
Why Ricker Wavelets Are Successful in

Processing Seismic Data: Towards a Theoretical

Explanation

Afshin Gholamy and Vladik Kreinovich
Computational Science Program
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

afshingholamy@gmail.com, vladik@utep.edu

Abstract

In many engineering applications ranging from engineering seismology
to petroleum engineering and civil engineering, it is important to process
seismic data. In processing seismic data, it turns out to be very efficient
to describe the signal’s spectrum as a linear combination of Ricker wavelet
spectra Fi(ω) = ω2 · exp(−ci · ω2). In this paper, we provide a possible
theoretical explanation for this empirical efficiency.

1 Formulation of the Problem: Seismic Waves
and the Empirical Success of Ricker Wavelets

Seismic data is very useful. Already ancient scientists noticed that earth-
quakes generate waves which can be detected at large distances from the their
origin. These waves were called seismic waves, after the Greek word “seismos”
meaning an earthquake.

After a while, scientists realized that from the seismic waves, we can ex-
tract not only important information about earthquakes, but also information
about the media through which these waves propagate. Different layers reflect,
refract, and/or delay signals differently, so by observing the coming waves, we
can extract a lot of information about these layers. Since earthquakes are rare,
geophysicists set up small artificial explosions or vibrations that also serve as a
source of seismic waves.

The resulting seismic information helps geophysicists, petroleum and mining
engineers, hydrologists to find mineral deposits and underground water reser-
voirs, helps civil engineers get a good understanding of the stability of the
underground layers below the future structure (e.g., a building, a dam, or a
landfill) [1, 5, 18], etc.; see, e.g., [13].
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In particular, computational intelligence techniques are actively used in pro-
cessing seismic data; see, e.g., [6] and references therein.

Ricker wavelet: reminder. To describe how the amplitude x(t) of a seismic
signal changes with time t, N. Ricker proposed, in his 1953 paper [15], to use a
linear combination of wavelets of the type

x(t) =

(
1− (t− t0)

2

σ2

)
· exp

(
− (t− t0)

2

2σ2

)
corresponding to different moments of time t0 and different values of the pa-
rameter σ describing the duration of this wavelet signal.

The power spectrum S(ω) of this wavelet has the form

S(ω) = K · ω2 · exp(−c · ω2),

where c = σ2 and K is a constant.

Ricker wavelets have been empirically successful. Since the original
Ricker’s paper, Ricker wavelets have been successfully used in processing seismic
signal; see, e.g., [2, 3, 4, 5, 8, 9, 11, 12, 17, 19] (see especially [4]). Ricker wavelet
are also actively used when computational intelligence techniques are used for
processing seismic data; see, e.g., [6].

Specifically, in line with Ricker’s suggestion, the power spectrum S(ω) of
the seismic signal is represented as a linear combination of power spectra cor-
responding to Ricker wavelets:

S(ω) ≈
n∑

i=1

Ki · ω2 · exp(−ci · ω2). (1)

To describe each spectrum term Ki · ω2 · exp(−ci · ω2), we need to use two
parameters: Ki and ci. Thus, overall, we need 2n parameters in the above
approximation (1), where n is the number of terms used in this approximation.

This Ricker wavelet approximation is often empirically successful in the sense
that for the same approximation accuracy, it usually requires fewer parameters
than other possible approximations.

Need for a theoretical explanation. Empirical studies have shown that
Ricker wavelets, in general, lead to a better approximation of the seismic spectra
than other families of approximating functions. However, in principle, there are
many possible families of approximating functions, and only few of these families
were actually tested.

So, a natural question arises: are Ricker wavelets indeed the best (in some
reasonable sense) or are they just a good approximation to some even better
(not yet known) family of approximating functions?

To answer this question, we will perform a theoretical analysis of the prob-
lem, and we will show that, in some reasonable sense, Ricker wavelets are the
best. Specifically, our analysis of the problem of approximating seismic spec-
tra will lead us to several reasonable properties that the approximating family
must satisfy; then, we will show that Ricker wavelets are the only approximating
family which satisfies these properties.
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2 Analysis of the Problem

How each propagation layer affects the seismic signal. Layers are not
homogeneous. As a result, the same seismic signal, when passing through differ-
ent locations on the same layer, can experience somewhat different time delays.
Hence, even when we start with a pulse signal, a signal which is different from
0 only at one moment of time t, this pulse comes to the next point via sev-
eral possible trajectories on each of which the time delay is slightly different.
Thus, a unit pulse signal at moment 0 is transformed into a signal m(t) which
is distributed in time.

Seismic signals are weak. For weak signals, we can expand the dependence
of the output on the input in Taylor series and keep only linear terms in this
expansion. Thus, the output signal linearly depends on the input one. Hence, if
a unit pulse gets transformed into a signalm(t), a pulse of size x get transformed
into a signal m(t) · x.

In seismic measurements, the media does not change with time. So, if we
shift the original pulse signal s seconds in time, making it a unit pulse at size
x at moment s, the transformed signal will also be equal to the similar shift of
the signal m(t) · x, i.e., to the signal m(t− s) · x.

In the discrete-time approximation, with a time step ∆t, an arbitrary signal
x(t) can be represented as a sum of pulses of size x(s) occurring at different
moments of time s. Each such pulse leads to the transformed signalm(t−s)·x(s).
Thus, due to linearity, the sum of the pulses gets transformed into the sum of
such transformed signals, i.e., into

∑
s
m(t−s) ·x(s), when the sum is taken over

the grid with width ∆t. In the limit when ∆t → 0, we get a more and accurate
representation of the original signal x(t) and thus, a more and more accurate
representation of the transformed signal.

One can easily see that the sum
∑
s
m(t− s) · x(s) is an integral sum for an

integral
∫
m(t − s) · x(s) ds, and the limit ∆t → 0, the sum does tends to the

integral. Thus, each layer transforms the original signal x(t) into the new signal∫
m(t− s) · x(s) ds; (2)

for details, see, e.g., [7, 13].

What is the joint effect of propagating the signal through several
layers? Let us assume that we started with the signal x0(t). This signal passes
through the first layer, and is thus transformed into

x1(t) =

∫
m1(t− s) · x0(s) ds. (3)

The resulting signal x1(t) then passes through the second layer, and is, thus,
transformed into

y(t) =

∫
m2(t− s) · x1(s) ds. (4)
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Substituting the expression (3) into the formula (4), we conclude that

y(t) =

∫
m2(t− s) ·m1(s− u) · x0(u) ds du,

i.e., that

y(t) =

∫
m(t− u) · x0(u) du, (5)

where we denoted

m(t) =

∫
m1(s) ·m2(t− s) ds. (6)

The formula (6) is known as the convolution of two functions m1(t) and m2(s)
corresponding to the two layers.

Similarly, the joint effect of several layers can be described by a formula (5)
in which the corresponding function m(t) is a convolution of functions mi(t)
corresponding to all the layers. So, to describe the joint effect of propagating
the signal through several layers, we need to describe convolutions of several
functions.

How to describe convolutions of several functions? Let us use the
fact that a similar problem has been solved in probability theory.
To describe the convolution of several functions, we can use the fact that a
similar problem has already been solved in another area of applied mathematics
– namely, in probability theory; see, e.g., [16].

Namely, it is known that if we have two independent random variables x1

and x2 described by the probability density functions (pdf’s) ρ1(x1) and ρ2(x2),
then the probability density function ρ(x) describing their sum x = x1 + x2 is
equal to the convolution of the probability density functions corresponding to
these variables:

ρ(x) =

∫
ρ1(x1) · ρ2(x− x1) dx1.

Similarly, the probability distribution function ρ(x) corresponding to the sum
x = x1+. . .+xN of a large numberN of independent random variables described
by pdf’s ρi(xi) is equal to the convolution of all n pdf’s ρi(xi).

So, from the mathematical viewpoint, analyzing the effect of propagating a
signal through many layers is equivalent to analyzing the distribution of the sum
of several random variables. For the sum of random variables, the distribution
is known: namely, according to the Central Limit Theorem, if we have a large
number of small independent random variables, then the distribution for their
sum is close to Gaussian (normal) – and the more variables we add, the closer
it it to normal.

The zone through which a seismic signal propagates can be divided into
as many layers as we want – by simply considering narrower and narrower
layers. When the layer is very thin, it practically does not affect the signal,
i.e., its effect mi(t) is located in the close vicinity of 0. In probabilistic terms,
if the non-zero values of a pdf ρi(xi) are located mostly in the vicinity of xi ≈
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0, this means that the corresponding random variable is indeed small. Thus,
the desired convolution is equivalent to the sum of large number independent
small random variables – and hence, the joint effect is indeed described by the
Gaussian formula

m(t) = C · exp
(
− t2

2σ2

)
(7)

for appropriate values C and σ; see, e.g., [14].

Fourier transform helps to compute convolution. According to the for-
mula (5), the observed signal y(t) is the convolution of the original signal x(t)
and the functions m(t) describing the layers through which the signal propa-
gates.

From the computational viewpoint, computing the convolution directly is
rather time-consuming: if we know the values x(t) and m(t) at n moments of
time, then, to compute each of n values y(t) corresponding to these moments
of time, we need to perform n multiplications m(t − s) · x(s) and n additions
adding these products together. Since we need n computational steps for each
of n values y(t), we thus need n · n = n2 computational steps to compute all
the values y(t), i.e., to compute the entire transformed signal. For large n, this
may take too long.

We can, however, speed up computations by taking into account that the
Fourier transform of the convolution is simply equal to the product of Fourier
transforms. This fact is the easiest to illustrate on the example of convolution
of pdfs. A Fourier transform of a function f(x) is defined as the integral

F (ω) =

∫
exp(−i · ω · x) · f(x) dx,

where we denoted i
def
=

√
−1. In particular, when f(x) is the probability density

function ρ(x), we get

F (ω) =

∫
exp(−i · ω · x) · ρ(x) dx.

One can see that this integral is equal to the expected value of the corresponding
exponential function:

F (ω) = E[exp(−i · ω · x)].
Similarly, the Fourier transforms F1(ω) and F2(ω) of the probability density
functions ρ1(x) and ρ2(x) can be described as

F1(ω) = E[exp(−i · ω · x1)] and

F2(ω) = E[exp(−i · ω · x2)].

When x = x1 + x2, then exp(−i · ω · x) = exp(−i · ω · x1) · exp(−i · ω · x2). Since
x1 and x2 are independent, the expected value of the product is equal to the
product of expected values:

E[exp(−i · ω · x)] = E[exp(−i · ω · x1)] · E[exp(−i · ω · x2)],
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i.e., indeed, F (ω) = F1(ω) · F2(ω).
Thus, in terms of the Fourier transforms x̂(ω) of the original signal x(t)

and ŷ(ω) of the propagated signal y(t), the relation (5) takes the form ŷ(ω) =
m̂(ω) · x̂(ω), where m̂(ω) is the Fourier transform of the Gaussian function (7).
It is known that the Fourier transform of the Gaussian function (7) is also

Gaussian, m̂(ω) = const · exp
(
−1

2
· σ2 · ω2

)
. Thus, we conclude that

ŷ(ω) = const · exp
(
−1

2
· σ2 · ω2

)
· x̂(ω). (8)

Relation between power spectra. We are interested in the power spectrum,
which is the square of the absolute value of Fourier transform. The power
spectra for the original and the propagated signals are, by definition, equal

to X(ω)
def
= |x̂(ω)|2 and Y (ω)

def
= |ŷ(ω)|2. By taking the absolute value of

both sides of the formula (8) and squaring the results, we conclude that the
power spectrum X(ω) of the original signal and the power spectrum Y (ω) of
the propagated signal are connected by a formula

Y (ω) = const · exp(−α · ω2) ·X(ω), (9)

where we denoted α
def
= σ2.

Let us list reasonable requirement for an approximating function. We
are now ready to formulate the requirements on the approximating function.

We want to select a function F (ω) that describes observed power spectrum
of the seismic signal x(t).

The approximating function should be non-negative. First, by defini-
tion, power spectrum X(ω) is always non-negative: X(ω) ≥ 0.

It is therefore reasonable to require that the approximating function should
also be non-negative: F (ω) ≥ 0.

The approximating functions should be differentiable. A single seismic
signal comes from a single event – be it an earthquake or an artificially set
explosion. This signal quickly fades with time. It is known that when a signal
x(t) is limited in time, its Fourier transform x̂(ω) is differentiable infinite many
times. Thus, its power spectrumX(ω) = x̂(ω)·(x̂(ω))∗, where z∗ means complex
conjugation, is also differentiable.

It is therefore reasonable to require that the approximating function F (ω)
be differentiable infinitely many times.

We should select a family of approximating functions. A seismic signal
can have different amplitude. So, if x(t) is a reasonable seismic signal, then
C · x(t) is also a reasonable seismic signal, for any constant C.

For the signal x(t), the power spectrum is equal toX(ω) = |x̂(ω)|2. When we
replace the signal x(t) with the new signal x′(t) = C ·x(t), the Fourier transform
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is multiplied by the same constant C and thus, the power spectrum is multiplied
by C2. So, if X(ω) is a reasonable power spectrum, then C2 · X(ω) is also a
reasonable power spectrum. Any positive real number can be represented as
C2; thus, we can describe this property in a somewhat simpler way: if X(ω) is
a reasonable power spectrum, and K > 0, then K · X(ω) is also a reasonable
power spectrum.

If a function F (ω) is a good approximation to the power spectrum X(ω),
then for the spectrumK ·X(ω), it is reasonable to use an approximationK ·F (ω).
In these terms, what we want to select is not a single approximating function
F (ω), but rather a family of functions {K · F (ω)}K corresponding to different
values K > 0.

The approximating family should allow different time scales. Similarly,
some seismic events are happening faster, some are happening slower. If we
simply “slow down” or “speed up” a reasonable seismic signal, by replacing t
with t/c for some c > 0, then we should also get a reasonable seismic signal. In
other words, if x(t) is a reasonable seismic signal, then x(t/c) is also a reasonable
seismic signal, for any constant c > 0.

For the signal x(t/c), its Fourier transforms is equal to const ·X(c ·ω). Thus,
if X(ω) is a reasonable power spectrum, and c > 0, then const ·X(c ·ω) is also a
reasonable power spectrum. We already know that multiplication also leads to
a reasonable power spectrum, so we conclude that X(c · ω) is also a reasonable
power spectrum.

If a function F (ω) is a good approximation to the power spectrum X(ω),
then for the spectrum X(c ·ω), it is reasonable to use an approximation F (c ·ω).
Because of this, what we really want to select is a family of functions

{K · F (c · ω)}K,c

corresponding to different values K > 0 and c > 0.

Propagation of the seismic signal should keep us within the approx-
imating family. We want to approximate observed energy spectra. Different
observed energy spectra Yi(ω) are obtained from the energy spectrum X(ω) by
the formula (9) corresponding to different values α:

Y1(ω) = const · exp(−α1 · ω2) ·X(ω); (10a)

Y2(ω) = const · exp(−α2 · ω2) ·X(ω). (10b)

Without losing generality, we can assume that α1 < α2. In this case, from
formulas (10a) and (10b), we conclude that

Y2(ω) = exp(−α · ω2) · Y1(ω), (11)

where α
def
= α2 − α1.

So, if X(ω) is a reasonable power spectrum, then the function

exp(−α · ω2) ·X(ω)
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(corresponding to additional propagation) is also a reasonable power spectrum
of the seismic signal.

It is therefore reasonable to require that if F (ω) is an approximating func-
tion, then, for every α > 0, this approximation exp(−α · ω2) · F (ω) should also
belong to the approximating family {K ·F (c ·ω)}K,c, i.e., that for every α, there
should be values K(α) and c(α) (depending on α) for which

exp(−α · ω2) · F (ω) = K(α) · F (c(α) · ω). (12)

Since the function F (ω) is differentiable, it is reasonable to require that the
functions K(α) and c(α) should also be differentiable.

For α = 0, there is no need for changing anything, so we should have K(0) =
1 and c(0) = 1.

We are now ready to formulate our problem in precise terms.

3 Definitions and the Main Result

Definition 1. By an approximating family, we mean a family of functions

{K · F (c · ω)}K,c,

where F (ω) ≥ 0 is a non-negative function which is differentiable infinitely many
times, and K and c can be any positive numbers.

Comment.

• The condition that F (ω) ≥ 0 comes from the fact that we want to approx-
imate power spectra, and power spectrum is, by definition, non-negative.

• The condition that the function F (ω) be differentiable comes from the
fact that we are approximating a wavelet, i.e., a signal which is bounded
in time.

• The requirement that the approximating family contain functions K ·F (ω)
comes from the fact that seismic signals can have different amplitude.

• The requirement that the approximating family contain functions F (c ·ω)
comes from the fact that seismic signals can describe slower or faster
processes.

Definition 2. We say that an approximating family {K · F (c · ω)}K,c is prop-
agation invariant if for every α > 0, the equality (12) is satisfied for some
differentiable functions K(α) and c(α) for which K(0) = c(0) = 1.

Comment. This requirement means that if the approximating family is good
for approximating signals coming after the first propagation stage, then this
same family should also adequately describe signals which emerge from further
propagation stages.
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Discussion. One can check that the family corresponding to the Ricker wavelet
function F (ω) = ω2 · exp(−ω2) is propagation invariant: namely,

exp(−α · ω2) · F (ω) = ω2 · exp(−(1 + α) · ω2) =

1

1 + α
· ((1 + α) · ω2 · exp(−(1 + α) · ω2)) = K(α) · F (c(α) · ω),

for K(α) =
1

1 + α
and c(α) =

√
1 + α. Let us now show that the Ricker

wavelet is (almost) uniquely determined by the property of propagation invari-
ance: namely, that it is one of the simplest approximating families with this
property.

Proposition. Every propagation-invariant approximating family corresponds
to the function F (ω) = ω2n · exp(−ω2) for some natural number n = 0, 1, . . .

Discussion. The simplest case is n = 0. In this case, we get the signals which
correspond to a propagation of a simple pulse – and thus, does not reflect the
specifics of the original signal.

The simplest non-trivial case is n = 1, which is exactly the Ricker wavelet.

Proof. We know that all the functions F (ω), K(α), and c(α) are differentiable.
Thus, we can differentiate both sides of the formula (12) with respect to α. As
a result, we get the following equality:

−F (ω) · exp(−α · ω2) · ω2 = K ′(α) · F (c(α) · ω) +K(α) · F ′(c(α) · ω) · c′(α) · ω,

where K ′(α) denotes the derivative.
In particular, for α = 0, we use the fact that K(0) = c(0) = 1 to get

−F (ω) · ω2 = k · F (ω) + F ′(ω) · c · ω, (13)

where we denoted k
def
= K ′(0) and c

def
= c′(0). By moving all the terms propor-

tional to F (ω) to the left-hand side, we get

F · (−k − ω2) = c · dF
dω

· ω. (14)

To solve this differential equation, let us separate the variables, i.e., by multi-
plying both sides by appropriate factors, let move all the terms dF and F to
the right-hand side and all the other terms (including the terms related to ω
and dω) to the left-hand side. Then, we get:

1

c
· −k − ω2

ω
=

dF

F
, (15)

i.e.,

−k

c
· 1
ω

− c · ω =
dF

F
, (16)
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Integrating both sides, we get

C − k

c
· ln(ω)− c

2
· ω2 = ln(F ), (17)

for some integration constant C. By exponentiating both sides, we conclude
that

F (ω) = A · ωb · exp(−B · σ2), (18)

where A = exp(C), b = −k

c
, and B =

c

2
.

The requirement that this function be differentiable for ω = 0 leads to the
conclusion that b is a natural number. The requirement that F (ω) is non-
negative means that b is an even natural number, i.e., that b = 2n for some
natural number n.

The proposition is proven.
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