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Abstract—Traditional probabilistic description of uncertainty
is based on additive probability measures. To describe non-
probabilistic uncertainty, it is therefore reasonable to con-
sider non-additive measures. An important class of non-additive
measures are possibility measures, for which µ(A ∪ B) =
max(µ(A), µ(B)). In this paper, we show that possibility mea-
sures are, in some sense, universal approximators: for every ε > 0,
every non-additive measure which satisfies a certain reasonable
boundedness property is equivalent to a measure which is ε-close
to a possibility measure.

I. ADDITIVE MEASURES AND FUZZY (NON-ADDITIVE)
MEASURES: BRIEF REMINDER

Formulation of the problem. One of the main motivations
behind fuzzy and other non-probabilistic uncertainty is that the
traditional probability theory is sometimes not very adequate
for describing uncertainty.

From the mathematical viewpoint, probability theory is
based on probability (additive) measures. To describe non-
probabilistic uncertainty, researchers therefore came up with a
general notion of non-additive (fuzzy) measures, in particular,
possibility measures.

In this paper, we show that every fuzzy measure satisfying
several reasonable properties is isomorphic to an “almost”-
possibility measure.

In other to formulate our result, let us first briefly recall
definitions and main properties of probability measures and of
fuzzy measures.

Definition 1. Let X be a set called a universal set. By an
algebra of sets (or algebra, for short) A, we mean a non-empty
class of subsets A ⊆ X which is closed under complement and
union and intersection, i.e.:

• if A ∈ A, then its complement −A also belongs to A;

• if A ∈ A and B ∈ A, then A ∪B ∈ A;

• if A ∈ A and B ∈ A, then A ∩B ∈ A.

Definition 2. By an additive measure, we mean a function µ
which maps each set A from some algebra of sets to a non-
negative number µ(A) ≥ 0 and for which

µ(A ∪B) = µ(A) + µ(B)

for every two sets A and B for which A ∩B = ∅.

Comment. Example of additive measures include length of sets
on a line, area of planar sets, volume of sets in 3-D space, and
probability of different events.

Let us recall the main properties of additive measures. The
first property is that µ(∅) = 0. Indeed, since the class A is
non-empty, it contains some set A. Since A is an algebra,
with set A, it also contains sets −A and A ∩ −A = ∅. Since
A ∩ ∅ = ∅, additivity implies µ(A) = µ(A) + µ(∅) and thus,
µ(∅) = 0.

Definition 3. A function µ(A) defined on sets is called
monotonic if A ⊆ B implies µ(A) ≤ µ(B).

Proposition 1. Every additive measure is monotonic.

Proof. Indeed, if A,B ∈ A, then B − A = B ∩ (−A) ∈ A.
Due to additivity, we have µ(B) = µ(A) + µ(B − A). Since
µ(B − A) ≥ 0, this implies µ(A) ≤ µ(B). The statement is
proven.

Definition 4. A function µ(A) defined on an algebra of sets
is called subadditive if for every two sets A and B, we have

µ(A ∪B) ≤ µ(A) + µ(B).

Proposition 2. Every additive measure is subadditive.

Proof. Indeed, we have B − A ∈ A and, due to additivity,
µ(A∪B) = µ(A)+µ(B−A). Since B−A ⊆ B, monotonicity
implies that µ(B −A) ≤ µ(B) and thus,

µ(A ∪B) ≤ µ(A) + µ(B).

The statement is proven.

Definition 5. Let X be a set called a universal set. By an
σ-algebra A, we mean a non-empty class of subsets A ⊆ X
which is closed under complement and countable union and
intersection, i.e.:

• if A ∈ A, then its complement −A also belongs to A;

• if A1 ∈ A, . . . , An ∈ A, . . . , then
∪
i

Ai ∈ A;

• if A1 ∈ A, . . . , An ∈ A, . . . , then
∩
i

Ai ∈ A.



Comment. One can easily check that every σ-algebra is also
an algebra: indeed, we can take A1 = A and

A2 = . . . = An = B.

Definition 6. (see, e.g., [7], [8], [10]) By a σ-additive measure,
we mean a function µ which maps each set A from some σ-
algebra of sets to a non-negative number µ(A) ≥ 0 and for
which

µ

(∪
i

Ai

)
=
∑
i

µ(Ai)

for every sequence of sets Ai for which Ai∩Aj = ∅ for i ̸= j.

Comment. One can easily check that each σ-additive measure
is additive.

Definition 7. By a probability measure on the universal set X ,
we mean a σ-additive measure µ for which µ(X) = 1.

Comment. Since every σ-additive measure is additive, each
probability measure µ is monotonic and satisfies the property
µ(∅) = 1.

These properties motivate a natural generalization of prob-
ability measures known as fuzzy measures; see, e.g., [1], [9].

Definition 8. A function µ(A) defined on an algebra of subsets
of a universal set X is called a fuzzy measure if it is monotonic
and satisfies the properties µ(∅) = 0 and µ(X) = 1.

Comment. There is a special class of fuzzy measures known
as possibility measures; see, e.g., [3], [4], [11].

Definition 9. (see, e.g., [6]) A function µ(A) defined on an
algebra of sets is called maxitive if for every two sets A and
B, we have

µ(A ∪B) = max(µ(A), µ(B)).

Proposition 3. Every maxitive measure is monotonic.

Proof. If A ⊆ B, then A ∪ B = B, so the maxitivity takes
the form µ(B) = max(µ(A), µ(B)), which implies µ(A) ≤
µ(B). The statement is proven.

Definition 10. By a possibility measure, we mean a maxitive
fuzzy measure.

Comment. The general definition of a fuzzy measure included
monotonicity. Due to Proposition 3, for maxitive measures,
monotonicity automatically follows.

II. MAIN RESULT: UNDER REASONABLE CONDITIONS,
NON-ADDITIVE MEASURES ARE EQUIVALENT TO

“ALMOST” POSSIBILITY MEASURES

What we plan to do. In this paper, we prove that fuzzy
measures satisfying certain reasonable properties – and even
more general measures satisfying this property – are equivalent
to “almost” possibility measures. To formulate this result, we
need to describe:

• what is a general measure;

• which are the reasonable properties;

• what we mean by equivalence, and

• what we mean by an “almost” possibility measure.

Let us define these notions one by one.

Definition 11. Let X be a set called a universal set. By a non-
additive measure on the set X , we mean a function µ which
assigns, to some subsets A ⊆ X from a certain algebra A, a
real number µ(A) ≥ 0.

Comment. From this viewpoint, additive, σ-additive, proba-
bilistic, fuzzy, maxitive, and possibility measures are particular
cases of non-additive measures.

Motivations for the definition of reasonable (r-) bounded-
ness. In general, a measure µ(A) describes how important is
the set A: the larger the measure, the more important is the
set A.

From this viewpoint, if we take the union A∪B of two sets
of bounded size, then the size of the union cannot be arbitrarily
large, it should be limited by some bound depending on the
bound on µ(A) and µ(B).

Similarly, if the sizes of A and B are sufficiently small,
then the size of the union is also small – i.e., for sufficiently
small bounds on µ(A) and µ(B) it should be smaller than any
given size.

In precise terms, we arrive at the following definition.

Definition 12. We say that a non-additive measure µ is r-
bounded if it satisfies the following two properties:

• for every Γ > 0, there exists a ∆ > 0 such that if
µ(A) ≤ Γ and µ(B) ≤ Γ, then µ(A ∪B) ≤ ∆;

• for every η > 0, there exists a ν > 0 such that if
µ(A) ≤ ν and µ(B) ≤ ν then µ(A ∪B) ≤ η.

Proposition 4. Every additive measure is r-bounded.

Proof. Indeed, as we have shown, all additive measures are
sub-additive: µ(A ∪ B) ≤ µ(A) + µ(B). Thus, we can take
∆ = 2 · Γ and ν =

η

2
. The statement is proven.

Motivation for the definition of equivalence. The numerical
values of probabilities have observable sense – the probability
of an event E can be defined as the limit of the frequency with
which the event E occurs. This is how, e.g., we can define



the probability of a rain at a certain location: by dividing the
number of days when it rained by the total number of days
for which we had observations.

In contrast, e.g., possibility values do not have direct
meaning, the only important thing is which values are larger
and which are smaller – this describes which events are more
possible and which are less possible. From this viewpoint, if
two measures can be obtained from each other by a transforma-
tion that preserves the order, such measures can be considered
to be equivalent.

Definition 13. Two non-additive measures µ(A) and µ′(A) are
called equivalent if there exists a 1-1 monotonic function f(x)
such that for every set A, we have µ′(A) = f(µ(A)).

Definition 14. Let ε > 0 be a real number. We will call a non-
additive measure µ(A) an ε-possibility measure if for every
two sets A and B, we have

µ(A ∪B) ≤ (1 + ε) ·max(µ(A), µ(B)).

Comment. For monotonic measures – in particular, for fuzzy
measures – due to A ⊆ A ∪B and B ⊆ A ∪B, we have

µ(A) ≤ µ(A ∪B)

and
µ(B) ≤ µ(A ∪B),

thus,
max(µ(A), µ(B)) ≤ µ(A ∪B).

So, if µ is a monotonic ε-probabilistic measure, we have

max(µ(A), µ(B)) ≤ µ(A∪B) ≤ (1 + ε) ·max(µ(A), µ(B)).

Thus, the value µ(A ∪ B) is almost equal – with relative
accuracy ε > 0 – to the value max(µ(A), µ(B)) corresponding
to the possibility measure.

Now, we are ready to formulate our main result.

Theorem 1. For every ε > 0, every r-bounded non-additive
measure is equivalent to an ε-possibility measure.

Proof.

1◦. Let us first define a doubly infinite sequence . . . <
c−(k+1) < ck < . . . < c−1 < c0 < c1 < . . . < ck < ck+1 <
. . . as follows.

We take c0 = 1.

Once we have defined the value ck for some k ≥ 0, we
define ck+1 as follows. By definition of an r-bounded measure,
there exists a value ∆k > 0 such that if µ(A) ≤ ck and
µ(B) ≤ ck, then µ(A ∪B) ≤ ∆k. We then take

ck+1
def
= (1 + ε) ·max(ck,∆k).

Here, c0 = 1 and ck+1 ≥ (1 + ε) · ck. By induction over
k, we can prove that ck ≥ (1 + ε)k and thus, ck → ∞ when
k increases.

Similarly, once we have defined the value c−k for some
k ≥ 0, we define c−(k+1) as follows. By definition of an r-
bounded measure, there exists a value νk > 0 such that if
µ(A) ≤ νk and µ(B) ≤ νk, then µ(A ∪ B) ≤ c−k. We then
take

c−(k+1)
def
= (1− ε) ·min(c−k, νk).

Here, c0 = 1 and 0 < c−(k+1) ≤ (1−ε)·c−k. By induction
over k, we can prove that 0 < c−k ≤ (1 − ε)k and thus,
c−k → 0 when k → ∞.

2◦. Let us now define the desired function f(x). Since the
sequence ck is strictly increasing, ck → ∞ when k → +∞,
and ck → 0 when k → −∞, for every positive number x > 0,
there exists an integer k for which ck−1 < x ≤ ck. We can
then define f(x) as follows:

• for each integer k, we take f(ck) = (1 + ε)k/2 and

• for each value x between ck−1 and ck, we define f(x)
by linear interpolation: if ck−1 < x ≤ ck, then

f(x) = f(ck−1) +
x− ck−1

ck − ck−1
· (f(ck)− f(ck−1)).

Since the sequence ck is strictly increasing, the resulting
function f(x) is also strictly increasing.

3◦. Let us now prove that for for the new measure

µ′(A)
def
= f(µ(A))

(which is equivalent to µ(A)), for every two sets A and B,
we have

µ′(A ∪B) ≤ (1 + ε) ·max(µ′(A), µ′(B)).

Without losing generality, let us assume that µ(A) ≥ µ(B).
As we have mentioned in Part 2 of this proof, there exist
integers k and ℓ for which ck−1 < µ(A) ≤ ck+1 and
cℓ−1 < µ(B) ≤ cℓ. Since µ(A) ≥ µ(B) and ck is an
increasing sequence, we cannot have k < ℓ, so k ≥ ℓ and
thus, cℓ ≤ ck.

Hence, we have µ(A) ≤ ck and µ(B) ≤ ck. By definition
of ∆k, we therefore have µ(A ∪ B) ≤ ∆k. By definition of
ck+1, this value is always great than ∆k, thence we have

µ(A ∪B) ≤ ck+1.

Since the function f(x) is increasing, we get

µ′(A ∪B) = f(µ(A ∪B)) ≤ f(ck+1) = (1 + ε)(k+1)/2.

On the other hand, here, max(µ(A), µ(B)) = µ(A) > ck−1.
Due to monotonicity, we have

max(µ′(A), µ′(B)) = µ′(A) = f(µ(A)) >

f(ck−1) = (1 + ε)(k−1)/2.

In other words, we have

(1 + ε)(k−1)/2 < max(µ′(A), µ′(B)).

Multiplying both sides of this inequality by 1 + ε, we get

(1 + ε)(k+1)/2 < (1 + ε) ·max(µ′(A), µ′(B)).



We already know that µ′(A ∪B) ≤ (1 + ε)(k+1)/2. Thus, we
conclude that

µ′(A ∪B) ≤ (1 + ε) ·max(µ′(A), µ′(B)).

The theorem is proven.

Comment. A natural question is: can we strengthen this result
by proving that each r-bounded measure is equivalent not
just to an ε-possibility measure but actually to a possibility
measure? A simple answer is “No”: one can easily prove
that any measure which is equivalent to a maxitive one is
also maxitive, so a general non-maxitive measure cannot be
equivalent to a (maxitive) possibility measure.

III. FIRST AUXILIARY RESULT: POSSIBILITY OF
UNIFORM EQUIVALENCE

Formulation of the problem. In the previous section, we
proved that each r-bounded non-additive measure can be
reduced to an “almost” possibility measure.

Sometimes, we have several measures. A natural question
is: can we re-scale all of them by using the same re-scaling
function f(x) so that all of them become ε-possibility mea-
sures?

Theorem 2. For every ε > 0, and for every finite set of r-
bounded non-additive measures µ1(A), . . . , µn(A), there exists
a 1-1 function f(x) for which all n measures

µ′
i(A)

def
= f(µi(A))

are ε-possibility measure.

Proof. This theorem can be proven in a way which is similar
to the proof of Theorem 1, the only difference is how the
sequence ck is built.

We still take c0 = 1.

Once we have defined the value ck for some k ≥ 0, we
define ck+1 as follows. By definition of an r-bounded measure,
for each i from 1 to n, there exists a value ∆ki > 0 such that
if µi(A) ≤ ck and µi(B) ≤ ck, then µi(A ∪ B) ≤ ∆ki. We
then take

ck+1 = (1 + ε) ·max(ck,∆k1, . . . ,∆kn).

Similarly, once we have defined the value c−k for some
k ≥ 0, we define c−(k+1) as follows. By definition of an r-
bounded measure, for each i from 1 to n, there exists a value
νki > 0 such that if µi(A) ≤ νki and µi(B) ≤ νki, then
µi(A ∪B) ≤ c−k. We then take

c−(k+1) = (1− ε) ·min(c−k, νk1, . . . , νkn).

The rest of the proof is the same as for Theorem 1.

IV. SECOND AUXILIARY RESULT: CASE OF
GENERALIZED METRIC

Motivation. Similarly to the fact that measures describe size,
metrics describe distance. Usually, we considers metrics d(a, b)
which satisfy the triangle inequality

d(a, c) ≤ d(a, b) + d(b, c).

However, it does not have to be this particular inequality.

What is important is that if d(a, b) and d(b, c) are bounded
by some constant Γ > 0, then the distance d(a, c) cannot be
arbitrarily large, it should be limited by some bound depending
on the bound on d(a, b) and d(b, c).

Similarly, if the distance d(a, b) and d(b, c) are sufficiently
small, then the distance d(a, c) is also small – i.e., for
sufficiently small bounds on d(a, b) and d(b, c) it should be
smaller than any given size.

In precise terms, we arrive at the following definition.

Definition 15. Let X be a set. A function d : X ×X → R+
0

which assigns a non-negative number d(a, b) to every pair
(a, b) is called an r-bounded metric if it satisfies the following
two properties:

• for every Γ > 0, there exists a ∆ > 0 such that if
d(a, b) ≤ Γ and d(b, c) ≤ Γ, then d(a, c) ≤ ∆;

• for every η > 0, there exists a ν > 0 such that if
d(a, b) ≤ ν and d(b, c) ≤ ν then d(a, c) ≤ η.

Comment. A similar notion has been proposed in [?].

Proposition 5. Every metric satisfying the triangle inequality
is r-bounded.

Proof. Indeed, due to the triangle inequality

d(a, c) ≤ d(a, b) + d(b, c),

we can take ∆ = 2 · Γ and ν =
η

2
. The statement is proven.

Definition 16. (see, e.g., [5]) A function d : X ×X → R+
0 is

called an ultrametric if it satisfies the inequality

d(a, c) ≤ max(d(a, b), d(b, c))

for all a, b, and c.

Definition 17. Let ε > 0 be a positive real number. A function
d : X ×X → R+

0 is called an ε-ultrametric if it satisfies the
inequality

d(a, c) ≤ (1 + ε) ·max(d(a, b), d(b, c))

for all a, b, and c.

Comment. One can easily check that for every ε > 0, each
ultrametric is an ε-ultrametric.

Proposition 6. For every ε > 0, each ε-ultrametric is an r-
bounded metric.



Proof. Indeed, due to the inequality

d(a, c) ≤ (1 + ε) ·max(d(a, b), d(b, c)),

we can take ∆ = (1+ ε) · Γ and ν =
η

1 + ε
. The statement is

proven.

Definition 18. Two r-bounded metrics d(a, b) and d′(a, b) are
called equivalent if there exists a 1-1 monotonic function f(x)
such that for every two points a and b, we have

d′(a, b) = f(d(a, b)).

Theorem 3. For every ε > 0, every r-bounded metric is
equivalent to an ε-ultrametric.

Proof is similar to the proof of Theorem 1.

Theorem 4. For every ε > 0, and for every finite set of
r-bounded metrics d1(a, b), . . . , dn(a, b), there exists a 1-1
function f(x) for which all n functions

d′i(a, b)
def
= f(di(a, b))

are ε-ultrametrics.

Proof is similar to the proof of Theorem 2.

V. GENERAL RESULT

Motivations. Let us now formulate a general result which
includes both above results – about measures and about metrics
– as particular cases.

Definition 19. By a domain, we mean a set S with a binary
operation ◦ : S × S → S – which is, in general, partially
defined.

Comment.

• For measures, S is an algebra of sets, and ◦ is the
union.

• For metrics, S is the set of all pairs (a, b), and the
binary operation transforms pairs (a, b) and (b, c) into
the pair (a, c) – and it is undefined if the second
component of the first pair is different from the first
component of the second pair.

Definition 20. By a characteristic, we mean a function

F : S → R+
0 .

Definition 21. A characteristic F (x) is called r-bounded if it
satisfies the following two properties:

• for every Γ > 0, there exists a ∆ > 0 such that if
F (x) ≤ Γ, F (x′) ≤ Γ, and x ◦ x′ is defined, then
F (x ◦ x′) ≤ ∆;

• for every η > 0, there exists a ν > 0 such that if
F (x) ≤ ν and F (x′) ≤ ν then F (x ◦ x′) ≤ η.

Definition 22. Let ε > 0 be a positive real number. A
characteristic F (x) is called an ε-maxitive if it satisfies the
inequality

F (x ◦ x′) ≤ (1 + ε) ·max(F (x), F (x′))

for all x and x′ for which the operation x ◦ x′ is defined.

Definition 18. Two characteristics F (x) and F ′(x) are called
equivalent if there exists a 1-1 monotonic function f(x) such
that for every x ∈ S, we have

F ′(x) = f(F (x)).

Theorem 5. For every ε > 0, every r-bounded characteristic
is equivalent to an ε-maxitive one.

Proof is similar to the proof of Theorem 1.

Theorem 6. For every ε > 0, and for every finite set of r-
bounded characteristics F1(x), . . . , Fn(x), there exists a 1-1
function f(x) for which all n characteristics

F ′
i (x)

def
= f(Fi(x))

are ε-maxitive.

Proof is similar to the proof of Theorem 2.
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