Towards Efficient Algorithms for Approximating a
Fuzzy Relation by Fuzzy Rules: Case When “And”-
and “Or”’-Operation are Distributive

Christian Servin!2

Information Technology Dept.
El Paso Community College
919 Hunter, El Paso, Texas 79915, USA
Email: cservin@gmail.com

Abstract—A generic fuzzy relation often requires too many
parameters to represent — especially when we have a relation
between many different quantities z1, ..., z,. There is, however,
a class of relations which require much fewer parameters to
describe - namely, relations which come from fuzzy rules. It is
therefore reasonable to approximate a given relation by fuzzy
rules. In this paper, we explain how this can be done in an
important case when “and”- and “or”’-operation are distributive
— and we also explain why this case is important.

I. FORMULATION OF THE PROBLEM

Relations are ubiquitous. Many real-life quantities x1, ..., 2,
are related — in the sense that once we know the value of one or
more of the quantities, this knowledge restricts possible values
of other quantities.

In some cases, we have a functional relation — when the
values of the quantities z1, ..., x,—1 uniquely determine the
value of the quantity x,. For example, according to Ohm’s
law, the voltage V' is uniquely determine by the current / and
the resistance R as V =1 - R.

In many other cases, however, we have relations which
are not functional. In other words, even if we know the exact
values of all the quantities x1,...,z,_1, we can still have
different possible values of x,. This is actually true even for
voltage: different materials exhibit minor deviation from the
Ohm’s law; as a result, even if we know the current and the
resistance, we can only conclude that the voltage V' is close
to I - R (e.g., that V' can only takes values from the interval
[[-R—e¢,I R+ ¢ for some small € > 0.

In mathematical terms, a relation between real-valued
quantities z; is usually defined as a mapping R : R" — {0,1}
such that R(x1,...,2,) = 1 indicates that the corresponding
combination of values (z1,...,x,) is possible in a real-life
situation.

Real-life relations are often fuzzy. In practice, about some
combinations (z1,...,z,), we are often not 100% sure
whether these combinations are possible or not. In the tra-
ditional (“crisp”) approach, we simply count all such com-
binations as possible — since there is a possibility that such
combinations occur. However, this crisp representation ignores
the fact that we may be more certain about the possibility

Vladik Kreinovich?
2TRACS Center, Dept. of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
Email: vladik@utep.edu

of some combinations and less certain about the possibility
of others. To describe the different, it is necessary to know,
for each possible combination (x1,...,x,), our degree of
certainty that this combination is practically possible.

In the computer, “true” is usually represented as 1, and
“false” as 0. It is therefore natural to represent intermediate
degrees of certainty as numbers from the interval [0,1]: the
larger the number, the larger our degree of confidence. The
resulting mapping R : IR" — {0,1} is known as a fuzzy
relation; see, e.g., [3], [4], [6].

Need for a concise representation of fuzzy relation. To
use the information about the relation, we need to represent
it in a computer. Theoretically, each of the quantities x;
can have infinitely many different values, but in practice,
due to inevitable measurement uncertainty, for each variable
x;, we can only have finitely many distinguishable values
.,ZiN,. Because of this, knowing a relation
.y Tpi,) correspond-

LilyvesLigy--
means that we know the values R(x1;,, ..

ing to all possible combinations (Z1;,,...,Zn;,)

In principle, we can simply store the degrees of certainty
corresponding to all possible Nj - ... N,, combinations. This
requires storing and processing ~ N values, where N is a
typical number of distinct values of each quantity. The problem
with this representation is that, as we have mentioned, many
quantities are related to each other; so, to have the most
adequate representation of a real-life phenomenon, we need
to describe a relation between a large number of variables.
When n is large, the resulting number of values N™ grows
exponentially with n — and, as it is well known about expo-
nential functions, the numbers easily become astronomically
high, exceeding the ability of modern computers to store and/or
process this information; see, e.g., [5]. We therefore need to
come up with a more concise representation of fuzzy relations.

An approximate representation is OK. The degrees of cer-
tainty can only be approximately described: an expert cannot
realistically distinguish between his/her degree of 0.71 and
0.72 :-) Since the values are only approximately known any-
way, it is OK to represent them approximately. This possibility
of using an approximate representation provides the flexibility
which makes more concise representations possible.

Fuzzy rules as a natural concise representation of fuzzy
relations. Many fuzzy relations come from fuzzy rules, i.e.,
from a combination of rules of the type

“if A, 1(21) and ...and A, ,,_1(2p_1) then A, ,(z,)”,

where r = 1,...,n, is the number of the rule, and A, ;(x;)
are fuzzy properties. The ubiquity of such rules comes from
the fact that this is how experts often describe their decisions.
For example, a driver can explain his or her driving strategy
by describing rules like “if a car in front is close, and it
starts breaking seriously, one needs to hit the brakes hard right
away”. Such rules use imprecise (fuzzy) words like “close”,
“seriously”, “hard”, which are naturally described by fuzzy
logic techniques.

One of the most common ways to formalize the fuzzy
rules it the Mamdani approach. In this approach, we take into
account that a tuple (z1,...,%,) is consistent with the rules
if for one of the given rules, the conditions are satisfied and
the conclusion is satisfied as well. In other words, a tuple
(z1,...,2,) is consistent with the given rules if and only if
the following statement is true:

(Al,l(xl) & ... &Al’nfl(xnfl) &Aln(xn)) V...V
(Anr,l(zl) & cee & An,T,n—l(In—l) & A7LT,71,($7L))~

Fuzzy logic techniques enable us to transform this formula into
the exact value of a degree d(x1,...,x,) to which the tuple
(z1,...,2y) is consistent with the rules. Specifically:

e we can use an “and”-operation (t-norm) fg(a,b) to
represent “and”, and

e we can use an “or’-operation (t-conorm) f (a,b) to
represent “or’.

As a result, we get the following degree:

d(x1,...,xn) = fuldi(z1, ..., 2n), .y dn (T1,. .., Zn)),
where the degree d,(x1,...,2,) to which the tuple
(z1,...,2,) is consistent with the r-th rule is equal to
dr(z1,...,2,) =

f&(Ar,l(l'l)7 R Ar,n—l(xn—l)yAr,n(gjn))-

Fuzzy rules are a natural concise way of representing a
relation. Thus, it is reasonable to try to approximate a given
fuzzy relation by an appropriate family of rules.

What we do in this paper. In this paper, we propose new
algorithms for representing a given fuzzy relation in terms of
fuzzy rules, algorithms which are applicable in the important
case when “and”- and “or”’-operations are distributive.

II. WHY IS DISTRIBUTIVITY IMPORTANT?

Before we start describing our algorithms, we need to
explain why the case when “and”- and “or’-operations are
distributive is important. To explain this importance, let us first
recall the motivations behind the usual definitions of “and”’-
operations (t-norms) and “or’-operations (t-conorms).

Why t-norms and t-conorms: reminder. The main idea
behind “and”-operations is that often, we know the expert’s
degrees of confidence a = d(A) and b = d(B) in two
statements A and B, and we want to estimate the expert’s
degree of confidence in a composite statement A & B or AV B.
The only information that we have for this estimate consist of
degrees a and b, so the resulting estimates are obtained by
applying some computations to these two numbers:

e the algorithm for producing the estimate for d(A & B)
is denoted by fg (a,b), so the desired estimate has the
form fg (d(A),d(B)); and

e the algorithm for producing the estimate for d(AV B)
is denoted by fy (a,b), so the desired estimate has the
form /., (d(A), d(B)).

Which properties should the corresponding functions fg (a, b)
and f\(a,b) satisfy?

The composite statements A & B and B & A are equivalent
to each other for every two statements A and B. It is therefore
reasonable to require that the estimates fg (a,b) and fg (b, a)
for the expert’s degree of belief in these composite statements
coincide, i.e., that fg(a,b) = fg(b,a). In mathematical
terms, this means that the “and”-operation fg (a,b) should be
commutative.

Similarly, since for every two statements A and B, the
composite statements AV B and BV A are equivalent to each
other, it is reasonable to require that the estimates f\ (a,b) and
fv(b,a) for the expert’s degree of belief in these composite
statements coincide, i.e., that f\(a,b) = fv(b,a). Thus, the
“or”-operation f\ (a,b) should also be commutative.

Another pairs of equivalent statements are (A& B)&C
and A & (B & C). We can estimate the expert’s degree of belief
in the statement (A& B) & C' if:

e first, we apply the “and”-operation to the degrees a =
d(A) and b = d(B) and get an estimate fg (a,b) for
the expert’s degree of belief in a statement A & B;

e then, we apply the same “and”-operation to another
pair of numbers:
o our estimate fg (a,b) of the expert’s degree of
belief in A & B, and
o the expert’s degree of belief ¢ = d(C') in the
statement C.

As aresult, we get the estimate fg (f¢(a,b), ¢) for the expert’s
degree of belief in (A& B) & C.

Similarly, we can estimate the expert’s degree of belief in
the statement A& (B & C) if:

e first, we apply the “and”-operation to the degrees b =
d(B) and ¢ = d(C) and get an estimate fg (b, c) for
the expert’s degree of belief in a statement B & C

e then, we apply the same “and’-operation to another
pair of numbers:
o the expert’s degree of belief a = d(A) in the
statement A; and

o our estimate fg (b, c) of the expert’s degree of
belief in B& C.

As a result, we get the estimate fg, (a, f. (b, ¢)) for the expert’s
degree of belief in A& (B) & C).

Since the statements (A& B)& C and A& (B&C) are
equivalent A& (BVC) and (A& B)V(A & C), it is reasonable
to require that the corresponding estimates fg, (fg (a,b),¢) and
fe(a, fe (b, c)) for the expert’s degrees of belief in these state-
ments be equal, i.e., that fg (fe.(a,b),c) = fe(a, fg. (b, c)) for
all a, b, and c. In mathematical terms, this means that the
“and”-operation fg (a,b) should be associative.

Similarly, since the composite statements (AV B)V C' and
AV (BV C) are equivalent to each other, it makes sense
to require that the corresponding estimates f\ (fv(a,bd),c)
and fy(a, fv(b,c)) for the expert’s degrees of belief in these
statements be equal, i.e., the “or”-operation f,(a,b) should
also be associative.

Because of associativity, we can simply write
fela,b, ... ¢) and fy(a,b,...,c) without worrying about
the order of the corresponding “and”- and ‘““or”-operations.

Other properties of “and”- and “or”-operations also fol-
low from common sense. For example, from the fact that
“true” & A is equivalent to A, we conclude that fg(a,1) = a.

From the fact that “true” VA is equivalent to “true”, we
conclude that fy(a,1) = 1.

Similarly, from the fact that “false” & A is equivalent to
“false”, we conclude that fg (a,0) = a, and from the fact that
“false” VA is equivalent to A, we conclude that f (a,0) = a.

Another example: if an expert increases his/her belief in
one or both of the statements A and B, then it is reasonable
to assume that the expert’s degree of belief in a composite
statement A & B will either increase or stay the same, but it
cannot decrease. In other words, if @ < @’ and b < U/, then
we should have fg(a,b) < fg(a’,b'). In mathematical terms,
this means that the “and”-operation should be a (non-strictly)
increasing function of each of its variables.

Similarly, it is reasonable to require that the “or”-operation
fv(a,b) is a non-strictly increasing function of each of its
variables.

It is also reasonable to require that small changes in degree
a = d(A) and b = d(B) should lead to small changes in
d(A & B). In other words, it is reasonable to require that the
“or”-operation be continuous.

Why distributivity is a reasonable requirement. In the
previous subsection, we consider equivalences which use only
one of the two connectives: either “and” or “or”. In logic,
there are also equivalences which combine both “and” and
“or”. One of these properties is distributivity. Specifically, for
every three statements A, B, and C, the composite statements
A& (BVC) and (A& B) VvV (A& C) are equivalent to each
other. We can estimate the expert’s degree of belief in the
statement A& (B V C) if:

e first, we apply the “or”’-operation to the degrees b =
d(B) and ¢ = d(C) and get an estimate fy(b,c) for
the expert’s degree of belief in a statement B V C}

e then, we apply the “and’-operation to the following
pair of numbers:

o the expert’s degree of belief a = d(A) in the
statement A, and

o our estimate fy(b,c) of the expert’s degree of
belief in B v C.

As a result, we get the estimate fg (a, fv (b, ¢)) for the expert’s
degree of belief in A& (B V C).

Similarly, we can estimate the expert’s degree of belief in
the statement (A& B) V (A& C) if:

e first, we apply the “and”-operation to the degrees a =
d(A) and b = d(B) and get an estimate fg (a,b) for
the expert’s degree of belief in a statement A & B;

e then, we apply the same “and”-operation to the de-
grees a = d(A) and ¢ = d(C') and get an estimate
fa (b, ¢) for the expert’s degree of belief in a statement
B&C,

e finally, we apply the “or”-operation to the following
pair of numbers:
o our estimate fg(a,b) of the expert’s degree of
belief in A & B, and
o our estimate fg (a,c) of the expert’s degree of
belief in A& C.

As a result, we get the estimate f\ (fg(a,b), fg.(a,c)) for the
expert’s degree of belief in (A& B) V (A& C).

Since the statements A& (B V C) and (A& B) V
(A& C) are equivalent to each other, it is reasonable to
require that the corresponding estimates fg (a, fy(b,c)) and
fv(fe(a,b), fe(a,c)) for the expert’s degrees of belief in
these statements be equal, i.e., that

f&(avf\/(bv C)) = f\/(f&(avb)vf&(G‘?C))

for all a, b, and c¢. In mathematical terms, this means that
the “and”-operation fg (a,b) should be distributive over the
“and”-operation f(a,b).

An example of distributive pairs of ‘“and”- and ‘“or”-
operations. Let us show that some reasonable pairs of “and”-
and “or”-operations do have the distributivity property.

The example is when we use fy(a,b) = max(a,b) —
one of the most frequently used “or”-operations — and an
arbitrary “and”-operation fg (a,b). Let us show that in this
case, we have distributivity, i.e., that fg(a, max(b,c)) =
max(fg(a,b), fe.(a,c)) for all a, b, and c.

Indeed, without losing generality, we can assume that b < ¢
(when ¢ < b, distributivity can be proven in the exact same
way). In this case, max(b, c) = ¢, so the left-hand side of the
desired equality is equal to fg (a,c):

fe(a,max(b, c)) = fe(a,c).

Due to the fact that the “and”-operation is increasing, b < ¢
implies that fg (a,b) < fe.(a,c). Thus, the right-hand side of
the desired equality is also equal to fg (a,c):

max(f&(a,b), f&(a7c)) = f&(a7c)'

So, both sides of the desired equality are equal to the same
value and are, thus, equal to each other.

Need to restrict ourselves to partial distributivity. The
above example looks great, but it turns out that this is the
only such example. Indeed, for an “and’-operation, we have
fe(1,a) = a and fy(a,1) = 1 for all a. In particular, for
b = c¢ = 1, we have fy(b,c) = 1, fe(a,b) = a, and
fe(a,¢) = a. Thus, the left-hand side of the distributivity
equality is equal to fg (a, fv(b,¢)) = fe(a,1) = a, while the
right-hand side is equal to f\ (fe(a,b), fe.(a,c)) = fv(a,a).
Thus, for b = ¢ = 1, distributivity implies that fy(a,a) = a
for every a.

It is easy to show that that the only “or’-operations
satisfying this condition is fy(a,b) = max(a,b). Indeed, if
b < a, then from the known property f,(a,0) = a, new
property fy(a,a) = a, and monotonicity a = fy(a,0) <
fv(a,b) < fy(a,a) = a, we conclude that fy(a,b) = a.
Similarly, for b > a, we get f(a,b) = b. In both cases, we
get fv(a,b) = max(a,b).

So, if we want to require distributivity and still allow “or”-
operations which are different from maximum, we should limit
distributivity — at least to cases when f\ (b,¢) < 1. In other
words, we require that if f\/ (b, ¢) < 1, then fg (a, max(b,c)) =
max(fg(a,b), fe.(a,c)). In the following text, this is how we
will understand distributivity of “and”- and “or”-operations.

Comment. When f\ (b, c¢) < 1, then both sides of the distribu-
tivity equality are smaller than 1.

Indeed, due to monotonicity, we have fg (a, fy(b,c)) <
fe (1, fu(b,c)) = fu(b,c) < 1, so the left-hand side is indeed
smaller than 1.

Due to monotonicity, fg(a,b) < fg(1,b) = b and
fe(a,e¢) < fe(1,¢) = c. Thus, due to monotonicity, we have
fv(fela,d), fe(a,c)) < fu(b,c) < 1. So, the right-hand side
is also smaller than 1.

A second example of distributive operations. It is easy
to come up with an example of “and”- and “or’-operations
which are distributive in this sense. The notion of distributivity
started with arithmetic, where multiplication is distributive
with respect to addition: a - (b+¢) = a-b+a-c Itis
therefore reasonable to consider an example, in which the
“and”-operation is multiplication and the ‘“or”-operation is
addition. Multiplication fg (a,b) = a - b (“algebraic product™)
is indeed one of the most frequently used “and”-operations.
In contrast, pure addition a + b cannot be an “or”’-operation,
since:

e an “or’-operation, given two values a,b € [0,1],
should always return a value f (a,b) € [0,1],

e while for numbers a, b < 1, the sum a+b can be larger
than 1: e.g., whena =b =1, we have a+b =2 > 1.

Once we restrict the sum to 1 from above, i.e., consider the
operation f\ (a,b) = min(a + b, 1), then we already get one
of the most frequently used “or”-operations. If this case, if we
limit ourselves to situations when the “or’’-operation coincides
with addition, i.e., when b + ¢ < 1, then f\/(b,¢) = b+ ¢, so
the left-hand side of the desired equality takes the form

fela, fu(b,) =a- fy(b,c) =a- (b+c).

For the right-hand side, we get fg (a,b) = a-b and fg (a,c) =
a-c. From b+ ¢ <1 and a <1, it follows that a - (b+¢) =
a-b+a-c<1. Thus, we have

f\/(f&(avb)vf&(aac)) = f\/(a"b’a'c) =a-b+a-c

The equality between the expressions for the left-hand side and
the right-hand sides now follows from the well-known fact that
multiplication is distributive with respect to addition.

III. How TO APPROXIMATE A FUZZY RELATION BY
Fuzzy RULES: CASE OF DISTRIBUTIVE “AND”’- AND
“OR”-OPERATIONS

Now that we explained why it is reasonable to require that
the “and”’- and “or”-operations are distributive, let us analyze
how, under this requirement, we can approximate a given fuzzy
relation by fuzzy rules. To explain this, let us first analyze this
problem.

Different types of “or”-operations: reminder. Some of
the “or”-operations are Archimedean, in the sense that for
every two values a € (0,1) and b € (0,1) for which
fv(a,a,...,a) (n times) > b. A typical example of an
Archimedean “or”-operation is the “algebraic sum” f\ (a,b) =
a+b—a-b

For such operations, if b < 1 and ¢ < 1, then we have
fu(b,c) < 1. In this case, we would have distributivity for
all b < 1 and ¢ < 1 and thus, by continuity, for all b
and ¢, and we already know that this is only possible for
fv(a,b) = max(a,b) — which is not an Archimedean “or”-
operation. Thus, if we want to require distributivity, we need
to consider non-Archimedean “or’-operations.

A standard example of such an operation is an operation
which is isomorphic to f\ (a,b) = min(a+b, 1), i.e., an opera-
tion of the type fy(a,b) = f~1(min(f(a)+f(b), 1)), for some
strictly increasing function f(a). It is known (see, e.g., [3],
[4]) that every “or”-operation is isomorphic to a lexicographic
combination of such operations, Archimedean operations, and
max. It is also known that every “or’-operation, for any
€ > 0, can be approximates, with accuracy e, by an operation
isomorphic to f\ (a,b) = min(a + b,1).

It is reasonable to assume that the actual “or’’-operation is
isomorphic to f,(a,b) = min(a+b, 1). As we have mentioned
earlier, the main purpose of “or’-operation f\(a,b) is to
estimate the expert’s degree of belief d(AV B) in a composite
statement AV B as fy(d(A),d(B)). It is therefore reasonable
to select an “or”-operation for which, for all the pairs of
statements (Ag, By) for which we know both the degrees
d(Ag) and d(By) and the actual expert’s degree of belief
d(Ak \/Bk), we should have d(Ak \/Bk) ~ fv (d(Ak;), d(Bk))

Because of the approximate character of an “or”’-operation,
we can always replace it with a very close one without
changing the practical accuracy of the approximation. For
example, if an estimate f\(d(Ay),d(By)) approximates the
actual expert’s degree d(Ay V By) with an accuracy of 10%,
then replace the corresponding “or’-operation with another
operation f!(a,b) =~ fy(a,b) one which is 0.01-close (or
even 0.001-close) to f\ (a,b), we get, in effect, the exact same
approximation accuracy.

Since every “or”-operation can be approximated by a one
which is isomorphic to fy(a,b) = min(a + b, 1), it makes
sense to use the approximating isomorphic operation instead
of the original one. In other words, it makes sense to assume
that the actual “or”’-operation is isomorphic to

fv(a,b) = min(a + b, 1).

This is what we will assume in the following text.

How to describe distributive pairs of “and”- and ‘“or”-
operations. Under the above assumption, let us now describe
all distributive pairs of fuzzy logic operations.

The fact that the “or”-operation is isomorphic to fy (a,b) =
min(a + b,1) means that if we “re-scale” all the original de-
grees of belief a, b, c € [0,1] into values o' = f(a), V' = f(b),
and ¢’ = f(c), then the original relation ¢ = fy(a,b) takes a
simplified form ¢/ = min(a’ 4+ ¥, 1).

We can apply the same re-scaling to the “and”-operation
fe(a,b), resulting in a new “and”-operation g(a’,d’) Lof
f(fe(f~1(a’), f~1(V')). One can easily check that this is
indeed an “and”-operation (i.e., a t-norm). In the new scale, the
distributivity condition takes the following form: if b’ +¢’ < 1,
then g(a’,b' + ') = g(a’, V') + g(a’,). In other words, for
each «’, the function b’ — g(a’,b’) is a monotonic additive
function of b'.

It is known [1] that all monotonic additive functions have
the form f(x) = k - 2. Thus, we have g(a’,b') = k(a') - &/
for some k(a’). Since every “and”-operation is commutative
g(a,b) = g(b',d), we get k(a') - b = k(V') - o. Dividing
both sides of this equality by a’ - b’, we conclude that

k(a") _ k(V')
o v
In other words, we conclude that the ratio
k(a’)

/

a

has the same value for all possible values a’ € [0, 1] — in other
words, we conclude that this ratio is a constant. Let us denote
this constant by r. Then, from

k(a")

/ b

a
we conclude that k(a’) = r - a/. Therefore, g(a’,V") = k(a’) -
b = r-da -V. From the requirement that g(1,1) = 1, we
conclude that » = 1 and thus, g(a’,b") =d’ - b'.

Thus, each distributive pair is isomorphic to the above
example of the “or”-operation fy(a,b) = min(a + b,1) and
the algebraic product fg (a,b) = a - b.

Approximating a fuzzy relation by fuzzy rules: what we
propose. Because of the above isomorphism, in the appropriate
scale, the desired representation has the form

R(z},...,2)) = ZdT(x’l, cezh),
r=1
where
de(zh, o xh) = A (2)) oo Avi(x)) - A ()

Thus, we get

Ny n

R(zy,...,ap) =Y [Aril).
r=11i=1
The problem of approximating a given function by expressions
of this type is known as the problem of tensor decomposition.
Many efficient algorithms have been developed for solving this
problem; see, e.g., a recent survey [2] and references therein;
many of these algorithms have been developed in the last few
years.

We therefore propose to use these algorithms to approx-
imate a given fuzzy relation by a sequence of fuzzy rules
— and after using these algorithms, we should “re-scale” the
resulting functions A,;(z}) back to the original scale, i.e., form

functions A/ (x;) Lof Ari(f(x3)).

Comment. We are interested in representations with non-
negative values A,;(x;). Most tensor decomposition algo-
rithms allow representations with functions of arbitrary sign,
so we may end up with negative values of A,;(x;).

This is OK if all we are interested in is approximation,
but if we want an interpretable approximation, i.e., an approx-
imation for which the values A,;(x;) can be interpreted as
membership functions, then we have to replace each negative
value by the closest non-negative one, i.e., by 0.

It should be mentioned, however, that this replacement may
somewhat decrease the approximation accuracy.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721.

REFERENCES

[11 1. Aczel, Functional Equations and Their Applications, Academic Press,
New York, 1966.

[2] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques”, GAMM-Mitteilungen, 2013, Vol.
36, No. 1, pp. 53-78.

[3] G.Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic”, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[4] H.T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[5] C. Papadimitriou, Computational Complexity, Addison Welsey, Reading,
Massachusetts, 1994.

[6] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338-353.

