

In practice, we do not know the exact values of the influence parameters. For dif-
ferent values of the influence parameters, we get, in general, different velocity dis-
tributions x; some of these velocity models are geophysically meaningful, some are
not (e.g., some models x predict higher velocities in the crust and lower velocities
in the mantle contrary to geophysics).

Traditionally, researchers avoid non-physical non-smooth velocity models by adding
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a regularization form 42 ||Lx||? to the minimized function [Tikhonov, 1977]. The
problem with this term is that it is not clear how to select A , and different values of
A lead to different solutions; see, e.g., [Hansen 1987] and [Vogel, 2002].

In this work, instead of using regularization, we explicitly formulate constraints
that need to be satisfied, for example, the desired smoothness can be described as
a bound on |x; —x;| < A on the difference between velocities x; and x; at nearby
locations. Then, we find the model x for which J(x) ) is the smallest under these
constraints. Additionally, we include bounds a < x < b on the velocities at differ-
ent depths. In geophysical applications, it is crucial to keep the physical parameters
within appropriate bounds.

So, instead of selecting a single combination of influence parameters (and thus, of
weights), we propose to use multi-objective optimization (MOP); namely, we gen-
erate all possible models x corresponding to different combinations of weights, and
then we use one of the MOP criteria to select the most promising model [Sambridge
1999a,b; Kozlovskaya, 2000].

In this case, we want to mimimize the four criteria fi (x) = ||FRF (x) — y®F| |2, f2(x) =
IFSW () = YV, f3(x) = [[FTT (x) =TT |, fa ) = |IFOR(x) — yOF| | First, we
find the Pareto optimal set, P*, i.e. the set of all feasible solutions x for which,
there is no other feasible solution x which is better with respect to all criteria

A < ilx),.. fild) < filx).

Pareto front

0014 !

0012}

min(w1F1+w2F2) N

~
“ideal point” F=w1F1+w2F2

0255 026 0265 027 027 028 0285 022 0.295 03

f1

Fig. 4 Illustration of the solution set or Pareto front, which is, defined as the weights times the
perspective objective functions.
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Definition: (Pareto Optimal Set) For a given multi-objective problem,
F(x) = (fi(x),..., fr(x)), the Pareto Optimal Set, P* £, is defined as:

P2 {xeQ|-3x € Q(F(x)<F(x))} (15)

It is known that elements of the Pareto set can be obtained by solving the one-
objective (scalar) optimization problem.

minf(x) = I wifi(x) (16)
xeX
where w = (wq,...,wg) > 0 is the vector of weighting coefficients assigned prior

to the solution of the problem. So, in our computations, we try all possible combi-
nations of weights, and we find all solutions x corresponding to different combina-
tions. For each criterion f;, we then find the smallest value ﬂ'”"’ and the largest value
fm* The smallest values form an ideal point f™" = (fi"in ..., fmin). We then select
a solution x which is the closest to this ideal point. Specifically, we normalize each
differences f;(x) — f/"(x) to the interval (0,1) by dividing it by f%*(x) — f™"(x),
and then we minimize the corresponding normalized distance. In other words, we
select a solution x for which the distance

min 2
Ol )

d> mi;’z7 — Zl'k: ( A
(f f(x)) 1 fimax(x) _fimm(x

5 Numerical Algorithm

First, we use a first order Taylor approximation of the operator F around some suit-
able model Xy, :

F(x) 2 F(x) +F (Te)Ax = F(%) + F (%) (x— ), (18)

where F’ (%)) is the matrix formed by the partial derivatives of F. Therefore, we
rewrite the problem (13) as

, 2
min HF (%) +r(xe) H
X

st g(xXx) >0 (19)

where r(x;) = F(x¢) —y — F (%)X, and g(x) is a vector of constraints, including
constraints x; — a; > 0 and b; — x; > 0 that describe the bounds a; < x; < b; on
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velocities x; at different layers. Problem (20) can be solved using the Primal-Dual
Interior-Point method [Sosa, 2012].

6 Primal Dual Interior-Point Method

To implement the Primal Dual Interior-Point method, we first rewrite our problem
in a standard form as follows:

1. 2
min 3 HF (X )x+ r(?ck)H

X
st g(Xx)—s=0 (20)
s>0

where s € R?" is a slack variable. Then we define the Lagrange function associated
to problem (21) as:

1 /
I(Xk,2,5,w) = §||F (®)x+r(®)||* — (g(F) —s)Tz—s"w (21

with the Lagrangian multipliers z,w € R?", (z,w) > 0. For a given perturbation pa-
rameter i > 0, , the perturbed Karush-Kuhn-Tucker (KKT) or necessary conditions
are given by:

!

F'(®)T (F (®)x + (%)) — Ve (%)z

£ (= 8(Xk) —s
(Xk,Z,S7W) Z—w ( )
SWe — e
where
FoRuF2mt2n __ RuA2ntdn g — digg(sy, ... 50.), W = diag(wi, ..., wa)

and e = (1,...,1) € R It is easy to see that z = w, hence the perturbed KKT
system (22) is rewritten as

/

. F ()T (F (%0)x+r(x)) — Vg' (%)z
F(x,z,s,w) = g(xy)—s =0 (23)
SZe — e
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thus the Jacobian associated to (23) is then computed as

, X F/(jk)TF/(fk) _VgT(jk) Ornxn Ax Vxl(xaz7s)
F )= Vg(ﬁ{) Onxm _Imxm Az| =— g(xk) - (24)
s Opxn S VA As SZe— e

System (24) can be reduced further by eliminating the third block of equations
as follows. From the last block of equation in (24) we have

SAz+ZAs = —SZe + e,

therefore
ZAs = —SZe+ e —SAz

As=—s+uzZ le—2"'SAz,

and then
Vgl (%) Ax—As=Vg" (F)Ax+s—uZ e+ 2 e+ 77 'SAz= —Vgl (X )x+s

Vel F)Ax+Z71SAz=puzZ e —g(%)

which allow us to write the reduced linear system

rgrre s ] e

7 Conclusion

In summary, for this research project we propose to utilize the MOP technique to
perform joint inversion of multiple data sets (Receiver functions and Surface Wave
Dispersion). We will incorporate different weights in the MOP inversion scheme
in order to map the Pareto Set (Solution Space) of receiver functions and surface
wave dispersion measurements. We used the MOP technique to help characterize
the crust and upper mantle of an ancient rift system in Texas using seismic data
from USArray and Earthscope Network. We will extend the Primal Dual Interior
Point Method (PDIP) and Truncated Singular Value Decomposition (TSVD) algo-
rithm with the MOP in order to obtain high-resolution 3D imagery of Texas using
teleseismic receiver functions, surface wave dispersion measurements, delay travel
times, and gravity. We chose this optimization approach because we want to find the
best possible solution for our nonlinear geophysics inverse problem. In geophysics,
most inversion problems require finding some minimization. The optimization tech-
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nique that we chose to solve our non-linear inverse problem requires the search of
the global minimum and this technique will be able to define the entire solution
based from using different weights to map the Pareto Set. From the Pareto Set, the
MOP technique performs a direct search method that basically selects the final so-
lution from a set of alternative solutions from the model space [Sambridge 1999a,b;
Kozlovskaya 2000].
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