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Abstract

In the 1970 and 1980s, logic and constructive mathematics were an
important part of my life, this is what I defended by Master’s thesis on,
this was an important part of my PhD dissertation. I was privileged to
work with the giants. I visited them in their homes. They were who I
went to for advise when in trouble, be it girl trouble or KGB harassment.
And this is my story.

1 Why Constructive Mathematics Is One of the
Most Important Activities in the World — As
Well as Physics and Game Theory

What do we humans want?

Why science and physics are important. We want to understand the
world, we want to predict what will happen — including what will happen if we
do nothing and what will happen if we perform certain actions. This is what
physics — and science in general — is about. Physicists come up with equations
describing how the state of the world changes with time, and we would like to
use these equations to come up with the actual predictions.

Why is constructive mathematics important? How do we go from equa-
tions to predictions? At first glance, this is what mathematicians (especially
specialists in numerical methods) are doing — and sometimes they are doing it —
but in general, mathematics is about proving theorems, not generating numbers.

In Russia, many of us heard a story (possibly a legend) that once a famous
mathematician, a colleague of the Nobelist physicist Lev Landau, asked Landau
what he was working on — and Landau wrote down a complex system of partial



differential equations describing the physical phenomena that interested him at
that time. After a few months, a happy mathematician came back to Landau
with a thick manuscript: “I have solved your problem! It was not easy, but I
have proven that your system of equations has a solution!” :-)

This may be an exaggeration, definitely Kolmogorov and other prominent
applied mathematicians helped efficiently solve many complex practical prob-
lems — but this story shows that there is a need to formally distinguish between
proving theorems and actually producing solutions.

This distinction is what constructive mathematics is about: crudely speak-
ing, constructive mathematics is about algorithms — in constructive mathemat-
ics, existence means that we can already produce the corresponding description
— and not simply that we have proven its existence.

We also want to change the word: another reason why constructive
mathematics is important. In addition to understanding e also want to
change the world, we want to find the appropriate actions and designs that
would lead to the best possible outcomes. This is what engineering is about:

e we want to design a bridge that would withstand the prevailing winds and
possible hurricanes and earthquakes;

e we want to design an efficient and safe plane;

e we want to come up with a control strategy for a vehicle which would —
depending on what we want for this trip:

— lead the emergency vehicle to its destination in the shortest possible
time or

— make a bus spend as little fuel as possible while following the pre-
scribed route.

In all these problems, we want to actually produce a solution. Here, it is even
more important to actually produce the corresponding design or control algo-
rithm.

Yes, numerical methods aim to do it, they even use the word “algorithm”,
but often, what they call algorithm is not exactly what computer scientists
would call an algorithm: it is rather a blueprint for an algorithm. For example,
Newton’s method for finding a root is a potentially infinite iterative process;

e we are not given any specific recommendation on when to stop;1 and

e we are not sure that this method will always work — usually, we know for
sure that in many cases, it does not work.

We need a way to clearly distinguish between such heuristic “algorithms” and
algorithms in the computer science sense: when the sequence of steps is pre-
determined and always leads to a correct solution. Constructive mathematics
is what provides such distinction.

1To be more precise, we are shows several possible recommendations, and told that none
of them is perfect.



Why game theory is important. Finally, when selecting an appropriate
solution, we need to take into account the preferences and opinions of different
people who are (or may be) potentially affected by this solution. The discipline
that takes these preferences into account is well established, it goes under a
somewhat misleading name of game theory.

People in political science and humanities in general, political leaders, spiri-
tual leaders, business leaders, may think that they should solve these problems
— and at present, in most cases, they are solving these problems now — but
the ambition of game theory has always been to resolve all the problems in the
world by applying the appropriate mathematical methods — and in solving such
problems, specialists in game theory and decision making succeeded a lot.

Yet another reason why we need constructive mathematics. And again, in game
theory and decision making, we do not just need existence proofs, we need
algorithms, we need explicit solutions.

Summarizing: three things are most important:

e physics — understood in the general sense, as a description of the physical
world — which enables us to describe how the world changes;

e constructive mathematics, which enables us to describe how to best affect
the world; and

e game theory, which enables us to take into account preferences of different
people.

2 From The Mathematical Viewpoint, These Three
Research Areas Have Much In Common: They
Are All About Important Partial Pre-Orders

Physics: causality. In physics, some things change by themselves, other things
change because some objects affect others. Before we start studying how objects
affect each other, it is very important to first understand which pairs of objects,
which pairs of events can causally effect each other.

In other words, we need to know the notion of causality, which, according to
many physicists, is one of the most important notions of physics; see, e.g., [21].

The study of the causality relation is more important than it may seem
at first glance. For example, in special relativity, even the linear structure on
the space-time can be determined based only on the causality relation; this
result was first proven by the Russian geometer A. D. Alexandrov in 1949 [3,
5] and became widely known after a somewhat stronger result was proven by
E. C. Zeeman (later of catastrophe theory fame) in 1964 [123].

From the mathematical viewpoint, causality is a partial order. To be more
precise, it is a partial order only in relativistic physics. In Newtonian physics,
with the possibility of instantaneous affect, simultaneous events can affect each
other, i.e., we have a < b and b < a, but a # b. So, causality is a pre-order.



Constructive mathematics: derivability relation. In constructive mathe-
matics, there is also a natural ordering relation.

Namely, in some cases, we derive the corresponding algorithmic result “from
scratch”’ — similarly to the fact that in mathematics, we sometimes prove results
directly from the axioms. However, in most cases, both in traditional and in
constructive mathematics, we use previous results.

Ideally, we should know how exactly we use the previous results — i.e., we
need to know the actual proofs. However, in many cases, it is sufficient to know
which results can be derived from others.

The study of such “derivability” relation is known as logic; derivability rela-
tion corresponding to constructive mathematics is known as constructive logic.
Logic is indeed often helpful in proving results in both traditional and con-
structive mathematics. From the mathematical viewpoint, derivability is also
a partial order — to be more precise, it is a pre-order, since for two different
statements a # b, we can have a implying b and b implying a.?

Game theory: preference relation. Finally, in game theory, there is also a
natural pre-order.

Indeed, to make a decision that takes into account individual human pref-
erences, we need to know these human preferences. Again, ideally, we should
know why a person prefers one alternative to another and how strong is the corre-
sponding preference, but first we need to know which alternatives are preferable
and which are not — i.e., first we need to know each person’s preference relation
— yet another partial pre-order.

Moreover, in decision making theory, it is known that we can restore the
numerical characteristics of human behavior — so-called wutility values — based
on the corresponding preference order; see, e.g., [23, 84, 97, 105].

3 My Personal Story: How I Came to Construc-
tive Mathematics

I was interested in math and physics. I have always been fascinated by
mathematics and physics. I participated in Olympiads in math and physics, 1
went to a math circle led by the university students. When time came for me
to enter high school, I went to a special high school with an emphasis on math
and physics.

Enters game theory. When I was in high school, Igor Frenkel, then a student
at a similar math high school (and a winner of city math Olympiads; now he is a
professor at Yale) gave me, for my birthday, the best birthday present I ever got
— an exciting book on game theory. I was awed by the fact that many real-life
problems can potentially be solved by reasonably convincing mathematics.

2Moreover, many important mathematical theorems establish exactly such equivalences:
when we know necessary and sufficient conditions for some property, this brings a sense of
completion and satisfaction.



I also saw that while this is theoretically possible, the available algorithms
would require an unrealistic computation time to solve complex real-life conflict
situations. This was one of the first cases when I realized that many open
problems are not in answering purely mathematical questions (although there
are plenty such questions in game theory as well), but rather in coming up with
efficient algorithms which would implement the known ideas and techniques.

In a nutshell, a bold message was that one of the main things that pre-
vents the wolf from lying down with a sheep (in accordance with the Biblical
prophecy), what prevents people from world peace and economic prosperity is
the lack of good algorithms.

Game theory: a word of caution. Let us tone this down a little but. These
were my hopes then. Later on, I realized that this was the exact same reasoning
that ruined the communist economy: that the idea of central planning, avoiding
waste and optimizing everyone’s production as a way to improve the common
good — this is exactly what led to the Soviet economic disaster.

It was not just bad algorithms, there is simply no way for a central authority
to decide how many matches and soap bars are toilet paper rolls are needed —
because if we let a central authority decide, then inevitably soap bars and toiler
paper become a difficult-to-get commodity :-(

Game theory: there is room for optimism. While the overall optimization
may not be achievable, it is clear that algorithms has helped practical decision-
makers. It is also clear that there is a strong need for new algorithms, algorithms
which would produce optimal decisions, decisions which are better than heuristic
suboptimal decisions people use now based on their intuition and expertise.

Math and physics beyond game theory: high school experience. A
game theory book further increased my interest in math and physics. I wanted
to read more. However, new books on mathematics and physics were difficult to
buy — as everything else in communist economies. So to find a good book, one
had to regularly go to one of the academic old books stores, where we would
sometimes find monographs, edited books, journal issues. (This is, by the way,
why I so much appreciated Igor Frenkel’s gift.)

I often went to an academic old book store on Liteiny Prospect with my
classmate Nikolay “Kolya” Vavilov. Kolya’s father was a professor, so he knew
in person — or heard about — many of the city’s mathematicians, and the corre-
sponding interesting personal stories added to my fascination.

Space-time geometry and physics. For example, when we came across a
book on space-time geometry and space-time physics by R. I. Pimenov [102],
Kolya explained to me that Pimenov spent some time in jail for his political
activities.

This was not that surprising: in Stalin’s times, almost family had someone
arrested — including my own grandfather. Many scientists and engineers were
jailed, including:

e Tupolev (of the airplane fame),



e Korolev (later the leader of the successful Soviet space program),
e Lev Landau,

and many others (and there were lucky ones, who got out alive).

There was a known story that after Tupolev was arrested, KGB told him
that he could atone for his political “sins” and get released by forming a jail-
based team and designing a good plane for the Motherland. They asked him to
make a list of possible helpers. Tupolev was understandably afraid that KGB
would be tempted to arrest innocent people — just to make his jail team stronger
— so he made a list of all the numerous specialists he knew — thinking that the
KGB would not arrest everyone. It turned out that most people on his list have
already been arrested :-(

But this was during Stalin’s times, and, as Kolya explained, the unusual
thing about Pimenov that he was in jail not in Stalin’s times, but under Khr-
uschev, the Communist leader who denounced Stalin’s crimes and freed people
from jails and concentration camps. Kolya also mentioned that Pimenov was a
student of A. D. Alexandrov — a geometer who used to be President (“Rector”)
of St. Petersburg University in the 1950s and 1960s (until he moved to Siberia
to promote science there).

According to Kolya, Pimenov was probably the most beloved of Alexandrov’s
students — for his great scientific ideas and results — and the probably the most
hated — since Pimenov publicly accused Alexandrov of complicity with Stalin’s
crimes and praising Stalin’s outrageous behavior in his official speeches and
articles (by the way, I think this was an unfair accusation: millions had to do
that, those who refused were usually jailed themselves).

Logic and constructive mathematics. About logicians, Kolya attracted
my attention a lot of articles in Zapiski Seminarov LOMI, a local mathematical
journal, written by Yuri Matiyasevich and Vladimir Lifschitz, two young tal-
ented mathematicians who, according to Kolya, were driven not only by their
love of science, but also by their competition with each other.

I later knew both, I think the competition part was, to put it mildly, exag-
gerated, but the papers were interesting, and their talents clear.

I joined Math department. I was fascinated by game theory, by algorithms,
by physics. I was especially fascinated by foundations of physics — so I wanted
to major either in Physics or in Philosophy of Physics. Fate — in the avatar of
our Communist dictators — decided otherwise.

It is was well known (and well tested) that Jews were not allowed to become
students at Philosophy or Physics department of St. Petersburg University. So,
I joined Mathematics department.

Seminars. Talk about a kid in a toy store. I immediately found three seminars
which satisfied all three of my needs, and 1 started actively attending all three
of them.

First, I attended a seminar on space-time geometry and physics led by Revolt
Pimenov himself. A few years before that, Pimenov started a deep analysis of



space-time and physics in general based on the the causality relation.?

I also started going to a seminar on game theory led by Nikolay N. Vorobiev,
the leader of Russian game theory researchers [116, 117].

And finally, I started going to seminars on logic and constructive mathe-
matics. In contrast to space-time physics and game theory, there were actually
three different seminars:

e a city-wide official seminar, where completed results would be presented
to a very general audience, including people from different schools;

e a working seminar, in which preliminary results and open problems were
presented, as well as interesting papers published by others (the seminar
leaders regularly assigned to seminar participants to review and present);
and

e an informal seminar “on systems”, led by Sergey Maslov, where raw ideas
were welcome, and where, in addition to logicians, interested (and inter-
esting) people from humanities would often talk.

My purpose is to describe what happened at the seminars on constructive
mathematics. To get a good understanding of this, let us first briefly recall what
happened earlier, before the Fall 1969 when I started attending their seminars.

4 A Brief History of Constructive Mathematics
up to 1960s

Brouwer’s ideas: intuitionism. The need to have efficiency in mathematics
started with Brouwer’s intuitionism [11].

Brouwer was not happy with the fact that in classical logic and in classical
mathematics, a statement A V = A is always true. This seemed to conflict with
a reasonable intuitive understanding of “or”, according to which knowing AV B
would means that we either know A or we know B. (Indeed, for many open
mathematical statements A, we do not know whether these statements are true
or false.) Brouwer therefore decided to change mathematics in such a way that
it would be in better accordance with this reasonable intuition.

To capture this intent, he called this new mathematics intuitionistic math-
ematics — and he called the corresponding logic intuitionistic logic.

Can intuitionism ideas be described in formal terms? Brouwer’s use of
the term “intuitionsim” was even more appropriate since he believed that the
problem with the law of excluded middle AV —A comes from over-emphasizing
formalisms — which are inevitably imperfect and thus, lead us astray. He believed
that we should always use our intuition as an ultimate test — and he doubted

31t looks like this ideas was up in the intellectual air, since at that same time, in addition to
Pimenov, similar ideas were proposed by the famous geometer Busemann [12] and by physicists
Kronheimer and Penrose [77].



that a formalism would be able to capture, e.g., his ideas about the law of the
excluded middle A v —A.

These doubts were dispelled by A. Heyting [34], who showed, in 1930, that
a large portion of then intuitionistic mathematics can actually be formalized;
see also [35].

Intuitionistic mathematics and logic promote effectiveness. In the in-
tuitionstic logic:

e the knowledge of AV B means that we know either A or B,

e the knowledge of 3z Az means that we can effectively produce = for which
A(x) is true, and

e the knowledge of VaJy A(x,y) means that, given x, we can effectively
produce y for which A(z,y) holds.

How can we describe effectiveness? Effectiveness could not be formally
described at that time since in the early 1930s, there was no formal notion of an
effective procedure (what we now call an algorithm). This formal notion came
later, with the pioneering papers by Turing [114] and Church [16].

Enter constructive mathematics. By the late 1940s, the notion of an algo-
rithm was universally accepted:

e different versions of this definition were proven to be equivalent, and

e most procedures recognized as algorithms were shown to be covered by
these definitions.

This enabled researchers to formulate the main ideas of constructive mathe-
matics in precise terms: that Va 3y A(z,y) means that there exists an algorithm
that, given x, returns y for which A(z,y) is true.

The first idea of constructive mathematics came from Andrei A. Markov —
and, as usual in history of mathematics (and in history in general), his path to
constructive mathematics was not as straightforward as it may seem now.

Andrei Andreevich Markov Jr.? at first, chose topology as his area of math-
ematical interests, and he got interested in the problem of checking whether
two given compact manifolds are homeomorphic. The traditional definition of
a manifold is not very constructive, but it is known to be equivalent to a very
constructive definition: like as assembly-required toy, each compact manifold
can be represented as a finite collection of polyhedra, with faces marked so that
faces marked with the same mark are glued together. (From the topological
viewpoint, we can always assume that all the vertices of all the polyhedra have
rational coordinates.)

In the 2-D case, there is a known algorithm for checking when two such man-
ifolds are equivalent. Markov decided to analyze how to extend this algorithm

4the son of A. A. Markov Sr., of the Markov processes and the Markov chains fame.



to a 3-D case. If he succeeded in producing an algorithm, then he would just
have described it as an efficient procedure, and there would have been no need
for him to go into any details into what an algorithm means in the general case
— all he would have needed was to show that his particular algorithm is efficient.
Luckily for foundations of mathematics, Markov was proving a negative result
— that no such algorithm is possible.

However, there was no well-established notion of an algorithm operating on
manifolds — and without a precise mathematical notion, it is impossible to prove
that no algorithm can check homeomorphism.

So, to transform his intuition into a precise proof, Markov started looking
into how to formalize the notion of an algorithm operating on manifolds. For
that, he started with describing algorithms operating on real numbers.

Constructive mathematics: a general idea. Intuitively, a constructible
object has a description in terms of finite sequence of symbols. As we all know,
inside a computer, every symbol is represented as a sequence of Os and 1s, so
every sequence of symbols is also represented by a binary sequence. Therefore,
every constructible object can be represented as a sequence of Os and 1s.

The simplest mathematical objects are natural numbers. So, from the math-
ematical viewpoint, it is natural to interpret each code of a constructible object
as a natural number. We cannot do it by simply identifying a binary sequence
with the corresponding number because then 001 and 1 would be described
by the same code, but we can avoid this problem by simply adding an extra
1 in front of the original binary sequence; in this case, 001 is represented by
10015 = 919, while 1 is represented by a code 115 = 314.°

Real numbers in constructive mathematics. In Markov’s constructive
mathematics, e.g., a constructive real number is simply an algorithm that
transform a natural number k into a rational number 7, in such a way that
7% — 7¢| < 27% + 2% The meaning of 7y, is that rj, is a 2~ *-approximation to
the desired real number.

Each is a code in some programming language. So, we can also represent
this algorithm r as a sequence of Os and 1s — hence, as an integer code.

Real-valued functions in constructive mathematics. A constructive func-
tion f from real numbers to real numbers is a function that inputs the code of
a real number x and returns the code of the real number f(x).

Comment. It should be mentioned that constructive functions can only be
applied to mathematically constructible real numbers — moreover, to compute

5The fact that we can represent sequences of symbols by natural numbers was first discov-
ered by Godel and is therefore called Gdédelization. This idea was new in the 1930s, but with
the computers, it is so trivial that we feel that over-using this term to describe an otherwise
clear idea may only confuse the readers. Besides, the original Godelization algorithm involved
exponentiation 2¢-3%.. . ; in the 1930s, this was a reasonable idea but now, with the clear dis-
tinction between feasible (polynomial-time) and exponential-time (non-feasible) algorithms,
it does not make sense to introduce an unnecessary exponential time into something as trivial
as representing strings in a computer.



the value f(z), we must know the exact code of a program that generates the
original number z.

Logic of constructive mathematics. Logical statements related to construc-
tive mathematics are interpreted in accordance with the general idea.

For example, the implication 3z P(z) — Jy Q(y) means that there exists a
constructive function f from reals to reals that is always applicable and for which
P(z) implies Q(f(z)). In other words, the above implication is interpreted as
(3f € Con)(Vax(P(x) — Q(f(x))), where f € Con means that a natural number
f is a code of a constructive function.

Similar interpretations can be made for more complex logical formulas as
well; see, e.g., [87, 88]. As a result, we arrive at an algorithm that transforms
an arbitrary formula into a form 3z A, where A is an almost negative formula (in
the sense that only decidable formulas can occur after 3,V.) The corresponding
algorithm was first explicitly described by Nikolay Alexandrovich Shanin, one
of the first converts from topology to constructive mathematics and the future
leader of St. Peterburg School of Constructive Mathematics, in [107]; see also
[89].6

Based on this idea, Markov, Shanin, and other researchers analyzed different
mathematical results to see which results are constructive and which are not;
see, e.g., [13, 78, 87, 88, 90, 108].

Markov principle. One important tool in their analysis was Markov’s prin-
ciple of constructive selection — which is now known as Markov Principle. The
intuitive meaning behind this principle is related to the fact that, as it is well
known, there is no algorithmic way to check whether a given algorithm will stop
on a given data. Markov Principle says, in effect, that if it is not true that the
algorithm will never stops, this means that this algorithm will stop. In more
precise terms, if we have a decidable property P(z) (i.e., a property for which
Va (P(x) V =P(x))), then =—3xP(z) implies 3z P(x).”

5 Negative Reaction to Constructive Mathemat-
ics: Why

The first reaction of the mathematical community to constructive
mathematics was rather negative. The way we have just described it, the
activity of constructive mathematics is reasonable and useful both for under-
standing of mathematics and for applications of mathematics.

61t is worth mentioning that the algorithm SH is known to be equivalent (under a suitable
coding in Heyting’s formalized intuitionistic arithmetic) to recursive realizability introduced
by S. C. Kleene [42].

"From the classical viewpoint, the constructive logic of Markov’s school can be completely
described using the three above-described basic principles: recursive realizability, Markov
principle, and classical logic for sentences containing no constructive problems, i.e., 3, V-free
sentences [94, 113].
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However, originally, the first reaction of most mathematicians to constructive
mathematics was negative. There were at least five reasons for this negative
reaction.

First reason: methodological. First, a methodological reason: in their
papers and talks, researchers in constructive mathematics did not just propose
new ideas and results, they argued that, in effect, all the previous mathematical
results and theories made no sense and should be replaced by their constructive
versions. For example, Shanin liked to emphasize that went a property is only
proven to be true almost everywhere, this result is practically useless, since
we still do not have a single example of a point at which this property holds:
“pochti vezde znachit neizvestno gde”. I think many mathematicians would
agree with this statement — but not with Shanin’s conclusion that the result
about the property being true almost everywhere makes no sense and should
not be published.

Other reasons. There were other reasons, of course, why the attitude towards
constructive mathematics was negative.

Some of these reasons were related to the abundance of negative results and
counterexamples in constructive mathematics. In the beginning, the idea of
looking for a constructive proof sounded reasonable: e.g., we have a theorem
that proves the existence of a solution to a differential equation, but we do not
know how to actually find this solution, so let us come up with such an algorithm.
In these terms, the problem sounds like the need to find an algorithm. Somewhat
surprisingly, it turned out that in many cases, such an algorithm does not exist.

e A. Turing proved, in effect, that no algorithm can detect whether two real
numbers are equal or not.

e E. Specker was one of the first to move from general algorithmic impossi-
bility to specific examples, by showing, in [111], that the maximum of a
computable bounded increasing sequence can be non-computable.

Second reason: communication problem. The counterexamples is what
caused the second reason for the mathematicians’ negative reaction to construc-
tive mathematics: serious communication problems. For example, in traditional
calculus, there is a theorem according to which a continuous function f(x) on
an interval [a,b] always attains its supremum at some point z. In constructive
mathematics, there is a counterexample to this classical theorem: there exists
a constructive function f(x) from reals to reals that does not attain its supre-
mum value on a given interval in any constructive point. When presented in
this form, it is an interesting negative result about algorithms: that we cannot
algorithmically produce a point z¢ at which f(z¢) = sup f(z).
z€la,b

However, most mathematicians understood this res[ult} — by literally inter-
preting the constructivists’ existential quantifier — as claiming that so such point
2o exists at all. Since their intuition of real numbers included non-constructive
numbers (e.g., numbers coming from physical measurements), this non-existence

11



could not be explained by just considering mathematically constructible real
numbers.

Third reason: overemphasis on negative results. The above second rea-
son is closely related to the third reason — originally, constructive mathemati-
cians probably placed too much emphasis on counterexamples and negative
results (showing that there is no universal algorithm for solving different gen-
eral problems), while under-emphasizing the more useful part of constructive
mathematics: providing positive algorithmic results.

If a general algorithm is impossible, then usually, it is possible to have al-
gorithms that work under certain conditions, and/or algorithms that solve a
slightly weaker problem, etc. For example, in the above problem, it is possi-
ble, for every given accuracy ¢, to algorithmically produce a point xg for which
f(xo) > sup f(z)—e — and from the viewpoint of practically solving optimization
problems, this is quite enough.

Fourth reason: original papers are difficult to read. The fourth reason
was that the original papers were very difficult to read. Constructive mathemat-
ics tries to describe algorithms, algorithms that deal with higher-order objects —
like f(z) takes an algorithm as an input and returns an algorithm as an output.
In the early 1950s, before the first programming languages appeared, there was
no easy way to describe complex algorithms in a clear understandable way.

Even now, with multiple user-friendly programming languages, it is difficult
to describe higher-order algorithms, with functions as inputs and functions as
outputs, in an unambiguous and easily readable way. It is difficult to read these
algorithms even now — and even for computer scientists; just imagine how a
mathematician would feel about such code in the 1950s.

When I started learning constructive mathematics, we did not read Shanin’s
fundamental papers such as [108], since they were too difficult. Instead, we
relied on instructor’s descriptions and later re-wordings.

Fifth reason: political. There was a special political reason for this nega-
tivity. The main ideas of constructive mathematics arose in the late 1940s and
early 1950s, when Stalin was still alive. That was a period when he purges the
sciences which were considered to be ideologically impure:

e in 1948, genetics was condemned as a capitalist science, with researchers
fired, jailed, and shot;

e then came turn of cybernetics and linguistics.

After these three campaigns, it looked like Stalin decided to go after physicists: a
vicious media campaign was launched against “capitalist” relativity theory and
quantum physics. Luckily, this campaign stopped — probably because physicists
were considered to be useful in designing and improving atomic bombs. A few
people who were denounced and arrested — among then, Vladimir Fock, known
to physicists for Fock spaces — were soon released. Fock even had — a rarity in
those days — all his belongings and manuscripts returned to him intact.
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If not physics, then what? Everyone was afraid that their science was to be
the next target.

And then, as A. D. Alexandrov described later, a “bomb” exploded on the
ideological front: some communist party smart aleck noticed the philosophical
differences between strict constructive mathematics — that believes that only
constructive objects exist — and the traditional mathematics, and suggested to
start a “philosophical discussion” — similar to the one that preceded the bloody
purge in genetics. The disaster was looming. So, A. D. Alexandrov (President
of St. Petersburg University) and A. N. Kolmogorov (the most famous Soviet
mathematician of these times) came up with a smart plan.

They convinced the party bosses that mathematics is too complex a science
to start a discussion (at least a discussion without a proper preparation). In-
stead, they proposed to first write a definitive book on methodology and ideology
of mathematics.

As A. D. Alexandrov explained, they were motivated by the known story
about a legendary Molla Nasreddin. In this story, the Shah liked his pet donkey
so much that he believed — as many pet owners do — that his pet donkey was
more intelligent than most people. So, he asked Molla to teach his donkey.
Molla was afraid to disobey the murderous Shah, so he agreed — but with a
warning that he needed at least 15 years to do it. When his horrified wife asked
how he was planning to do it, he cheerfully replied: “Do not worry. In 15 years,
either I will dead, or the Shah, or the donkey”.

Alexandrov and Kolmogorov turned out to be right: while they were working
on the book, the bloody tyrant died, and the book — a good book actually, re-
published by Dover [4] — went out without the need to send anyone to jail.

The ending was happy (at least no one died), but this story left a bad taste in
the mouths of many mathematicians. Somewhat understandably, since math-
ematicians could not do much about the communist dictatorship that nearly
killed them, this negative feeling was often directed towards constructive math-
ematicians who allegedly provoked the government’s attack.®

6 Constructive Mathematics in the 1970s: A
Boom

When I started going to the seminars, all four reasons were slowly being over-
come, and constructive mathematics — and logic — were blossoming.

Matiyasevich’s solution of the 10th Hilbert problem. The big boost
came from the 1970 result by Yuri Matiyasevich who solved [92, 93] the 10th of
the 23 Hilbert’s problems [36], challenges that the 19th mathematics presented
to the 20 century. The 10th problem was about finding an algorithm for solving
Diophantine equations and systems of equations — i.e., polynomial equations

8Just like recently, when a silly amateur movie about Prophet Mohammed led to deadly
riots, there seemed to have been more anger in the press against the movie’s creator than
against the murderers who actually killed innocent people — using this movie as a pretext.
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in which all variables are natural numbers. Matiyasevich proved that no such
general algorithm is possible.

Interesting, what may looked, at first, like one of the many negative results
turned out to be a very positive result: what Matiyasevich actually proved was
that:

e every set which can be eventually generated by some algorithm (such as,
e.g., the set of all prime numbers or the set of all prime twin pairs for
which both n and n + 2 are primes)

e can be represented as the set of all possible non-negative values of a poly-
nomial of (several) integer-valued variables.

How I learned the details of Matiyasevich’s result. I myself learned the
details of this result — my apologies to Yuri for the coming English-language
metaphor — from the “horse’s mouth”, i.e., from Yuri himself.

Yuri was giving a talk at the general meeting of St. Petersburg Mathematical
Society, and I was late for his talk and missed the first half. T was very upset
about this, since I thought I missed a unique opportunity to learn the details.
However, my colleague Evgeny “Zhenya” Dantsin suggested that I simply ap-
proach Yuri after the lecture, that Yuri would be glad to repeat his descriptions
to me.

On my own, as a freshman student, I would not have had the chutzpah to
approach a famous mathematician with such a request, but after this advice, I
did — and Yuri did gladly explain things to me.”

Matiyasevich’s result bring attention to the logicians. Matiyasevich’s
result brought everyone’s attention to the logic group, in particular, to their
results in constructive mathematics — and the positive character of Matiyase-
vich’s result brought to everyone’s attention that many results of constrictive
mathematics also have positive algorithmic parts.

The attitude of constructive mathematics towards non-constructive
one became more tolerant. The attitude of constructivists themselves some-
what mellowed. Once in a while, Shanin would repeat — parodying the official
nonsense about Marxism — that constructive mathematics is the only scientifi-
cally correct approach, but he became much more tolerant to other approaches.

When confronted with the difference between his new views and his more
rigid view a few years back, he would always say, half-jokingly, that since all the
atoms in the body change every seven years, he is no longer his former physical
self and has therefore the right to change his opinions :-).

And Shanin was the only one to have such serious qualms about non-
constructive objects. Everyone else in the group agreed that there is some mean-
ing to non-constructive mathematics — moreover, that there is usually even some

9While I truly appreciate what Yuri did, I want to add that this was an example of the
attitude that was prevalent (and actively cultivated) in our department in general, and among
logicians in particular: paragraphing Rudyard Kipling’s Mowgli, we all had a strong feeling
that that we are all “of one blood”, that we are all brothers and sisters in mathematics and
in science.
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constructive meaning in seemingly non-constructive proofs and results (and the
challenge is how to extract this meaning).

Constructivism papers became more readable. The readability of the
papers also greatly improved. A big push for this readability came with a book
by E. Bishop [7], a renowned mathematician who became interested in effective
constructions and ended up writing a ground-breaking book on constructive
mathematics. Bishop did not use the explicit algorithms and did not prove
many negative results, his approach was more general than that — but most of
his results could be easily interpreted in Markov-Shanin constructive terms.

Before that, there was a feeling that to learn constructive mathematics, one
has to grind his/her teeth and go though barely comprehensible formulas —
similar to the feeling that Euclid supposedly had when he said to a king who
wanted an easy way to learn geometry: “There is no royal road to geometry”.
It turns out that there is a “royal” road to constructive mathematics — a road
that a working mathematician can rather easily follow.'0

Logician tried their best to make paper clear and understandable. Each
paper accepted for publication for Zapiski was assigned to another author for
what we called “eating each other”: thorough checking of every single formula
and every single phrase. After that, Yuri Matiyasevich and Anatol Slissenko,
fearless and tireless editors, would go over every word on their own, making
many suggestions (and, to our sometime embarrassment, corrections) along the
way.

I remember how Anatol half-jokingly suggested that we erase his pencil
marks before coming the next time, so that he would be able to make a different
suggestion this time. This was somewhat painful but proudly painful: we all
felt like Lev Tolstoy who re-wrote his War and Peace, 1 think, six times. The
resulting text was not exactly Tolstoy caliber, but still clearly improved.

7 Constructive Mathematics in the 1970s: Main
Challenges

The main idea of constructive mathematics: a reminder. What were
the challenges that motivated our research? To understand these challenges, let
us recall the general idea of constructive mathematics:

e we start with a general class of problems, and

e we try to analyze whether a general algorithm is possible for solving all
the problems from this class.

Challenges naturally emerged from all the aspects of this idea: objects, analysis,
and algorithms.

10And, by the way, contrary to Euclid, there is a royal road to geometry too: René De-
scrates’s introduction of Cartesian coordinates enables us to reduce many complex geometric
problems to easier-to-solve algebraic ones.
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First challenge: need to extend constructive mathematics to more
complex mathematical objects. The first class of challenges came from
the fact that most traditional results of constructive mathematics dealt with
reasonably simple mathematical objects, such as numbers and functions. In
modern mathematics and its applications, much more complex objects are used.
We need to extend constructive mathematics to such more general objects.

Second challenge: to be useful for data processing, algorithms must
be able to handle possibly non-constructive data. The traditional con-
structive mathematics dealt only with computable objects — e.g., only with
computable real numbers, computable functions, etc. In practice:

e we need to process data coming from measurements, and,

e according to modern physics, the corresponding data is not necessarily
computable: e.g., the results of quantum measurements are inherently
random.

We therefore need to extend algorithms of constructive mathematics to algo-
rithms for handling such more not-necessarily-computable objects.

Third challenge: need for general ways for analyzing problems. The
analysis of the problem in constructive mathematics was too ad hoc. Crudely
speaking, every new result was, in effect, worthy of a Master’s thesis or a PhD
dissertation.

If we wanted constructive methods to be widely used, we could not afford
a situation in which so much effort is needed to analyze the constructiveness
of a situation, we needed to develop general results which would make such an
analysis easier.

Fourth challenge: when an algorithm is possible, is it feasible? On
the algorithm stage, if an algorithm has been produced, how efficient is it? An
algorithm whose running time exceeds the lifetime of the Universe is clearly not
very feasible. If this algorithm is not feasible, is a feasible algorithm possible?
If it is not feasible on the existing computers, maybe computers using some
novel physical phenomena can make these problems feasibly solvable? And the
problem is not feasibly solvable in general, when is it feasibly solvable?

Fifth challenge: what if no general algorithm is possible? On the other
hand, if a general algorithm for solving all the instances of the original problem
is proven to be not possible, then natural questions are:

e How can we relax the problem to make it possible?

e Is it possible to find a reasonable subclass of problems for which the solu-
tion is algorithmically possible?

e Is it possible to relax the requirement and have an algorithm for solving
a weaker problem?
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e And maybe computers using some novel physical phenomena can make
these problems algorithmically solvable?

These were the challenges that we worked on. Let us now briefly enumerate the
results of this work.

8 First Challenge: Dealing With More Complex
Objects — Which Objects Do We Need?

We need to look into possible application areas. The algorithms are
most useful for applications. Thus, to understand which objects we should
concentrate on, we need to looks at possible applications: which mathematical
objects are needed to describe the physical world?

Newton’s mechanics. Let us start with the traditional Newton’s physics (for
details of the corresponding physics descriptions, see, e.g., [21]). In Newton’s
physics:

e We have a 3-D Euclidean space IR® and a 1-D time IR.
e The world consists of particles.

e The state of the world at any moment of time ¢ can be described by listing
the spatial locations x;(t) of all these particles i = 1,2, ...

e Newton’s equations — a system of ordinary differential equations — describe
how the coordinate x;(t) of each particle ¢ changes with time.

This model perfectly describes, e.g., celestial mechanics.
This is a description which is well covered by the traditional constructive
mathematics.

Newton’s mechanics: need for approximate descriptions and the re-
sulting mathematical objects. Theoretically, Newton’s equations are all we
need to describe Newton’s physics world. However, from the practical view-
point, the corresponding number of particles is too large — e.g., we have 10?3
atoms in each macro-volume. Even modern computers, no matter how fast they
are, cannot handle that many computations. So, we need to simplify the above
description.

First, to describe the dynamics of a single particle i, we cannot realistically
use the positions of all the other particles to predict how the location x;(t)
changes. Instead, we must use a simpler description that would capture the
effect of all these particles. This description is known as a field. For example,
the gravity field describes the joint effect of all the attracting particles — without
us having to specify which part of the attractive force comes from which particle.

Second, since we have too many particles, we cannot describe the state of
all of them, we can only describe the averages — e.g., the density of a body at a
given location instead of the exact location of each particle.
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Finally, since our description is inevitably approximate, we often cannot
describe the exact dynamics, we can only make approximate predictions. In
precise terms, instead of the exact value, we take into account that many differ-
ent values are possible, and we can predict the probabilities of different values.

From this viewpoint:

e we need functions to describe densities and fields, and

e we need probability distributions to describe uncertainty — probability dis-
tributions on numbers and on functions.

Resulting challenge for constructive mathematics. We need to describe
functions, and we need to describe probability distributions.

Functions can be naturally describe in constructive mathematics, but prob-
ability distributions are not so easy to describe — even probability distributions
corresponding to a single random variable. This difficulty is related to the fact
that in constructive mathematics, every function is continuous — informally, if
we have an algorithm that is applicable to all computable real numbers, then
the resulting function can be proven to be continuous.!!

This continuity creates a challenge when we try to describe probability dis-
tributions in constructive terms. For example, a natural way to describe a
probability distribution is by describing its cumulative distribution function
F(z) = Prob(X < z). This function is continuous for, e.g., a normal distri-
bution, but it is clearly discontinuous for a random variable X which takes
the value 0 with probability 1. For this random variable, using the probability
density function (pdf) will not help, since pdf is not defined when = = 0.

The situation is even more complex for random functions — i.e., probability
measures on the class of functions.

Relativity theory. Modern physics made the description of the physical world
even more complex.

This complexity started with the General Relativity, in which the space-time
is no longer an Euclidean space, it is a general manifold — and, as we know from
modern physics, a manifold with singularities corresponding the Big Bang and
to black holes.

Already Markov showed how to describe manifolds in constructive terms,
but manifolds with singularities are a challenge.

Quantum physics. Quantum physics leads to yet another class of objects.
Specifically, in quantum mechanics, to describe a single particle, instead of a
single 3-D vector x, we need a wave function, i.e., a complex-valued function
¥ (x) which assigns, to each possible location x, an “amplitude” based on which
we can estimate the probability density of the particle located at a location

1 This result make physical sense: in real life, if we process real values which are obtained
with a higher and higher accuracy by performing more and more accurate measurements, then
we should be able to return the result at some point, before we know the detailed value of the
inputs x — which is exactly what continuity is about.
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x as |¢(z)|?. To handle quantum mechanics, we therefore need to extend the
traditional constructive theory from real-valued to complex-valued functions.

The situation becomes even more complex in quantum field theory, where
instead of a function f(z), we need a functional, i.e., a mapping ¥ (f) which
assigns a complex value to each function f. To describe dynamics of such
states, we need operators which map functions into functions, etc.

In relativistic gravity, the state of the world is a manifold M with functions
defined on this manifold. So, in quantum gravity, we need a wave function (M)
which assigns a value to each such manifold M.

Non-separable spaces: an additional problem. Some of these construc-
tions lead to mon-separable spaces, i.e., spaces which do not have everywhere
dense countable subsets. This a big problem for constructive mathematics,
since usually, in constructive spaces, each object is approximated by objects
represented by a finite number of symbols. There are countably many such
objects, as a result of which all usual constructive spaces are separable.

Summarizing: we need to describe:
e probability distributions,
e manifolds with singularities,
e functions of complex variables, and

e objects of higher order (functionals, operators, etc.), especially objects
that form non-separable spaces.

9 Collaboration With Other Disciplines Was En-
couraged

Collaboration is needed. Complex objects come from disciplines such as
physics. Thus, to generate an adequate constructive version of the corresponding
notions, it is important to collaborate with researchers from other disciplines.

Such a collaboration, and, more generally, interest in other disciplines was
welcomed and encouraged.

Student were encouraged to take classes outside their discipline. Once
we started working on our Master’s theses, there was no formal requirement to
take any classes outside the discipline (this is an arrangement very typical for
Master’s programs in the academic world). However, Shanin always emphasized
that

e while there was no requirement to take classes outside math,

e a student will be considered a true gentleman or a true lady if he or she
takes a year-long class or two semester-long classes elsewhere.
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(I myself took General Relativity.)

Seminars enhanced collaboration. At Sergey Maslov’s seminar on systems,
we would hear talks by linguists, historians, geoscientists, even writers and
poets. We all loved it.

Conferences provided another opportunity. For example, at a school on
computational complexity at a ski resort of Tsahkazdor, Armenia, during non-
logical talks,

e many participants would quietly leave to enjoy the great skiing weather,

e while we — logicians from St. Petersburg — would stay and enjoy the good
“intellectual weather”.

Sergey Maslov often valued these non-logical talks even more than the more
technical ones. In Tsahkadzor, he described this opinion by a rhyme: “Ia priehal
v Tsakhadzor rasshiriat’ svoy krugozor” (“I came to Tsahkadzor to broaden my
horizon”).

10 First Challenge: Dealing With Complex Ob-
jects in Constructive Mathematics — Main
Results

As a result of collaboration with researchers from other disciplines, constructive
mathematicians from St. Petersburg came up with constructive representations
of the corresponding complex objects. Let us list the corresponding representa-
tions one by one.

Probability distributions. For random variables, a constructive description
of probability distributions was proposed by Nikolay Kossovsky [53, 54].

For random processes, the corresponding description was given in [56, 57],
on the example of historically the first Wiener measure — a probability measure
that describe Brownian motion.

Manifolds and, more generally, metric and pseudo-metric spaces. For
manifolds, an important result was obtained by Zhenya Dantsin: he proved the
constructive version of Sard’s Lemma, according to which the critical values of
a smooth function f from one manifold to another has Lebesgue measure 0.

Some results about constructive non-smooth metric and pseudo-metric spaces
— presented at the seminar but not published at that time — later appeared in
[18, 61, 70, 72, 74].

In particular, for our results about space-time models (later published in
[72]) Dima Grigoriev and I got the first prize at the department’s best student
paper competition.

An interesting aspect of studying general metric spaces is estimating their
size. A natural way to estimate the size of a metric space S is to use charac-
teristic like e-entropy, which is defined as the smallest number of points such

20



that every point from S is e-close to one of the these points. This characteristic
only takes integer values and thus, it is a discontinuous (hence, not computable)
function of e. A constructive way to describe e-entropy and other similar char-
acteristics is given in [60] (see also [63]).

Functions of complex variables. Several problems related to functions of
complex variables were handled in Bishop’s book [7].
A significant further progress was made by Vladimir Orevkov; see, e.g., [100].

Objects of higher type. A general constructive description of objects of higher
type — functional, operators, etc. — was proposed by Victor Chernov in [14] (see
also [15]).12

Non-separable spaces. Constructive approach to non-separable spaces was
developed, with Victor Chernov’s guidance, by our French research visitor Mau-
rice Margenstern [85], on the example of the space of almost periodic functions.'3

General set-theoretic objects. Even a more general scheme — including
constructive versions of all objects of the set-theoretic hierarchy — was described
in an unpublished paper by Michael Gelfond and Vladimir Lifschitz. Their
constructive version of set theory was based on the standard ZF.!*

11 Second Challenge: Algorithms Dealing With
Not-Necessarily-Computable Objects

As we have mentioned, to process real-life data, we need algorithms which can
process non-constructive objects as well.

Random sequences. For example, according to quantum physics, sequences
of observations are not computable, they are random (with respect to some
computable probability measure).®

If we simply allow random sequences (in the formal sense proposed by Kol-
mogorov and Martin-Lof; see, e.g., [81]), then we get a theory which is very

121t is worth mentioning that the resulting approach turned out be similar to the approach
proposed in a somewhat different context by Yuri Ershov (see, e.g., [20]).

13 Almost periodic functions were invented by Harald Bohr, a mathematician brother of the
Nobelist physicist Niels Bohr.

14 Shortly after that, another version of constructive set theory — this time based on type
theory — was proposed by Per Martin-Lof [91] (see also [29, 99, 112]). Since Martin-Lof did
not need to deal with more complex axioms of ZF, his theory is much clearer and simpler
than the more complex Gelfond and Lifschitz’s version — which is probably one of the reasons
the reason why they never published their version.

151n [47], it is shown that such non-algorithmic sequences is intuitively justified: without
them, discrete transition processes (e.g., radioactive decay) would potentially lead to devices
checking whether a given Turing machine halts or not.
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similar to the standard constructive mathematics; this was proven by Leonid
Levin [80].16

Need to go beyond random sequences. A restriction to random sequences
makes sense if we believe quantum physics to be the ultimate theory of the
universe. But since most physicists think that any theory may be later modified,
a better idea may be not to impose such theory-specific restriction on possible
inputs, and consider all possible real numbers as inputs.

General inputs. For an algorithm to be able to handle general inputs, a
computable function f(z) should use only approximate values of x, but not
— as traditional constructive mathematics — the code of the algorithm which
computes consecutive approximations to x.

e Some such “approximation-only” algorithms were presented in Bishop’s
book [7].

e A general description of such algorithms for objects of arbitrary type is
given in above-cited Chernov’s papers [14, 15].

e Vladimit Lifschitz, in [82], provided a formalism in which such generic
number can be described in constructive terms — as “fillings”.

Later, this field of research crystallized as computable analysis; see, e.g., [103,
118].

12 Third Challenge: Need For General Ways
For Analyzing Problems, Towards General
Constructivity Proofs

Another challenge was to find general proofs of constructivity - which would
replace previous time-consuming case-by-case proofs.

Almost negative statements. This activity started with statements that do
not contain “or” or existential quantifiers — statements which should, intuitively,
be equally valid in the traditional and in constructive mathematics. However,
the actual proof turned out not to be easy; this was done by Michael Gelfond
[26, 27, 28].

This class includes integral equalities and inequalities, inequalities and equal-
ities involving max and min, and many other useful mathematical statements.

Statements containing strict inequalities. It turned out (see, e.g., [64])
that this class can be easily extended to statements which contain existence.

Terms T describing such statements can be obtained from variables (ranging
over a given interval [0,1]) and variable functions by using:

167t is worth mentioning that when he presented this work in St. Petersburg, he drew a
target on his flyer — expecting that in the center of constructive mathematics, he would be
attacked for suggesting that non-constructive sequences are possible.
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e addition, subtraction, multiplication, max, min,

e substitution of a computable constant instead of a variable,

e an operation f(x1,...,2,) — mtinf(t,xg, cey X)),
e an operation f(z1,...,z,) — m?xf(t,xg, cey ),
e an operation f(z1,...,z,) = a(f(z1,...,z,)) for a computable function

a(t) satisfying the Lipschitz condition, and
e an integration operation f(x1,...,2,) — foml flt,xa,. .. xy,)dt.

Conditions are obtained from inequalities of the type T' > 0 by using V, &, and
quantifiers over real numbers.

It turns out that if such a condition is classically true, then it is true for
some rational values of the variables and piecewise-linear functions with rational
coefficients — and is, thus, constructively true.

Uniqueness implies computability. A more non-trivial class of classical
statements which are automatically constructively true are statement about
existence of roots. In general, the fact that a computable function can be
proven to have a root does not make this root algorithmically computable, but
if this root is unique, then it is computable.

This result was first proven by D. Lacombe [79] for functions of one or several
real variables defined on a bounded set. It was extended to general constructive
compact spaces by Vladimir Lifschitz in [82]. Variations and applications of this
result can be found in [59, 61, 62, 66, 75].

This approach was later developed by Ulrich Kohlenbach (see, e.g., [44, 45,
46]).

13 Fourth Challenge: When an Algorithm Is
Possible, Is It Feasible? From Constructive
Mathematics to Feasible (Polynomial-Time)
Mathematics

Some algorithms of constructive mathematics are not feasible. An
exhaustive-search algorithm that we outlined in the previous section is a typical
example of algorithms generated by constructive mathematics.

Most of these algorithm take time which is exponential in terms of the input
size (or even longer). Already for n ~ 300, the corresponding 2" time becomes
longer than the lifetime of Universe — so these algorithms are not feasible already
for reasonable-size inputs; see, e.g., not all algorithms are feasible [25, 65, 75,
101].

What is feasible? What happens is we only allow feasible algorithms? To
answer this question, we need to have a formal definition of feasibility.
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The current definition identifies feasible algorithms with algorithms that
require polynomial time. It is well known that this definition is not perfect (but
since no better algorithm is known, researchers use it):

e For example, an algorithm that takes computation time ¢(n) = 103%° . n
on inputs of size n is clearly not feasible, but it is polynomial-time (even
linear-time).

e On the other hand, an algorithm which requires time #(n) = exp(10~?-n)
is clearly feasible — at least for all inputs up to Gigabytes — but is not
polynomial-time.

Another problem with this definition is that the division into polynomial time
and non-polynomial time is somewhat heuristic, motivated more by examples
of feasible and non-feasible algorithms than by a deep theoretical analysis. This
problem was somewhat eliminated by Vladimir Sazonov who showed that this
this division can be reformulated in less heuristic logical terms [106].

What if we only allow feasible algorithms? So what happens if we only
allow feasible algorithms — i.e., by using the modern formalization of feasiblity,
algorithms that require polynomial time? Several results along these lines have
been developed in [55]; see also [63] and later comments by Yuri Gurevich [33].

It turns out that this feasible analysis is even more negative that the usual
constructive mathematics: while addition and multiplication of computable
numbers are still feasible, almost everything else is NP-hard:

e integration,

e computing the maximum of a computable function,

e even computing sin(x) or exp(x) of a value in a floating point format.!”

Most of these results were later covered by a thorough analysis presented in
a monograph by Ker-I Ko [43]. In addition to negative results, this book con-
tains many interesting efficient algorithms; for example, for analytical functions,
integration (and many other operations) are feasible.

However, in the 1970s, feasible analysis was not welcomed too much. The
seminar’s opinion was that if the goal was to make constructive mathematics
closer to computational practice, this goal failed.

Interval computations as applied constructive mathematics. Much
more successful was another approach to make constructive mathematics more
realistic. Namely, Yuri Matiyasevich observed that while algorithms of construc-
tive mathematics assume that we have inputs known with increasing accuracy,
in practice, the accuracy is fixed. At any given moment of time, we only have a
single measurement result x, corresponding to the currently available accuracy

17Fixed point and floating point formats have to be treated separately, since the transition
from floating point to fixed point requires, in general, exponential time.
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A; see, e.g., [104]. As a result, the only information that we have about the (un-
known) actual value x of the measured quantity is that it belongs to the interval
x = [Z — A,Z + A]. Given a data processing algorithm y = f(z1,...,2,) and
intervals x1, ..., x, corresponding to the inputs, we must therefore describe the
corresponding range of possible values of y. This problem is called the problem
of interval computations, or interval analysis.

In this problem, techniques borrowed from constructive mathematics work
so well that many researchers — including Yu. V. Matiyasevich himself — con-
sider interval analysis Applied Constructive Mathematics. Interval analysis has
numerous practical applications ranging from robotics to planning spaceship
trajectories to chemical engineering; see, e.g., [19, 37, 39, 40, 41, 75, 95].

The main idea of interval computations can be traced to Norbert Wiener
[119, 120]. Its algorithms were developed by Ramon Moore in the late 1950s
and early 1960s. Yuri Matiyasevich boosted this area by organizing conferences
and by helping to launch a journal — then called Interval Computations — which
remains, under the new, somewhat more general title Reliable Computing, the
main journal of the interval computations community.

Maybe other physical ideas can make computations feasible? If com-

putations are not feasible on the existing computers, maybe computers using

some novel physical phenomena can make these problems feasibly solvable?
This indeed turned to be true.

e For example, if acausal processes (“time machines”) are possible, then we
can solve many NP-hard problems in polynomial time [50].

e We can achieve a similar speed-up if in our space-time, the volume of a
sphere grows exponentially with radius — as it does, e.g., in Lobachevsky
space — see [76, 86, 96].

e Other scheme of this type are described in [1, 51, 75].

14 Fifth Challenge: What If No General Algo-
rithm Is Possible?

If a general problem is not computable, can we relax it to make it
computable? For example, if — as in Specker’s sequence — the limit is not
computable in the usual sense, in what is it computable?

This ideas was pioneered already by N. A. Shanin, who developed several
notions of constrictive pseudo-numbers; the whole hierarchy of such notions was
developed and analyzed by Boris Kushner [78] — and we have already mentioned
even more general Lifschitz’s “fillings” [82].

With respect to this question, it is important to distinguish between:

e problems which are “almost” computable and

e problems which are strongly non-computable.
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It turns out that in many cases, we can abstract from the specifics of a problem
and describe this difference on the level of logic, by introducing an additional
operation of strong negation. This idea was pioneered by N. N. Vorobiev in [115]
and later developed by Bishop [7] and by Yuri Gurevich [32].

For example:

e while a negation to the statement x > 0 is the statement z < 0,
e a strong negation would mean x < 0.
In this case,
e there is no algorithmic way to distinguish between z < 0 or > 0,

e but we can easily distinguish between x > 0 and = < 0: it is sufficient to
compute x with a sufficient accuracy.

The idea of strong negation — in which, instead of a single property, we
consider a pair of properties which are strong negations to each other — enables
us to re-introduce the duality between “and” and “or” [7, 122], duality that
is present in classical logic but which is missing in the traditional constructive
logic.

If a general algorithm is not possible, can we find a reasonable subclass
of problems for which the solution is algorithmically possible? Such
classes are known. For example:

e for a general computable function that takes values of different signs at
different sides of the interval, it is not possible to algorithmically find a
root,

e but if we restrict ourselves to computable analytical functions, the the
root can always be computed.

Interestingly. a restriction to functions described by analytical expressions does
not help: most algorithmically unsolvable problems remain algorithmically un-
solvable; see, e.g., [49].

Another idea is, instead of all mathematically possible inputs, to only allows
inputs which are physically possible. As a reasonable formalization of physical
possibility, we can take, e.g., physicists’s belief that events which very small
probabilities cannot occur — this may sound weird, but this is exactly the belief
behind a much more intuitive conclusion that a cold kettle, when placed on a
cold stove, will never start boiling by itself — in spite of all the molecular motion
which can theoretical lead to such phenomenon.

This ideas was first analyzed in [48, 22] by appropriately modifying the
Kolmogor-Martin-Lof’s algorithmic definition of randomness [81]. This idea
was further developed in [38, 67, 68, 69, 71, 73]. If turns out that under such
a physics-motivated limitation, most negative results of constructive analysis
disappear — and the corresponding problems become algorithmically solvable
[68, 73].
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What if we use novel physical phenomena? Maybe, if a problem is not
computable, the use of some novel physical phenomena can make this problems
algorithmically solvable?

This is indeed possible. For example, as shown in [50], if we have access to
flawless time machine, and either time or space are potentially infinite, then we
can compute problems from the class A} — way beyond the usual computability.

Another — probably more realistic — idea is to take into account that, ac-
cording to physicists, no physical theory is perfect, every theory will eventually
encounter situations when this theory will need to be modified; see, e.g., [21].
Interestingly, a natural formalization of this idea leads to the possibility to com-
pute functions which are usually considered not to be computable [52, 73, 121].
In other words, using observations of the physical world (looking at the tea
leaves?) can enhance our computational abilities.

An interesting aspect of this problem again goes back to logic:

e if — by virtue of some physical phenomena — we are able to algorithmically
solve some class of problems,

e what other classes of problems will we then be able to solve?

In [58], we describe which classes of problems imply the ability to algorithmically
solve all the problems from analysis.

Questions of this type were later described, in a very general way, by Harvey
Friedman who pioneered the whole area of reverse mathematics; see, e.g., [24,
110].

15 This Was Really a Boom

This was a boom. We had many interesting results, we had many great
ideas. Gena Davydov once compared this period with Boldino Autumn, a most
productive period in the life of the famous Russian poet Alexander Pushkin.'®

We were optimistic. Vladimir Lifchitz was very optimistic that in a few
years, to most mathematicians,

e a natural question after proving an existence theorem would be — can we
effectively produce the resulting object?

e and a natural way to answer this question would be to use tools from
constructive mathematics.

I am euphoric, Vladimir liked to say, and I am not afraid to use this word — and
this is how most of us felt.

We were recognized. Other departments felt that logic and constructive
mathematics were booming. In addition to Matiyasevich’s world-wide recogni-
tion, there were many other recognitions on a smaller scale:

18Luckily, our reasons for boom were different from Pushkin’s: he got stuck in the village
of Boldino due to the quarantine caused by the deadly cholera epidemic.
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e Vladimit Lifschitz got several research prizes,

e Dima Grigoriev and I shared a prize for the best student research paper,
etc.

I remember how at a game theory seminar (which I, by the way, continued to
attend), Nikolay Vorobiev encouraged the attendees to submit their paper for
the best paper competition: OK, so Vladimir Lifschitz would get the first prize,
but we can still aim for the second and third place prizes.

Researchers approached us suggesting collaboration. Motivated by our
successes, more and more researchers from other disciplines started discussing
topics of possible collaboration with us, especially physicists. Let me give two
examples.

First example: use of global and local properties of analytical func-
tions in physics. Leonid Khalfin, a physicist from St. Petersburg, had an
interesting idea related to the use of complex numbers in quantum physics.

e Physicists gladly use the “global” effects of analyticity, such as the possi-
bility to estimate complex integrals by using only the function’s behavior
over singularities.

e However, physicists rarely use the “local” properties of analyticity, for
which there is often no physical meaning.

In the classical mathematics, global and local properties are provably equiv-
alent. However, Khalfin conjectured that:

e since local properties do not seem to correspond to any meaningful (ob-
servable) properties,

e maybe a proper constructive version of the theory — which explicitly lim-
its us to potentially observable quantities — will enable us to separate
the global and local properties, and to enjoy the useful effects of global
properties without having having to assume the local ones.

The usual constructive mathematics does not help here, since in it, global and
local properties are still equivalent. However, I still believe that if we limit
ourselves to only feasible algorithms, maybe such a thing can be achieved.

Second example: attempts to use quantum effects to speed up com-
putations. Andrei A. Grib, another physicist from St. Petersburg, helped us
explore the possible use of quantum effects in computations. In this research,
we were inspired by a question formulated by George Kreisel: if we use quantum
effects,

e can we compute something that we could not compute before?

e can we compute some things faster than what we could compute before?
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Our analysis only lead to preliminary results, but we are proud that we were
part of the general intellectual atmosphere that had led to the current boom
in quantum computing algorithms (see, e.g., [98]), which has already generated
famous results:

e Grover’s algorithm that searches in an array of size n in times O(y/n)
[30, 31] and

e Shor’s algorithm [109] that factors large integers in time polynomial in
this integer’s bit length and can, thus, potentially break most the current
codes — specially the RSA code underlying security on the web, the code
which is based on the inherent difficulty of such factoring.

16 Rebels in Science, Rebels in Life: Not Ev-
erything Was Perfect

We were rebels. Being in constructive mathematics in the community of
mathematicians means going against the grain. Not surprisingly, folks who are
rebels in their professional life were rebels in their politics as well.'? Let me
give a few examples.

Shanin resigned from the university as a protest. When the University,
in violation of all its rules, rejected Zhenya Danstin’s candidacy for the PhD
program — and it was very clear to everyone that his Jewish origin was the only
reason — Shanin officially resigned from the university.

This was a usual protect tactic under the tsars, when one could gain private
employment, but Shanin is the only professor I know who resigned from the
Soviet University as a protest.

Contacts with “enemies of the people” were encouraged. In 1970, Re-
volt Pimenov, leader of the space-time seminar, was arrested in 1970 for read-
ing and distributing “illegal” books (Orwell, Solzhenitsyn, etc.), and for these
“anti-Soviet activities”, he was sentenced to exile to the Far North Republic of
Komi. I — as many others — kept in touch with him. When time came for my
University-required practicum, I expressed my desired to work with Pimenov in
Komi Republic.

Shanin, who was require to approve (or not) our practicum plans, asked only
one question: “What will you practice there? Science or anti-Soviet activities?”.
He was happy with my honest answer “both”, and to Komi Republic I went —
to the shock of local folks who were surprised to see a student of a prestigious
St. Petersburg University officially sent to work with an exiled “enemy of the

people” .20

191t is not that everyone else willingly supported the Communist regime: when the first
reasonably free elections where held in St. Petersburg in 1989, most communist candidates
convincingly lost. However, many logicians went further than many others in their resistance.
20Pimenov, by the way, taught me to not be afraid of the KGB-installed electronic bugs in
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Comment. It is not that everyone was against socialism as an idea — socialist
Sweden was, to many of us then, a good example of how social equality can
be established without shooting and jailing political opponents. Some logicians
even kept a rosy image of Lenin as a true defender of people. However, everyone
was openly and fearlessly appalled by the violations of human rights that were
ubiquitous during the communist dictatorship years.

Shanin expressed his disapproval of the authorities. When Solzhenitsyn
was exiled, in violation of many international treaties signed by the Soviet Union,
Shanin made a loud protest statement at the beginning of the seminar.

At that time, I considered such behavior normal, but later, when I later
moved to Novosibirsk (where such behavior was unheard of), and when I learned
of cases when people were fired and jailed for such public protests, I realized
how unusually brave St. Petersburg logicians were.

Maslov fired, probably killed. The endings were not always good. When
in 1978, the communists staged a political “process” against the physicist and
human right defender Yuri Orlov, Sergei Maslov wrote a letter to Brezhnev
condemning the unfair closed trial as a violation of Soviet laws and many treaties
signed by the Soviet Union, he was promptly fired from his teaching job.

Since he continued his political activities in spite of the continuous threats
from the communists, it is quite possible that the KGB helped organize a sus-
picious car accident that killed him in 1982.

17 Why Were We Not As Successful As We
Hoped? Maybe There Is Still Hope

What went wrong? We were so optimistic, we were so successful, so what
went wrong? Why is constructive mathematics still not exactly the mainstream?

Political reasons. Of course, there were reasons beyond our control. We lived
under a totalitarian dictatorship. Journals and conference proceedings were all
regulated by the state — and just like sausages were often difficult to buy, paper
was a deficit too. As a result, most published papers were short and thus,
inevitably, not easy to read — which did not help their understandability.

Travel to conferences abroad was strictly limited — I was never allowed to
go to a conference abroad until 1988, when Gorbachev’s perestroika was in full
swing and I was allowed to attend a conference in Bulgaria — only to be not
allowed to go to a conference in a (still communist-controlled) Poland.

A special censorship permission was needed to send a paper abroad, even
to send to send a letter on abstract mathematics abroad — and the permission
was often denied. Mathematical letters sent to me from colleagues abroad were
opened and stamped before they were delivered to me, and I was summoned

our homes: they already know, he said, that we are mostly against them, so they do not gain
anything by hearing us say it one more time.
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to the KGB and threatened with jail because I sent a few letters with my own
formulas abroad — they showed me xerox copies of my own letters.?!

When a Western mathematician visited from abroad, he or she was under a
constant open surveillance. When Kip Thorne, a famous astrophysicist, visited
Moscow and asked me to meet him in front of his hotel (local citizens were not
allowed inside hotels for foreigners), a guy in a typical KGB “uniform” (coat,
tie, white shirt) followed us wherever we went, his hand over his ear so that we
would know that he was listening attentively.

Maybe we were too picky. This is all true. But, I think, there were also our
own reasons. Yes, publication space was limited, but I think we were too picky
in selecting what to publish, trying to be more saint than the Pope. Too often,
after a reasonable paper was presented, the attitude was negative.

I remember that, at one of the seminars, when the chair desperately asked
the audience for any positive remark or suggestion, someone replied that the
author may consider, as a positive suggestion, a suggestion to grow upon oneself.

A lot of things that we considered to be not worth publishing — at least not
worth publishing in detail — later turned out to be useful, and many of us later
published some of that staff — but alas, still a small portion of it (since everyone
prefers to publish their most recent results). A lot of results and details were
simply lost.

Maybe it is because our algorithms were not feasible? Maybe the prob-
lem was that the abstract algorithms that we analyzed and developed — inspired
by the practical need for such algorithms — turned out be not exactly practical.

But we were working to make them more practical, so why did we not
succeed?

Maybe we had problems communicating with people from other dis-
ciplines? Sometimes, especially when we tried to handle algorithms of interest
to other disciplines such as physics, we suffered from a lack of understanding —
but as Grisha Mints mentioned recently, even when understanding was there,
for some mysterious reasons, the results were not as spectacular and as ground-
breaking as we hoped.

Constructive mathematics is alive and well. Why we did not succeed in
still a mystery.

I still feel that there is a need for constructive mathematics — and there are
constructive mathematicians around who are still producing interesting results
(see, e.g., [2, 6, 8, 9, 10]), publishing books and papers, organizing conferences.

Let us hope. So maybe there will be a second coming of constructivism?
Let us hope, and — more importantly — let us work together to make it
happen.

21This was even more appalling to me, since xerox services were highly rationed, I could
rarely get a copy of needed papers, but the KGB seemed to be an unlimited ability to copy
everything we sent.
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