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Abstract—It has been observed that in many cases, when
we present a user with three selections od different price (and,
correspondingly, different quality), then the user selects the
middle selection. This empirical fact — known as a compromise
effect — seems to contradicts common sense. Indeed, when a
rational decision-maker selects one of the two alternatives, and
then we add an additional option, then the user will either keep
the previous selection or switch to a new option, but he/she will not
select a previously rejected option. However, this is exactly what
happens under the compromise effect. If we present the user with
three options a < a’ < a”, then, according to the compromise
effect, the user will select the middle option «’, meaning that
between o’ and a”, the user will select a’. However, if instead we
present the user with three options o’ < a”’ < a’”’, then, according
to the same compromise effect, the use will select a previously
rejected option a’'. In this paper, we show that this seemingly
irrational behavior actually makes sense: it can be explained
by an application of a symmetry approach, an approach whose
application to uncertainty was pioneered by N. Wiener (together
with interval approach to uncertainty).

I. CoOMPROMISE EFFECT: A PARTICULAR CASE OF
SEEMINGLY IRRATIONAL HUMAN BEHAVIOR

Customers make decisions. A customer shopping for an item
usually has several choices. Some of these choices have better
quality, lead to more possibilities, etc. — but are, on the other
hand, more expensive. For example, a customer shopping for a
photo camera has plenty of choices ranging from the cheapest
one whose photos are good to very professional cameras
enabling the user to make highest-quality photos even under
complex circumstances. A person planning to spend a night at
a different city has a choice from the cheapest motels which
provide a place to sleep to luxurious hotels providing all kinds
of comfort, etc. A customer selects one of the alternatives
by taking into account the additional advantages of more
expensive choices versus the need to pay more money for these
choices.

It is important to understand customer’s decisions. Whether
we are motivated by a noble goal of providing alternatives
which are the best for the customers — or whether a company
wants to make more money by providing what is wanted by
the customers — it is important to understand how customers
make decisions.

Experimental studies. In many real-life situations, customers

face numerous choices. As usual in science, a good way to
understand complex phenomena is to start by analyzing the
simplest cases. In line with this reasoning, researchers provided
customers with two alternatives and recorded which of these
two alternatives a customer selected. In many particular cases,
these experiments helped better understand the customer’s
selections — and sometimes even predict customer selections.

At first glance, it seems like such pair-wise comparisons
are all we need to know: if a customer faces several choices
ai, as, ..., a,, then a customer will select an alternative a; if
and only if this alternative is better in pair-wise comparisons
that all other possible choices. To confirm this common-sense
idea, in the 1990s, several researchers asked the customers to
select one of the three randomly selected alternatives.

What was expected. The experimenters expected that since
the three alternatives were selected at random, a customers
would:

e sometimes select the cheapest of the three alternative
(of lowest quality of all three),

e sometimes select the intermediate alternative (or inter-
mediate quality), and

e sometimes select the most expensive of the three
alternatives (of highest quality of all three).

What was observed. Contrary to the expectations, the ex-
perimenters observed that in the overwhelming majority of
cases, customers selected the intermediate alternative; see,
e.g., [12], [13], [16]. In all these cases, the customer selected
an alternative which provided a compromise between the
quality and cost; because of this, this phenomenon was named
compromise effect.

Why is this irrational? At first glance, selecting the middle
alternative is reasonable. However, it is not.

For example, let us assume that we have four alternative
a1 < ag < a3z < a4 ordered in the increasing order of price
and at the same time, increasing order of quality. Then:

e if we present the user with three choices a1 < as <
as, in most cases, the user will select the middle



choice ao; this means, in particular, that, to the user,
ao better than the alternative as;

e on the other hand, if we present the user with three
other choices as < ag < a4, in most cases, the same
user will select the middle choice ag; but this means
that, to the user, the alternative ag better than the
alternative as.

If in a pair-wise comparison, as is better, then the second
choice is wrong. If in a par-wise comparison, the alternative
as 1is better, then the first choice is wrong. In both cases, one
of the two choices is irrational.

This is not just an experimental curiosity, customers’
decisions have been manipulated this way. At first glance,
the above phenomena may seem like one of optical illusions or
logical paradoxes: interesting but not that critically important.
Actually, it is serious and important, since, according to
anecdotal evidence, many companies have tried to use this
phenomenon to manipulate the customer’s choices: to make
the customer buy a more expensive product.

For example, if there are two possible types of a certain
product, a company can make sure that most customers select
the most expensive type — simply by offering, as the third
option, an even more expensive type of the same product.

Manipulation possibility has been exaggerated. Recent
research shows that manipulation is not very easy: the compro-
mise effect only happens when a customer has no additional
information — and no time (or no desire) to collect such
information. In situations when customers were given access
to additional information, they selected — as expected from
rational folks — one of the three alternatives with almost equal
frequency, and their pairwise selections, in most cases, did not
depend on the presence of any other alternatives; see, e.g., [15].

Compromise effect: mystery remains. The new experiment
shows that the compromise effect is not as critical and not
as wide-spread as it was previously believed. However, in
situation when decisions need to be made under major un-
certainty, this effect is clearly present — and its seemingly
counterintuitive, inconsistent nature is puzzling.

How can we explain such a seemingly irrational behavior?

What we do in this paper. In this paper, we show that it is
possible to find a rational explanation for such a behavior.

Interesting, this explanations is related to two ideas pro-
moted by N. Wiener — interval uncertainty (which later en-
couraged fuzzy uncertainty) and symmetry.

II. BEFORE WE EXPLAIN THE MYSTERY OF SEEMINGLY
IRRATIONAL BEHAVIOR, LET US FIRST RECALL How
RATIONAL BEHAVIOR IS USUALLY DESCRIBED

Traditional decision theory is based on the assumption
that a decision maker can always make a definite choice.
Traditional decision theory (see, e.g., [1], [5], [8], [11]) is
based on the assumption that if we present a decision maker

with two alternatives A and A’, then the decision maker
will always make a definition decision about which of this
alternatives is better for him/her. In other words, the decision
maker will always select one of the following three options:

e the alternative A is better than the alternative A’; we
will denote this option by A > A’;

e the alternative A’ is better than the alternative A; we
will denote this option by A < A’;

e the alternatives A and A’ are of equal value; we will
denote this by A = A’.

Resulting numerical description of preferences. The above
assumption enables us to provide a numerical scale for de-
scribing quality of different alternatives.

To describe this scale, let us select two fixed outcomes:

e we select a very bad outcome, which is worse than
any of the alternatives that we encounter in decision
making; we will denote this situation by Ag;

e we also select a very good outcome, which is better
than any of the alternatives that we encounter in
decision making; we will denote this situation by Aj.

Then, for each number p from the interval [0, 1], we can form
a lottery in which we get A; with probability p and Ay with
the remaining probability 1 — p. This lottery will be denoted
by L(p).

e When p = 1, the corresponding lottery L(1) means
that we select a very good outcome with probability
1, i.e., we have L(1) = A;.

e When p = 0, the corresponding lottery L(0) means
that we select a very bad outcome with probability 1,
i.e., we have L(0) = Ap.

When the probability p in strictly between O and 1, the
resulting lottery is better than Ay but worse than Aj:

Ao < L(p) < L(1).

The larger p, the larger the probability p of the very good
outcome A; and the smaller the probability 1 — p of the very
bad outcome. Thus, the larger the probability p, the better the
lottery L(p). In precise terms, if p < p/, then L(p) < L(p’);
in this sense, the scale is monotonic.

Intuitively, if we change p a little bit, the quality of the
resulting lottery L(p) will also change only slightly. In this
sense, the scale if continuous.

In other words, the lotteries L(p) corresponding to different
values p € [0,1] form a monotonic scale which changes
continuously from a very bad outcome Ay to a very good
outcome A;. We can use this scale to describe the user’s
preferences in numerical terms.

Namely, suppose that we have an alternative A. Because
of our selection of the very bad alternative Ay and the very
good alternative A, we have Ay < A < A;. In other words,
we have L(0) < A < L(1). As we increase p from 0 up, we
will first have still L(p) < A. However, as we increase p even



more, we will at some point switch to A < L(p) — since this
is what we have for p = 1. Thus, there is a threshold value u
at which this switch happens, i.e., for which:

o L(p) < Aforall p<u,and
o A< L(p) forall p>u.

This threshold value of probability is called the ufility of the
alternative A. We will denote this utility by u(A). The above
threshold property will be denoted by A ~ L(u(A)), meaning
that for every € > 0, we have L(u(A)—¢) < A < L(u(A)+¢).
We will say that the original alternative A is equivalent to the
lottery L(p).

The higher the utility, the better the alternative: indeed, if
u(A) < u(B), then L(u(A)) < L(u(B)), so

A~ L(u(A)) < L(u(B)) ~ B
and A < B.

Utilities depend on the selection of Ay and A;. The
numerical value of the utility u(A) depends on the selection of
the fixed outcomes Ag and A;. If we fix two different outcomes
A} and A’, then we will get different numerical values of
the utility u'(A) # u(A). The above definition enables us to
describe the relation between different possible utility scales.

Let us first consider the case when A < Ag < Ay < Af.
In this case, both outcomes Ay and A; are in between Aj, and
A’ Thus, each of the outcomes Ay and A; is equivalent to an
appropriate lottery: Ag ~ L'(up) and A; ~ L'(u}), for some
values ug, uj € [0, 1]. For each alternative A, this alternative is
equivalent to the lottery L(u(A)) in which we get the outcome
A, with probability u(A) and the outcome A, with probability
1 —u(A). Here:

e  The outcome A, is, in its turn, equivalent to the lottery
L’(u}) in which we get A} with probability u} and
A{, with probability 1 — .

e  Similarly, the outcome Ay is, in its turn, equivalent to
the lottery L'(u() in which we get A} with probability
ugy, and A{, with probability 1 — ug,.

Thus, the original alternative A is equivalent to a complex
lottery in which:

e first, we select A; with probability u(A) and Ag with
probability 1 — u(A);

e then, depending on which the the outcomes A; we
selected, we select A} with probability u; and Aj with
probability 1 — uj.

In this complex lottery, we end up with either Af, or with A].
The probability of getting A} can be computed as

Cu(A) - uf + (1 —u(A) - (1 —u)).

u'(A)
Thus, the original alternative A is equivalent to a lottery in
which we get A} with probability u’'(A) and Aj, with the
remaining probability 1 — u/(A). By definition of utility, this
means that the value u'(A) is a utility of the alternative A with
respect to the fixed outcomes Aj, and A}. The above formula

shows that the utility u’(A) is a linear function of the original
utility u(A).

Thus, when A < Ay < A; < A}, the utilities u(A)
and u’(A) are related by a linear dependence. In the general
case of pairs Ag < A; and A < A}, let us define a new
pair (Af, AY):

e as A{, we take the worst of the two outcomes Ay
and A{, (remember that we are operating under an
assumption that a user can always confidently decide
which of the two alternatives is better), and

e as AY, we take the best of the two outcomes A; and
Aj.

In this case, Aj < Ag < A1 < A and Aj < A < A} < AY.
Thus, each of the scales u(A) and u'(A) are linearly related
to the scale u”(A). We can therefore get from u(A) to u'(A)
as follows:

e first, we apply a linear transformation to get from
u'(A) to u”(A);

e then, we apply another linear transformation to get
from u’(A) to u'(A).

A composition of two linear transformations is also linear,
so we conclude that every two utility scales u(A) and u'(A)
are related to each other by a linear transformation: u'(A) =
a - u(A) + b for some real numbers a > 0 and b (we need to
have a > 0 to preserve the fact that the higher the utility, the
better the alternative).

From utility to expected utility. In many practical situations,
we need to decide between several possible actions. Let us
consider the situation in which we know all possible outcomes
S1,...,5n, and for each action a, we know the probabilities
P1,--.,Pn of different outcomes.

Let u(A;) be the utilities of different outcomes. This means
that each outcome S; is equivalent to a lottery L(u(S;)) in
which we get A; with probability u(S;) and Ay with the
remaining probability 1 —u(S;). Thus, the action is equivalent
to a complex lottery, in which:

e first, we select one of the outcomes S, ...,S,; each
alternative .5; is selected with the corresponding prob-
ability p;;

e then, depending on the selected outcome S;, we select
either A; (with probability u(S;)) or Ay (with the
remaining probability 1 — u(S;)).

As a result of this complex lottery, we get either A; or Ajg.
The probability of getting A; in situation in which we selected
S; is equal to the product p; - u(S;). Thus, the total probability

. . def &
of selecting A; is equal to the sum u = 3 p; - u(S;). Thus,
i=1
the action a is equivalent to the lottery L(u). This means that
the utility of each action is equal to the corresponding sum —
and so, when selecting between different actions, we need to
select an action for which this sum is the largest.



n
From the mathematical viewpoint, the sum > p; - u(S;)

=1
corresponding to each action is simply the mathematical ex-
pectation of the utility. So, in these terms, we must select the
action for which the expected utility is the largest.

ITII. NEED TO TAKE UNCERTAINTY INTO ACCOUNT: FROM
PROBABILISTIC TO INTERVAL AND FUZZY UNCERTAINTY

Uncertainty is ubiquitous. In practice, we never know the
exact consequences of an action, there is always some uncer-
tainty in our predictions.

Traditional approach to uncertainty: statistical. Certainty
means that we know the exact consequence of an action.
Uncertainty means that we can have several possible conse-
quences of an action. Based on our prior experiences, we
sometimes know that consequences of a certain type were more
frequent in the past and consequences of other types were
less frequent. If we have a sufficient number of past records,
we can determine the frequency with which different types
of consequences occurred — and consider these frequencies as
god approximations to probabilities (= limit values of these
frequencies).

For example, if we are designing a building in a seismic
zone for which we have a century of seismic records, we can
estimate the probability of earthquakes of different magnitude
and thus, take the possibility of these earthquakes into account.

This idea underlies the traditional statistical approach to
dealing with uncertainty in science and engineering; see,
e.g., [10], [14].

Need for interval uncertainty: Wiener’s idea and its current
state. Predictions of consequences of different actions are
usually obtained by using known formulas for describing the
systems’ dynamics, starting from the simpler formulas of
Newton’s mechanics to more complex formulas describing
more complex physical phenomena. These formulas use pa-
rameters which need to be determined experimentally, based on
measurements — and measurements are never 100% accurate.
The measurement result z is, in general, different from the
actual (unknown) value of the corresponding physical quantity.
Traditional statistical approach to processing measurement

uncertainty assumes that we know the probability of different
def ~

values of measurement error Ax = T — z.

These probabilities are usually obtained by comparing the
results of measurements = by a current measuring instruments
with the results Z5* of measuring the same quantity by a much
more accurate (‘“‘standard”) measuring instrument. When the
standard measuring instrument is much more accurate, i.e., if
for Az®* = 75% — z, we have |Ax®'| < |Ax|, then we can
safely ignore Az in comparison to Az and thus, take the
difference T — %' &~ T — x as a reasonable approximation to
the measurement error Ax = T — .

Norbert Wiener was the first to notice ([17], [18]) that in
many practical situations — e.g., in cutting-edge measurements,
when no more accurate measuring instrument is available —
we do not know these probabilities. In such situations, at best,
we know the upper bound A on the measurement error Azx:
|Az| < A (and if we do not even know the upper bound, this

means that the value Z is not a measurement, it is a wild guess
which can be as far away from the actual value as possible).
In this case, once we know the measurement result z, the only
think that we can conclude about the actual (unknown) value of
the corresponding quantity « is that this value is somewhere in
the interval [ — A, T+ A]. This situation is known as interval
uncertainty.

Another case when we have interval uncertainty is manu-
facturing. In this case, in principle, it is possible to calibrate
every single sensor, but such a calibration is usually several
orders of magnitude more expensive than the actual measure-
ment — so it is not done unless really necessary.

In general, we make predictions by using a known relation
y = f(x1,...,2,) between the desired value y and the
quantities x1, ..., x, which we need to measure. by applying
an appropriate algorithm f to the the values of the relevant
quantities x1,...,x,. In practice, as we have just mentioned,
we often only know the intervals [z;,7;] that containing the
values x;. Different values x; from these intervals lead, in
general, to different predictions y = f(z1,...,z,). In such
situations, it is desirable to find the range of all possible
values of y = f(x1,...,x,) when z; are in the corresponding
intervals. Computation of this range is known as interval
computation. Interval computations have indeed been very
useful in solving many practical problems; see, e.g., [2], [6].

From interval to fuzzy uncertainty. In the traditional statis-
tical approach, we know the probabilities of different values
of measurement error Ax. In the interval approach, we only
know the range [—A, A] of possible values of measurement
error — and we have no information about which values are
more frequent and/or more reasonable to expect.

There are two extreme situations: either we have full
information about probabilities, or we have no information
whatsoever. In many practical situations, while we do not have
enough statistics to make definite conclusions, we have an
intuitive feeling of which values are more probable and which
values are less probable. A natural way to describe this intuitive
feeling is to use Zadeh’s idea of fuzzy logic [20] (see also [3],
[9]), where we ask an expert to describe his or her degree of
confidence about the possibility of each value Az € [-A, A]
by selecting a number on a scale from 0 to 1, so that:

e the value 0 means that the value Ax is definitely not
possible;

e the value 1 means that the value Az is definitely
possible; and

e values between O and 1 describe different degrees of
confidence.

Such situations are known as fuzzy uncertainty.

Interval uncertainty can be viewed as a particular case of
fuzzy uncertainty, when an expert assigns the degree 1 to all
the values inside the interval [—A, A] (and degree 0 to all the
values Az outside this interval).

IV. How TO DEAL WITH MAJOR UNCERTAINTY:
SYMMETRY IDEA

Situations with major uncertainty: a problem. When un-
certainty is relatively small, we can use interval and fuzzy



approaches, and get reasonable results. However, when the
uncertainty is large, the traditional interval and fuzzy methods
are not always helpful: e.g., if for each possible action a, we
have the same huge range of all possible values of the utility
u, then which of these actions should we choose?

Symmetry approach: main idea. In situations with major
uncertainty, what is often helpful is a symmetry approach —
whose application to uncertainty can also be largely traced to
N. Wiener; see, e.g., [19].

The main idea behind this approach is that if the situation
is invariant with respect to some natural symmetries, then it
is reasonable to select an action which is also invariant with
respect to all these symmetries.

This approach has indeed been helpful in dealing with
uncertainty. There have been many applications of this
approach. In particular, it has been shown that for many
empirically successful techniques related to neural networks,
fuzzy logic, and interval computations, their empirical success
can be explained by the fact that these techniques can be
deduced from the appropriate symmetries; see, e.g., [7]. In
particular, this explains the use of a sigmoid activation function
s(z) = ——————— in neural networks, the use of the most
1+ exp(—2)
efficient t-norms and t-conorms in fuzzy logic, etc.

What we do in this paper. In this paper, we show that the
use of symmetry approach can explain the compromise effect.

V. SYMMETRY APPROACH EXPLAINS THE COMPROMISE
EFFECT

Description of the situation. We have three alternative a, o’
and a’’:

e the alternative a is the cheapest — and is, correspond-
ingly, of the lowest quality among the give there
alternatives;

e the alternative o’ is intermediate in terms of price
— and is, correspondingly, intermediate in terms of
quality;

e finally, the alternative a” is the most expensive — and
is, correspondingly, of the highest quality among the
give there alternatives.

What do we know about the utility of each alternative. The
utility of each alternatives comes from two factors:

e the first factor comes from the quality: the higher
the quality, the better — i.e., larger the corresponding
component u; of the utility;

e the second factor comes from price: the lower the
price, the better for the user — i.e., the larger the
corresponding component uy of the utility.

In the fast experiments which established the compromise
effect, the users do not have enough time and/r information
to find the corresponding utility values w;, u}, and w corre-
sponding to different alternatives. Also, we do not know how,

for each alternative, how the corresponding components
and ug are combined into a single utility value characterizing
this alternative — we do not even know which of the two
components is more important.

Since we do not know how utility components are com-
bined, a reasonable way to represent each alternative is by
assigning to it a par consisting of the two component utilities:

e to the alternative a, we assign the pair of values
(u1,u2);

e to the alternative o', we assign the pair of values
(uf,ub); and

e to the alternative a”, we assign the pair (uf,u}).

We do not know the actual values of the component utilities,
all we know is the relative order of the corresponding values:
namely, we know that u; < v} < uf and uf < u}, < ug. Since
we do not know the actual values of each utility component,
the only we know about each of these values is whether this
value is:

e the lowest of the three value; we will denote such a
value by L;

e the intermediate (median) value; we will denote such
a value by M; and

e the highest of the three values; we will denote such a
value by H.

In these terms, we have:

e  for the first utility component, vy = L, uj = M, and
1
uy = H;

e for the second utility component: uy = H, uh) = M,
and uf = L.

In these terms, the above description of each alternative by the
corresponding pair of utility values takes the following form:

e the alternative a is characterized by the pair (L, H);

e the alternative o’ is characterized by the pair (M, M);
and

e the alternative o’ is characterized by the pair (H, L).

Natural transformations and natural symmetries. As we
have mentioned, we do not know a priori which of the utility
components is more important. As a result, it is reasonable
to treat both components equally. So, swapping the two com-
ponents is a reasonable transformation, in the sense that we
should select the same of three alternatives before and after
swap:

e if we are selecting an alternative based on the pairs
(L,H), (M,M), and (H, L),

e then we should select the exact same alternative if the
pairs were swapped, i.e., if:
o the alternative a was characterized by the
pair (H, L);
o the alternative a’ was characterized by the
pair (M, M); and



o the alternative a” was characterized by the
pair (L, H).

Similarly, there is no reason to a priori prefer one alterna-
tive versus the other. So, the selection should not depend on
which of the alternatives we name mark as a, which we mark
as a’, and which we mark as a”. In other words, any permu-
tation of the three alternatives is a reasonable transformation.
For example, if, in our case, we select an alternative @ which
is characterized by the pair (L, H), then, after we swap a and
a’ and get the choice of the following three alternatives:

e the alternative a which is characterized by the
pair (H, L);

e the alternative a’ is characterized by the pair (M, M);
and

e the alternative o’ is characterized by the pair (L, H),

then we should select the same alternative — which is now
denoted by a”.

What can be conclude based on these symmetries. Now, we
can observe the following: that if we both swap u; and uy and
swap a and a”, then you get the exact same characterization
of all alternatives:

e the alternative a is still characterized by the pair
(L, H);

e the alternative a’ is still characterized by the pair
(M, M); and

e the alternative a” is still characterized by the pair
(H,L).

The only difference is that:

e now, a indicates an alternative which was previously
denoted by a”, and

e d” now denotes the alternative which was previously
denoted by a.

As we have mentioned, it is reasonable to conclude that:

e if in the original triple selection, we select the alter-
native a,

e then in the new selection — which is based on the exact
same pairs of utility values — we should also select an
alternative denoted by a.

But this “new” alternative a is nothing else but the old a”. So,
we conclude that:

e if we selected a,

e then we should have selected a different alternative a”
in the original problem.

This is clearly a contradiction:

e  we started by assuming that, to the user a was better
than a” (because otherwise a would not have been
selected in the first place), and

e we ended up concluding that to the same user, the
original alternative o’ is better than a.

This contradiction shows that, under the symmetry approach,
we cannot prefer a.

Similarly:

e if in the original problem, we preferred an alternative
"

a,
e then this would mean that in the new problem, we
should still select an alternative which marked by a”.

But this “new” a’ is nothing else but the old a. So, this means
that:

e if we originally selected a”,

e then we should have selected a different alternative a
in the original problem.

This is also a contradiction:

e we started by assuming that, to the user a” was better
than a (because otherwise a’” would not have been
selected in the first place), and

e we ended up concluding that to the same user, the
original alternative a is better than a”. This contra-
diction shows that, under the symmetry approach, we
cannot prefer a”.

We thus conclude that out of the three alternatives a, a’,
and a'’:

e we cannot select a, and

e we cannot select a”’.

This leaves us only once choice: to select the intermediate
alternative o’. This is exactly the compromise effect that we
planned to explain.

Conclusion. Experiments show when people are presented
with three choices a < a’ < a” of increasing price and
increasing quality, and they do not have detailed information
about these choices, then in the overwhelming majority of
cases, they select the intermediate alternative a’.

This “compromise effect” is, at first glance, irrational:
selecting o’ means that, to the user, a’ is better than a”,
but in a similar situation when the user is presented with
a’ < a” < a”, the same principle would indicate that the
user will select a”” — meaning that a” is better than a’.

In this paper, we show that, somewhat surprisingly, a
natural symmetry approach explains this seemingly irrational
behavior.
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