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Abstract—The main objective of vulnerability analysis is to
select the alternative which is the least vulnerable. To make this
selection, we must describe the vulnerability of each alternative
by a single number – then we will select the alternative with
the smallest value of this vulnerability index. Usually, there are
many aspects of vulnerability: vulnerability of a certain asset to
a storm, to a terrorist attack, to hackers’ attack, etc. For each
aspect, we can usually gauge the corresponding vulnerability, the
difficulty is how to combine these partial vulnerabilities into a
single weighted value. In our previous research, we proposed
an empirical idea of selecting the weights proportionally to the
number of times the corresponding aspect is mentioned in the
corresponding standards and requirements. This idea was shown
to lead to reasonable results. In this paper, we provide a possible
theoretical explanation for this empirically successful idea.

I. FORMULATION OF THE PROBLEM

Need for vulnerability analysis. When it turns out that an
important system is vulnerable – to a storm, to a terrorist
attack, to hackers’ attack, etc. – we need to protect it. Usually,
there are many different ways to protect the same system. It
is therefore desirable to select the protection scheme which
guarantees the largest degree of protection within the given
budget. The corresponding analysis of different vulnerability
aspects is known as it vulnerability analysis; see, e.g., [2], [8],
[11], [12], [13], [14].

Vulnerability analysis: reminder. Among several possible
alternative schemes for protecting a system, we must select
a one under which the system will be the least vulnerable. As
we have mentioned, there are many different aspects of vul-
nerability. Usually, it is known how to gauge the vulnerability
vi of each aspect i. Thus, each alternative can be characterized
by the corresponding vulnerability values (v1, . . . , vn). Some
alternatives results in smaller vulnerability of one of the assets,
other alternatives leave this asset more vulnerable but provide
more protection to other assets.

To be able to compare different alternatives, we need to
characterize each alternative by a single vulnerability index
v – an index that would combine the values v1, . . . , vn
corresponding to different aspects: v = f(v1, . . . , vn).

If one of the vulnerabilities vi increases, then the overall
vulnerability index v must also increase (or at least remain
the same, but not decrease). Thus, the combination function
f(v1, . . . , vn) must be increasing in each of its variables vi.

Vulnerability analysis: important challenge. While there are
well-developed methods for gauging each aspect of vulnerabil-
ity, there is no well-established way of combining the resulting
values v1, . . . , vn into a single criterion v = f(v1, . . . , vn).

Usually, vulnerabilities vi are reasonably small; so terms
which are quadratic (or of higher order) in vi can be usually
safely ignored. As a result, we can expand the (unknown)
function f(v1, . . . , vn) in Taylor series in vi and keep only
linear terms in this expansion. As a result, we get a linear
dependence

v = c0 +
n∑

i=1

ci · vi

for some coefficients ci.

Comparison between different alternatives does not change
if we subtract the same constant c0 from all the combined
values: v < v′ if and only if v − c0 < v′ − c0. Thus, we can
safely assume that v0 = 0 and

v =
n∑

i=1

ci · vi.

Similarly, comparison does not change if we re-scale all
the values, e.g., divide them by the same constant

n∑
i=1

ci.

This is equivalent to considering a new (re-scaled) combined
function

f(v1, . . . , vn) =

n∑
i=1

ci · vi
n∑

i=1

ci · vi
=

n∑
i=1

wi · vi,

where
wi

def
=

ci
n∑

j=1

cj

.

For these new weights, we have
n∑

i=1

wi = 1.



The fact the function must be increasing implies that wi ≥ 0.

The important challenge is how to compute the correspond-
ing weights wi.

Heuristic solution. In [4], [15], [17], we proposed an em-
pirical idea of selecting the weights proportionally to the the
frequency with which the corresponding aspect is mentioned in
the corresponding standards and requirements. This idea was
shown to lead to reasonable results.

Remaining problem and what we do in this paper. A big
problem is that the above approach is purely heuristic, it does
not have a solid theoretical explanation.

In this paper, we provide a possible theoretical explanation
for this empirically successful idea.

II. POSSIBLE THEORETICAL EXPLANATION

Main idea. We consider the situation in which the only
information about the importance of different aspects is how
frequently these aspects are mentioned in the corresponding
documents. In this case, the only information that we can
use to compute the weight wi assigned to the i-th aspect is
the frequency fi with which this aspect is mentioned in the
documents. In other words, we take wi = F (fi), where F (x)
is an algorithm which is used to compute the weight based on
the frequency.

Our goal is to formulate reasonable requirements on the
function F (x) and find all the functions F (x) which satisfy
this requirement.

First requirement: monotonicity. The more frequently the
aspect is mentioned, the more important it is; thus, if fi > fj ,
we must have wi = F (fi) > F (fj) = wj . In mathematical
terms, this means that the function F (f) must be increasing.

Second requirement: the weights must add up to one.
Another natural requirement is that for every combination of
frequencies f1, . . . , fn for which

n∑
i=1

fi = 1,

the resulting weights must add up to 1:
n∑

i=1

wi =
n∑

i=1

F (fi) = 1.

We are now ready to formulate our main result.

Proposition 1. Let F : [0, 1] → [0, 1] be an increasing function

for which
n∑

i=1

fi = 1 implies
n∑

i=1

F (fi) = 1. Then, F (x) = x.

Comment. So, it is reasonable to use the frequencies as
weights. This justifies the above empirically successful heuris-
tic idea.

Proof.

1◦. Let us first prove that F (1) = 1.

This follows from our main requirement when n = 1 and
f1 = 1. In this case, the requirement

n∑
i=1

F (fi) = 1

leads to F (f1) = F (1) = 1.

2◦. Let us prove that F (0) = 0.

Let us consider n = 2, f1 = 0, and f2 = 1. Then,
n∑

i=1

fi = 1

and therefore,
n∑

i=1

F (fi) = F (0) + F (1) = 1.

Since we already know that F (1) = 1, we thus conclude that
F (0) = 1− F (1) = 1− 1 = 0.

3◦. Let us prove that for every m ≥ 2, we have

F

(
1

m

)
=

1

m
.

Let us consider n = m and

f1 = . . . = fn =
1

m
.

Then,
n∑

i=1

fi = 1

and therefore,
n∑

i=1

F (fi) = m · F
(

1

m

)
= 1.

We thus conclude that

F

(
1

m

)
=

1

m
.

4◦. Let us prove that for every k ≤ m, we have

F

(
k

m

)
=

k

m
.

Let us consider n = m− k + 1,

f1 =
k

m

and
f2 = . . . = fm−k+1 =

1

m
.



Then,
n∑

i=1

fi = 1

and therefore,
n∑

i=1

F (fi) = F

(
k

m

)
+ (m− k) · F

(
1

m

)
= 1.

We already know that

F

(
1

m

)
=

1

m
.

Thus, we have

F

(
k

m

)
= 1− (m− k) · F

(
1

m

)
=

1− (m− k) · 1

m
=

k

m
.

The statement is proven.

5◦. We have already proven that for every rational number r,
we have F (r) = r. To complete the proof, we need to show
that F (x) = x for every real number from the interval [0, 1],
not only for rational numbers.

Let x be any real number from the interval (0, 1). Let

x = 0.x1x2 . . . xn . . . , xi ∈ {0, 1},
be its binary expansion. Then, for every n, we have

ℓn
def
= 0.x1 . . . xn ≤ x ≤ un

def
= ℓn + 2−n.

As n tends to infinity, we have ℓn → x and un → x.

Due to monotonicity, we have F (ℓn) ≤ F (x) ≤ F (un).
Both bounds ℓn and un are rational numbers, so we have
F (ℓn) = ℓn and F (un) ≤ un. Thus, the above inequality takes
the form ℓn ≤ F (x) ≤ un. In the limit n → ∞, when ℓn → x
and un → x, we get x ≤ F (x) ≤ x and thus, F (x) = x. The
proposition is proven.

Possible fuzzy extension. Our current analysis is aimed at
situations when we are absolutely sure which aspects are
mentioned in each statement. In practice, however, standards
and documents are written in natural language, and a natural
language is often imprecise (“fuzzy”). As a result, in many
case, we can only decide with some degree of certainty whether
a given phrase refers to this particular aspect.

A natural way to describe such degrees of certainty is by
using fuzzy logic, technique specifically designed to capture
imprecision of natural language; see, e.g., [6], [10], [19]. In
this case, instead of the exact frequency fi – which is defined
as a ratio ni

N
between the number ni of mentions of the i-th aspect and the
total number N of all mentions – we can use the ratio

µi

N
,

where µi is a fuzzy cardinality of the (fuzzy) set of all mentions
of the i-th aspects – which is usually defined as the sum of
membership degrees (= degrees of certainty) for all the words
from the documents.

III. TOWARDS A MORE GENERAL APPROACH

What we did: reminder. In the previous section, we proved
that if we select the i-th weight wi depending only only on the
i-th frequency, then the only reasonable selection is F (x) = x.

A more general approach. Alternatively, we can compute a
“pre-weight” F (fi) based on the frequency, and then we can
normalize the pre-weights to make sure that they add up to
one, i.e., take

wi =
F (fi)

n∑
k=1

F (fk)
.

Remaining problem. In this more general approach, how to
select the function F (f)?

What we do in this section. In this section, we describe rea-
sonable requirements on this function F (f), and we describe
all possible functions F (f) which satisfy these requirements.

First requirement: monotonicity. Our first requirement is that
aspects which are mentioned more frequently should be given
larger weights. In other words, if fi > fj , then we should have

wi = wi =
F (fi)

n∑
k=1

F (fk)
>

F (fj)
n∑

k=1

F (fk)
= wj .

Multiplying both sides of this inequality by the sum
n∑

k=1

F (fk),

we conclude that F (fi) > F (fj), i.e., that the function F (f)
should be monotonic.

Second requirement: independence from irrelevant factors.
Let us assume that we have four aspect, and that the i-th aspect
is mentioned ni times in the corresponding document. In this
case, the frequency fi of the i-th aspect is equal to

fi =
ni

n1 + n2 + n3 + n4
.

Based on these frequencies, we compute the weights wi, and
then select the alternative for which the overall vulnerability

w1 · v1 + w2 · v2 + w3 · v3 + w4 · v4
is the smallest possible.

In particular, we may consider the case when for this
particular problem, the fourth aspect is irrelevant, i.e., for
which v4 = 0. In this case, the overall vulnerability is equal
to

w1 · v1 + w2 · v2 + w3 · v3.

On the other hand, since the fourth aspect is irrelevant
for our problem, it makes sense to ignore mentions of this
aspect, i.e., to consider only the values n1, n2, and n3. In this
approach, we get new values of the frequencies:

f ′
i =

ni

n1 + n2 + n3
.



Based on these new frequencies f ′
i , we can now compute the

new weights w′
i, and then select the alternative for which the

overall vulnerability

w′
1 · v1 + w′

2 · v2 + w′
3 · v3

is the smallest possible.

The resulting selection should be the same for both criteria.
As we have mentioned, the optimizing problem does not
change if we simply multiple the objective function by a
constant. So, if w′

i = λ · wi for some λ, these two objective
functions lead to the exact same selection. In this case, the
trade-off

wi

wj

between each two aspects is the same:

w′
i

w′
j

=
wi

wj
.

However, if we have a different trade-off between individual
criteria, then we may end up with different selections. Thus, to
make sure that the selections are the same, we must guarantee
that

w′
i

w′
j

=
wi

wj
.

Substituting the formulas for the weights into the expres-
sion for the weight ratio, we can conclude that

wi

wj
=

F (fi)

F (fj)
.

Thus, the above requirement takes the form

F (f ′
i)

F (f ′
j)

=
F (fi)

F (fj)
.

One can check that the new frequencies f ′
i can be obtained

from the previous ones by multiplying by the same constant:

f ′
i =

ni

n1 + n2 + n3
=

n1 + n2 + n3 + n4

n1 + n2 + n3
· ni

n1 + n2 + n3 + n4
=

k · fi,

where we denoted

k
def
=

n1 + n2 + n3 + n4

n1 + n2 + n3
.

Thus, the above requirement takes the form

F (k · fi)
F (k · fj)

=
F (fi)

F (fj)
.

This should be true for all possible values of fi, fj , and k.
Once we postulate that, we arrive at the following result.

Proposition 2. An increasing function F : [0, 1] → [0, 1]
satisfies the property

F (k · fi)
F (k · fj)

=
F (fi)

F (fj)

for all possible real values k, fi, and fj if and only if F (f) =
C · fα for some α > 0.

Comments.

• The previous case corresponds to α = 1, so this is
indeed a generalization of the formula described in
the previous section.

• If we multiply all the values F (fi) by a constant C,
then the normalizing sum is also multiplied by the
same constant, so the resulting weights do not change:

wi =
F (fi)

n∑
k=1

F (fk)
=

C · fα
i

n∑
k=1

C · fα
k

=
fα
i

n∑
k=1

fα
k

.

Thus, from the viewpoint of application to vulnerabil-
ity, it is sufficient to consider only functions

F (f) = fα.

Proof.

1◦. First, it is easy to check that for all possible values C
and α > 0, the function F (f) = C · fα is increasing and
satisfies the desired property. So, to complete our proof, we
need to check that each increasing function which satisfies this
property has this form.

2◦. The desired property can be equivalently reformulated as

F (k · fi)
F (fi)

=
F (k · fj)
F (fj)

.

This equality holds for all possible values of fi and fj . This
means that the ratio

F (k · f)
F (f)

does not depend on f , it only depends on k. Let us denote this
ratio by c(k). Then, we get

F (k · f)
F (f)

= c(k),

i.e., equivalently,

F (k · f) = c(k) · F (f).

3◦. Since k · f = f · k, we have F (k · f) = F (f · k), i.e.,

c(k) · F (f) = c(f) · F (k).

Dividing both sides by c(k) · c(f), we conclude that

F (f)

c(f)
=

F (k)

c(k)
.

This equality holds for all possible values of f and k. This
means that the ratio

F (f)

c(f)



does not depend on f at all, it is a constant. We will denote
this constant by C. From the condition

F (f)

c(f)
= C,

we conclude that F (f) = C · c(f). So, to prove our results, it
is sufficient to find the function c(f).

4◦. Substituting the expression F (f) = C · c(f) into the for-
mula F (k ·f) = c(k)·F (f), we get C ·c(k ·f) = c(k)·C ·c(f).
Dividing both sides of this equality by C, we conclude that

c(k · f) = c(k) · c(f).

Let us use this equality to find the function c(f).

5◦. For k = f = 1, we get c(1) = c(1)2. Since c(k) ̸= 0, we
conclude that c(1) = 1.

6◦. Let us denote c(2) by q. Let us prove that for every integer
n, we have c(21/n) = q1/n.

Indeed, for f = 21/n, we have

f · f · . . . · f (n times) = 2,

thus,

q = c(2) = c(f) · . . . · c(f) (n times) = (c(f))n.

Therefore, we conclude that indeed, c(f) = 21/n.

7◦. Let us prove that for every two integers m and n, we have

c(2m/n) = qm/n.

Indeed, we have

2m/n = 21/n · . . . · 21/n (m times).

Therefore, we have

c(2m/n) = c(21/n) · . . . · c(21/n) (m times) = (c(21/n)m.

We already know that c(21/n) = q1/n; thus, we conclude that

c(2m/n) = (q1/n)m = qm/n.

The statement is proven.

8◦. So, for rational values r, we have c(2r) = qr. Let us
denote α

def
= log2(q). By definition of a logarithm, this means

that q = 2α. Thus, for x = 2r, we have

qr = (2α)r = 2α·r = (2r)α = xα.

So, for values x for which log2(x) is a rational number, we
get c(x) = xα.

Similarly to the proof of Proposition 1, we can use mono-
tonicity to conclude that this equality c(x) = xα holds for all
real values x. We have already proven that F (x) = C · c(x),
thus we have F (x) = C · xα. The proposition is proven.

IV. POSSIBLE PROBABILISTIC INTERPRETATION OF THE
ABOVE FORMULAS

Formulation of the problem. In the above text, we justified
the empirical formula F (x) = x without using any probabil-
ities – since we do not know any probabilities that we could
use here.

However, in the ideal situation, when we know the exact
probability of every possible outcome and we know the exact
consequences of each outcomes, a rational decision maker
should use probabilities – namely, a rational decision maker
should select an alternative for which the expected value of
the utility is the largest; see, e.g., [3], [7], [9], [16].

From this viewpoint, it would be nice to show that the
above heuristic solution is not only reasonable in the above
abstract sense, but that it actually makes perfect sense under
certain reasonable assumptions about probability distributions.

What we do in this section. In this section, on the example
of two aspects v1 and v2, we show that there are probability
distributions for which the weights wi should be exactly equal
to frequencies.

Towards a formal description of the problem. Let us assume
that the actual weights of two aspects are w1 and w2 = 1 −
w1. Let us also assume that vulnerabilities vi are independent
random variables. For simplicity, we can assume that these two
variables are identically distributed.

In each situation, if the first vulnerability aspect is more
important, i.e., if w1 ·v1 > w2 ·v2, then the document mentions
the first aspect. If the second vulnerability aspect is more
important, i.e., if w1 ·v1 < w2 ·v2, then the document mentions
the second aspect. In this case, the frequency fi with which
the first aspect is mentioned is equal to the probability that
the first aspect is most important, i.e., the probability that
w1 · v1 > w2 · v2:

f1 = P (w1 · v1 > w2 · v2).
We would like to justify the situation in which fi = wi, so we
have

w1 = P (w1 · v1 > w2 · v2).
This equality must hold for all possible values of w1.

Analysis of the problem and the resulting solution. The
desired equality can be equivalently reformulated as

P

(
v1
v2

>
w2

w1

)
= w1.

Since w2 = 1− w1, we get

P

(
v1
v2

>
1− w1

w1

)
= w1.

To simply computations, it is convenient to use logarithms:
then ratio become a difference, and we get

P (ln(v1)− ln(v2) > z) = w1,

where we denoted

z
def
= ln

(
1− w1

w1

)
.



Let us describe w1 in terms of z. From the definition of z, we
conclude that

ez =
1− w1

w1
=

1

w1
− 1.

Thus,
1

w1
= 1 + ez,

and
w1 =

1

1 + ez
.

So, we conclude that

P (ln(v1)− ln(v2) > z) =
1

1 + ez
.

The probability of the opposite event ln(v1) − ln(v2) ≤ z is
equal to one minus this probability:

P (ln(v1)− ln(v2) ≤ z) = 1− 1

1 + ez
=

ez

1 + ez
.

This means that for the auxiliary random variable

ξ
def
= ln(v1)− ln(v2),

the cumulative distribution function Fξ(z)
def
= P (ξ ≤ z) is

equal to

Fξ(z) =
ez

1 + ez
.

This distribution is known as a logistic distribution; see, e.g.,
[1], [5], [18].

It is known that one way to obtain a logistic distribution is
to consider the distribution of ln(v1) − ln(v2), where v1 and
v2 are are independent and exponentially distributed. Thus, the
desired formula wi = fi (i.e., F (x) = x) corresponds to a rea-
sonable situation when both vulnerabilities are exponentially
distributed.
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