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Abstract. In many practical situations, we need to select one of the
two alternatives, and we do not know the exact form of the user’s utility
function – e.g., we only know that it is increasing. In this case, stochastic
dominance result says that if the cumulative distribution function (cdf)
corresponding to the first alternative is always smaller than or equal than
the cdf corresponding to the second alternative, then the first alternative
is better. This criterion works well in many practical situations, but often,
we have situations when for most points, the first cdf is smaller but at
some points, the first cdf is larger. In this paper, we show that in such
situations of approximate stochastic dominance, we can also conclude
that the first alternative is better – provided that the set of points x at
which the first cdf is larger is sufficiently small.

1 Stochastic Dominance: Reminder and Formulation of
the Problem

In finance, we need to make decisions under uncertainty. In financial
decision making, we need to select one of the possible decisions: e.g., whether we
sell or buy a given financial instrument (share, option, etc.). Ideally, we should
select a decision which leaves us with the largest monetary value x. However, in
practice, we cannot predict exactly the monetary consequences of each action:
because of the changing external circumstances, in similar situations the same
decision can lead to gains and to losses. Thus, we need to make a decision in a
situation when we do not know the exact consequences of each action.

In finance, we usually have probabilistic uncertainty. Numerous financial
transactions are occurring every moment. For the past transactions, we know the
monetary consequences of different decisions. By analyzing these past transac-
tions, we can estimate, for each decision, the frequencies with which this decision
leads to different monetary outcomes x. When the sample size is large – and for
financial transactions it is large – the corresponding frequencies become very
close to the actual probabilities. Thus, in fact, we can estimate the probabilities
of different values x.
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Comment. Strictly speaking, this is not always true: we may have new circum-
stances, we can have a new financial instrument for which we do not have many
records of its use – but in most situations, knowledge of the probabilities is a
reasonable assumption.

How to describe the corresponding probabilities. As usual, the corre-
sponding probabilities can be described either by the probability density function

f(x) or by the cumulative distribution function F (t)
def
= Prob(x ≤ t).

If we know the probability density function f(x), then we can reconstruct the

cumulative distribution function as F (t) =
∫ t

−∞ f(x) dx. Vice versa, if we know
the cumulative distribution function F (t), we can reconstruct the probability
density function as its derivative f(x) = F ′(x).

How to make decisions under probabilistic uncertainty: a theoretical
recommendation. Let us assume that we have several possible decisions whose
outcomes are characterized by the probability density functions f1(x), f2(x),
. . . According to the traditional decision making theory (see, e.g., [3, 5–7]), the
decisions of a rational person can be characterized by a function u(x) called
utility function such that this person always selects a decision with the largest
value of expected utility

∫
fi(x) · u(x) dx.

A decision corresponding to the probability distribution function f1(x) is
preferable to the decision corresponding to the probability distribution function
f2(x) if ∫

f1(x) · u(x) dx >

∫
f2(x) · u(x) dx,

i.e., equivalently, if ∫
∆f(x) · u(x) dx > 0,

where we denoted ∆f(x)
def
= f1(x)− f2(x).

Comment. It is usually assumed that small changes in x lead to small changes
in utility, i.e., in formal terms, that the function u(x) is differentiable.

From a theoretical recommendation to practical decision. Theoretically,
we can determine the utility function of the decision maker. However, since
such a determination is very time-consuming, it is rarely done in real financial
situations. As a result, in practice, we only have a partial information about the
utility function.

One thing we know for sure if that the larger the monetary gain x, the better
the resulting situation; in other words, we know that the utility u(x) grows with
x, i.e., the utility function u(x) is increasing.

Often, this is the only information that we have about the utility function.
How can we make a decision in such a situation?

How to make decisions when we only know that utility function is
increasing: analysis of the problem. When is the integral

∫
∆f(x) · u(x) dx

positive?
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To answer this question, let us first note that while theoretically, we have
gains and losses which can be arbitrarily large, in reality, both gains and losses
are bounded by some value T . In other words, fi(x) = 0 for x ≤ −T and for
x ≥ T and thus,

Fi(−T ) = Probi(x ≤ −T ) = 0

and
Fi(T ) = Probi(x ≤ T ) = 1.

In this case, ∫
∆f(x) · u(x) dx =

∫ T

−T

∆f(x) · u(x) dx.

Let us now take into account that since∆f(x) = f1(x)−f2(x), f1(x) = F ′
1(x),

and f2(x) = F ′
2(x), we can conclude that ∆f(x) = ∆F ′(x), where

∆F (x)
def
= F1(x)− F2(x).

We can therefore apply integration by parts∫ u

ℓ

a′(x) · b(x) dx = a(x) · b(x)|uℓ −
∫ u

ℓ

a(x) · b′(x) dx,

with a(x) = ∆f(x) and b(x) = u(x), to the above integral. As a result, we get
the formula∫ T

−T

∆f(x) · u(x) dx = ∆F (x) · u(x)|T−T −
∫

∆F (x) · u′(x) dx.

Since F1(−T ) = F2(−T ) = 0, we have

∆F (−T ) = F1(−T )− F2(−T ) = 0.

Similarly, from F1(T ) = F2(T ) = 1, we conclude that

∆F (T ) = F1(T )− F2(T ) = 0.

Thus, the first term in the above expression for integration by parts is equal to
0, and we have ∫ T

−T

∆f(x) · u(x) dx = −
∫

∆F (x) · u′(x) dx.

We know that the utility function is increasing, so u′(x) ≥ 0 for all x. Thus,
if ∆F (x) ≤ 0 for all x – i.e., if F1(x) ≤ F2(x) for all x – then the difference∫
∆f(x) · u(x) dx is always non-negative and thus, the decision corresponding

to the probability distribution function f1(x) is preferable to the decision corre-
sponding to the probability distribution function f2(x).

This is the main idea behind stochastic dominance (see, e.g., [4, 8]):
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Stochastic dominance: summary. If F1(x) ≤ F2(x) for all x and the utility
function u(x) is increasing, then the decision corresponding to the probability
distribution function f1(x) is preferable to the decision corresponding to the
probability distribution function f2(x).

Comments.

– The condition F1(x) ≤ F2(x) for all x is not only sufficient to conclude that
the first alternative is better, it is also necessary. Indeed, if F1(x0) > F2(x0)
for some x0, then, since both cumulative distribution functions Fi(x) are
differentiable and thus, continuous, there exists an ε > 0 such that F1(x) >
F2(x) for all x ∈ (x0 − ε, x0 + ε).
We can then take a utility function which:

• is equal to 0 for x ≤ x0 − ε,
• is equal to 1 for x ≥ x0 + ε, and
• is, e.g., linear for x between x0 − ε and x0 + ε.

For this utility function, we have∫
F1(x) · u′(x) dx >

∫
F2(x) · u′(x) dx,

and thus, ∫
f1(x) · u(x), dx = −

∫
F1(x) · u′(x) dx <

−
∫

F2(x) · u′(x) dx =

∫
f1(x) · u(x), dx,

so the first alternative is worse.
– Sometimes, we have additional information about the utility function. For

example, the same amount of additional money h is more valuable for a poor
person than for the rich person. This can be interpreted as saying that for
every value x < y and, the increase in utility u(x+ h)− u(x) is larger than
(or equal to) the increase u(y+h)−u(y). If we take the resulting inequality

u(x+ h)− u(x) ≥ u(y + h)− u(y),

divide both sides by h, and tends h to 0, we conclude that u′(x) ≥ u′(y)
when x < y. In other words, it is reasonable to conclude that the derivative
u′(x) of the utility function is decreasing with x – and thus, that its second
derivative is negative.
If this property is satisfied, then we can perform one more integration by
parts and get a more powerful criterion for decision making – for situations
when we do not know the exact utility function.

What if the stochastic dominance condition is satisfied “almost al-
ways”: formulation of the problem. Let us return to the simple situation
when we only know that utility is increasing, i.e., that u′(x) ≥ 0. In this case,
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as we have mentioned, if we know that F1(x) ≤ F2(x) for all x, then the first
alternative is better. In many cases, we can use this criterion and make a decision.

However, often, in practice, the inequality F1(x) ≤ F2(x) holds for “almost
all” values x – i.e., it is satisfied for most values x except for the values x from
some small interval. Unfortunately, in this case, as we have shown, the traditional
stochastic dominance approach does now allow to make any conclusion – even
when the interval is really small. It would be nice to be able to make decisions
even if we have approximate stochastic dominance.

What we plan to do in this paper. In this paper, we show that, under
reasonable assumptions, we can make definite decisions even under approximate
stochastic dominance – provided, of course, that the deviations from stochastic
dominance are sufficiently small.

Comment. A similar – but somewhat different – problem is analyzed in [1], where
it is shown that under certain assumptions, approximate stochastic dominance
implies that the first alternative is not much worse than the second one – i.e.,
if we select the first alternative instead of the second one, we may experience
losses, but these losses are bounded, and the smaller the size of the area where
F1(x) is larger than F2(x), the smaller this bound.

2 How To Make Decisions Under Approximate Stochastic
Dominance: Analysis of the Problem

Additional reasonable assumptions about the utility function u(x). In
the previous text, we used the fact that the utility function u(x) increases with x,
i.e., that its derivative u′(x) is non-negative. Theoretically, we are thus allowing
situations when this derivative is extremely small – e.g., equal to 10−40 – or,
vice versa, extremely large – e.g., equal to 1040.

From the economical viewpoint, however, such too small or too large numbers
make no sense. If the derivative is too small, this means that for all practical
purposes, the person does not care whether he or she gets more money – which
may be true for a monk leading a spiritual life, but not for agents who look for
profit. Similarly, if the derivative u′(x) is, for some x, too large, this means that,
in effect, the utility function is discontinuous at this x, i.e., that adding a very
small amount of money leads to a drastic increase in utility – and this is usually
not the case.

These examples show that not only the derivative u′(x) should be non-
negative, it cannot be too small and it cannot be too large. In other words,
there should be some values 0 < s < L for which

s ≤ u′(x) ≤ L

for all x.
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This additional assumption helps us deal with situation of approxi-
mate stochastic dominance. Let us show that the above additional assump-
tion 0 < s ≤ u′(x) ≤ L enables us to deal with approximate stochastic domi-
nance. Indeed, we want to make sure that∫

∆F (x) · u′(x) dx ≤ 0.

In the case of stochastic dominance, we have∆F (x) ≤ 0 for all x, but we consider
the case of approximate stochastic dominance, when ∆F (x) > 0 for some values
x. To deal with this situation, let us represent the desired integral as the sum of
the two component integrals:

– an integral over all the values x for which ∆F (x) ≤ 0, and
– an integral over all the values x for which ∆F (x) > 0:

∫
∆F (x) · u′(x) dx =

∫
x:∆F (x)≤0

∆F (x) · u′(x) dx+

∫
x:∆x>0

∆F (x) · u′(x) dx.

We want to prove that the sum of these two component integrals is bounded,
from above, by 0. To prove this, let us find the upper bound for both integrals.

For the values x for which ∆F (x) ≤ 0, the largest possible value of the prod-
uct ∆F (x) · u′(x) is attained when the derivative u′(x) is the smallest possible
– i.e., when this derivative is equal to s. Thus, we conclude that

∆F (x) · u′(x) ≤ s ·∆F (x).

Therefore, ∫
x:∆F (x)≤0

∆F (x) · u′(x) dx ≤ s ·
∫
x:∆F (x)≤0

∆F (x) dx.

Since ∆F (x) ≤ 0, we have ∆F (x) = −|∆F (x)| and thus,∫
x:∆F (x)≤0

∆F (x) · u′(x) dx ≤ −s ·
∫
x:∆F (x)≤0

|∆F (x)| dx.

For the values x for which ∆F (x) > 0, the largest possible value of the
product ∆F (x)·u′(x) is attained when the derivative u′(x) is the largest possible
– i.e., when this derivative is equal to L. Thus, we conclude that

∆F (x) · u′(x) ≤ L ·∆F (x).

Therefore, ∫
x:∆F (x)>0

∆F (x) · u′(x) dx ≤ L ·
∫
x:∆F (x)>0

∆F (x) dx.



What If We Only Have Approximate Stochastic Dominance? 7

By combining the bounds on the two component integrals, we conclude that∫
∆F (x) · u′(x) dx ≤ −s ·

∫
x:∆F (x)≤0

|∆F (x)| dx+ L ·
∫
x:∆F (x)>0

∆F (x) dx.

The integral
∫
∆F (x) · u′(x) dx is non-negative if the right-hand side bound is

non-negative, i.e., if

−s ·
∫
x:∆F (x)≤0

|∆F (x)| dx+ L ·
∫
x:∆F (x)>0

∆F (x) dx ≤ 0,

i.e., equivalently, if

L ·
∫
x:∆F (x)>0

∆F (x) dx ≤ s ·
∫
x:∆F (x)≤0

|∆F (x)| dx,

or ∫
x:∆F (x)>0

∆F (x) dx ≤ s

L
·
∫
x:∆F (x)≤0

|∆F (x)| dx.

This condition is satisfied when the set of all the values x for which ∆F (x) > 0
is small – in this case the integral over this set is also small and thus, smaller
than the right-hand side.

Let us describe the resulting criterion in precise terms.

3 How To Make Decisions Under Approximate Stochastic
Dominance: Main Result

Formulation of the problem. We have two alternatives, characterized by the
cumulative distribution functions F1(x) and F2(x). We need to decide which of
these two alternatives is better.

What we know about the utility function u(x). We know that the utility
function u(x) describing the agent’s attitude to different monetary values x is
non-decreasing: u′(x) ≥ 0. Moreover, we assume that we know two positive
numbers s < L such that for every x, we have

s ≤ u′(x) ≤ L.

Stochastic dominance: reminder. If F1(x) ≤ F2(x) for all x, i.e., if ∆F (x) ≤
0 for all x (where we denoted ∆F (x) = F1(x)−F2(x)), then the first alternative
is better.

New criterion for the case of approximate stochastic dominance. If
∆F (x) > 0 for some values x, but the set of all such x is small, in the sense that∫

x:∆F (x)>0

∆F (x) dx ≤ s

L
·
∫
x:∆F (x)≤0

|∆F (x)| dx,

then the first alternative is still better.
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Comments.

– It is interesting that a similar expression appears in another context: namely,
in the study of different notions of transitivity of stochastic relations; see,
e.g., [2]. Indeed, adding

∫
x:∆F (x)≤0

|∆F (x)| dx to both sides of the above

inequality, and taking into account that the resulting integral in the left-
hand side is simply an integral of |∆F (x)| = |F2(x)−F1(x)| over all possible
x, we conclude that∫

|F2(x)− F1(x)| dx ≤
(
1 +

s

L

)
·
∫
x:F2(x)−F1(x)>0

(F2(x)− F1(x)) dx.

The right-hand side of the new inequality can be described as the interval,
over all possible x, of the function (F2(x)−F1(x))+, where, as usual, for any

function f(x), its positive part f+(x) is defined as f+(x)
def
= max(f(x), 0).

Thus, this inequality can be represented as∫
|F2(x)− F1(x)| dx ≤

(
1 +

s

L

)
·
∫

(F2(x)− F1(x))+ dx,

or, equivalently, as ∫
(F2(x)− F1(x))+ dx∫
|F2(x)− F1(x)| dx

≥ 1

1 +
s

L

.

The left-hand side of this inequality is known as the Proportional Expected
Difference, it is used in several results about transitivity [2].

– The same idea can extend the stochastic dominance criterion corresponding
to u′′(x) ≤ 0 to the case when this criterion is satisfied for “almost all”
values x.
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