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LIKERT-SCALE FUZZY UNCERTAINTY

FROM A TRADITIONAL DECISION MAKING VIEWPOINT:

HOW SYMMETRY HELPS EXPLAIN HUMAN DECISION MAKING

(INCLUDING SEEMINGLY IRRATIONAL BEHAVIOR)

J. LORKOWSKI AND V. KREINOVICH1

Abstract. One of the main methods for eliciting the values of the membership function µ(x)
is to use the Likert scales, i.e., to ask the user to mark his or her degree of certainty by an
appropriate mark k on a scale from 0 to n and take µ(x) = k/n. In this paper, we show how to
describe this process in terms of the traditional decision making, and we onclude that the re-
sulting membership degrees incorporate both probability and utility information. It is therefore
not surprising that fuzzy techniques often work better than probabilistic techniques (which only
take into account the probability of different outcomes). We also show how symmetry helps
explain human decision making, including seemingly irrational behavior.
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1. Formulation of the Problem: Need to Reconcile Theoretical Decision
Making with Empirical Decision Making and with Fuzzy Techniques

Decisions are important. One of the main objectives of science and engineering is to help
people make decisions.

For example, we try to predict weather, so that people will be able to dress properly (and
take an umbrella if needed), and so that if a hurricane is coming, people can evacuate. We
analyze quantum effects in semi-conductors so that engineers can design better computer chips.
We analyze diseases so that medical doctors can help select the best treatment, etc.

In complex situations, people need help in making their decisions. In simple situations,
an average person can easily make a decision. For example, if the weather forecast predicts rain,
one should take an umbrella, otherwise one should not.

In more complex situations, however, even when we know all the possible consequences of each
action, it is not easy to make a decision. For example, in medicine, many treatments come with
side effects: a surgery can sometimes result in a patient’s death, immune system suppression can
result in a infectious disease, etc. In such situations, it is not easy to compare different actions,
and even skilled experts would appreciate computer-based help.

To help people make decisions, we need to analyze how people make decisions. One
of the difficulties in designing computer-based systems which would help people make decisions
is that to make such systems successful, we need to know what exactly people want when they
make decisions. Often, people cannot explain in precise terms why exactly they have selected
this or that alternative.

In such situations, we need to analyze how people actually make decisions, and then try to
come up with formal descriptions which fit the observed behavior.

1Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso, Texas 79968,
USA, e-mails: lorkowski@computer.org, vladik@utep.edu
Manuscript received xx.

1



2 APPL. COMPUT. MATH., V.XX, N.XX, 20XX

Experiments start with decision making under full information. To analyze how peo-
ple make decisions, researchers start with the simplest situations, in which we have the full
information about the situation:

• we know all possible outcomes o1, . . . , on of all possible actions;
• we know the exact value ui (e.g., monetary) of each outcome oi; and
• for each action a and to each outcome i, we know the probability pi(a) of this outcome.

Seemingly reasonable behavior. The outcome of each action a is not deterministic. For
the same action, we may get different outcomes ui with different probabilities pi(a). However,
usually similar situations are repeated again and again.

If we repeat a similar situation several times, then the average expected gain of selecting an
action a becomes close to the mathematical expectation of the gain, i.e., to the value

u(a)
def
=

n∑
i=1

pi(a) · ui.

Thus, we expect that a decision maker selects the action a for which this expected value u(a)
is the largest.

This idea is behind the traditional decision making theory; see, e.g., [6, 7, 9, 15, 23]. The
traditional decision making theory has been effectively used in business and in other decision
areas.

How people actually make decisions is somewhat different. In their famous experiments,
the Nobelist Daniel Kahneman and his co-author Amos Tversky found out that people often
deviate from the ideal (rational) behavior; see, e.g., [8] and references therein.

First problem: how can we explain this difference? How can we reconcile theoretical
decision making and empirical decision making?

Fuzzy uncertainty: a usual description. In addition to applying traditional decision theory,
another very successful way of making decisions under uncertainty is to use techniques based on
fuzzy logic and fuzzy uncertainty.

Fuzzy logic (see, e.g., [10, 21, 29]) has been designed to describe imprecise (“fuzzy”) natural
language properties like “big”, “small”, etc. In contrast to “crisp” properties like x ≤ 10 which
are either true or false, experts are not 100% sure whether a given value x is big or small. To
describe such properties P , fuzzy logic proposes to assign, to each possible value x, a degree
µP (x) to which the value x satisfies this property:

• the degree µP (x) = 1 means that we are absolutely sure that the value x satisfies the
property P ;

• the degree µP (x) = 0 means that we are absolutely sure that the value x does not satisfy
the property P ; and

• intermediate degrees 0 < µP (x) < 1 mean that we have some confidence that x satisfies
the property P but we also have a certain degree of confidence that the value x does not
satisfy this property.

How do we elicit the degree µP (x) from the expert? One of the usual ways is to use a Likert
scale, i.e., to ask the expert to mark his or her degree of confidence that the value x satisfies the
property P by one of the labels 0, 1, . . . , n on a scale from 0 to n. If an expert marks m on a
scale from 0 to n, then we take the ratio m/n as the desired degree µP (x). For example, if an
expert marks her confidence by a value 7 on a scale from 0 to 10, then we take µP (x) = 7/10.

For a fixed scale from 0 to n, we only get n+1 values this way: 0, 1/n, 2/n, . . . , (n− 1)/n =
1− 1/n, and 1. If we want a more detailed description of the expert’s uncertainty, we can use a
more detailed scale, with a larger value n.

Second problem: how can we reconcile traditional decision making theory with
fuzzy techniques? The traditional decision theory describes rational human behavior, it has
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many practical applications. On the other hand, fuzzy techniques are also very successful in
many application problems, in particular, in control and in decision making (see, e.g., [10, 21]).

It is therefore desirable to combine these two techniques, so that we would able to capitalize
on the successes of both types of techniques. To enhance this combination, it is desirable to
be able to describe both techniques in the same terms. In particular, it is desirable to describe
fuzzy uncertainty in terms of traditional decision making.

What we do in this paper. In our opinion, one of the main reasons why we still do not have
a convincing reconciliation between the traditional decision making theory and fuzzy techniques
is that there is a lot of confusion and misunderstanding about such basic notions of traditional
decision theory as utility, subjective probability, etc. – just like many decision making researchers
have misunderstandings about fuzzy techniques.

Because of this, we start, in Section 2, with providing a brief overview of the traditional
decision theory and its main concepts. A short Section 3 describes the main idea behind the
symmetry approach. In Section 4, we describe the Likert scale techniques in these terms, and we
show that, when we apply the idea of symmetry to this description, then the traditional decision
making theory leads exactly to formulas normally used in fuzzy logic. In Section 5, we show
that similar ideas of symmetry can explain another example of seemingly irrational behavior –
so-called compromise effect.

In Section 6, a similar explanation is provided for empirical decision weights discovered by
Kahneman and Tversky; this explanation is closely related to our interpretation of fuzzy tech-
niques. Finally, in Section 7, we return to the Likert-scale fuzzy uncertainty. Instead of simply
using the decisions made by experts (as we did in Section 4), this time, we use the traditional
decision making theory to analyze why people select this or that mark on a Likert scale. Our
conclusion is that the resulting membership degrees incorporate both probability and utility
information. It is therefore not surprising that fuzzy techniques often work better than proba-
bilistic techniques – which only take into account the probability of different outcomes.

Comment. Some results from this paper were first presented at major fuzzy conferences [12, 13,
14]; several other results appear in this paper for the first time.

2. Traditional Decision Theory and Its Main Concepts: A Brief Overview

Main assumption behind the traditional decision theory. Traditional approach to de-
cision making is based on an assumption that for each two alternatives A′ and A′′, a user can
tell:

• whether the first alternative is better for him/her; we will denote this by A′′ < A′;
• or the second alternative is better; we will denote this by A′ < A′′;
• or the two given alternatives are of equal value to the user; we will denote this by
A′ = A′′.

Towards a numerical description of preferences: the notion of utility. Under the above
assumption, we can form a natural numerical scale for describing preferences. Namely, let us
select a very bad alternative A0 and a very good alternative A1. Then, most other alternatives
are better than A0 but worse than A1.

For every probability p ∈ [0, 1], we can form a lottery L(p) in which we get A1 with probability
p and A0 with probability 1− p.

• When p = 0, this lottery coincides with the alternative A0: L(0) = A0.
• When p = 1, this lottery coincides with the alternative A1: L(1) = A1.

For values p between 0 and 1, the lottery is better than A0 and worse than A1. The larger the
probability p of the positive outcome increases, the better the result:

p′ < p′′ implies L(p′) < L(p′′).
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Thus, we have a continuous scale of alternatives L(p) that monotonically goes from L(0) = A0

to L(1) = A1. We will use this scale to gauge the attractiveness of each alternative A.
Due to the above monotonicity, when p increases, we first have L(p) < A, then we have

L(p) > A, and there is a threshold separating values p for which L(p) < A from the values p for
which L(p) > A. This threshold value is called the utility of the alternative A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

We will describe such (almost) equivalence by ≡, i.e., we will write that A ≡ L(u(A)).

How to elicit the utility from a user: a fast iterative process. Initially, we know the
values u = 0 and u = 1 such that A ≡ L(u(A)) for some u(A) ∈ [u, u].

On each stage of this iterative process, once we know values u and u for which u(A) ∈ [u, u], we
compute the midpoint umid of the interval [u, u] and ask the user to compare A with the lottery
L(umid) corresponding to this midpoint. There are two possible outcomes of this comparison:
A ≤ L(umid) and L(umid) ≤ A.

• In the first case, the comparison A ≤ L(umid) means that u(A) ≤ umid, so we can
conclude that u ∈ [u, umid].

• In the second case, the comparison L(umid) ≤ A means that umid ≤ u(A), so we can
conclude that u ∈ [umid, u].

In both cases, after an iteration, we decrease the width of the interval [u, u] by half. So, after
k iterations, we get an interval of width 2−k which contains u(A) – i.e., we get u(A) with
accuracy 2−k.

How to make a decision based on utility values. Suppose that we have found the utilities
u(A′), u(A′′), . . . , of the alternatives A′, A′′, . . .Which of these alternatives should we choose?

By definition of utility, we have:

• A ≡ L(u(A)) for every alternative A, and
• L(p′) < L(p′′) if and only if p′ < p′′.

We can thus conclude that A′ is preferable to A′′ if and only if u(A′) > u(A′′). In other words,
we should always select an alternative with the largest possible value of utility. So, to find the
best solution, we must solve the corresponding optimization problem.

Before we go further: caution. We are not claiming that people estimate probabilities when
they make decisions: we know they often don’t. Our claim is that when people make definite
and consistent choices, these choices can be described by probabilities. (Similarly, a falling rock

does not solve equations but follows Newton’s equations ma = m
d2x

dt2
= −mg.) In practice,

decisions are often not definite (uncertain) and not consistent.

How to estimate utility of an action. For each action, we usually know possible outcomes
S1, . . . , Sn. We can often estimate the probabilities p1, . . . , pn of these outcomes.

By definition of utility, each situation Si is equivalent to a lottery L(u(Si)) in which we get:

• A1 with probability u(Si) and
• A0 with the remaining probability 1− u(Si).

Thus, the original action is equivalent to a complex lottery in which:

• first, we select one of the situations Si with probability pi: P (Si) = pi;
• then, depending on Si, we get A1 with probability P (A1 |Si) = u(Si) and A0 with
probability 1− u(Si).
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The probability of getting A1 in this complex lottery is:

P (A1) =
n∑

i=1

P (A1 |Si) · P (Si) =
n∑

i=1

u(Si) · pi.

In this complex lottery, we get:

• A1 with probability u =
n∑

i=1
pi · u(Si), and

• A0 with probability 1− u.

So, the utility of the complex action is equal to the sum u.
From the mathematical viewpoint, the sum defining u coincides with the expected value of

the utility of an outcome. Thus, selecting the action with the largest utility means that we
should select the action with the largest value of expected utility u =

∑
pi · u(Si).

Subjective probabilities. In practice, we often do not know the probabilities pi of different
outcomes. How can we gauge our subjective impressions about these probabilities?

For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g.,
$1) and compare:

• a lottery ℓE in which we get the fixed prize if the event E occurs and 0 is it does not
occur, with

• a lottery ℓ(p) in which we get the same amount with probability p.

Here, similarly to the utility case, we get a value ps(E) for which, for every ε > 0:

ℓ(ps(E)− ε) < ℓE < ℓ(ps(E) + ε).

Then, the utility of an action with possible outcomes S1, . . . , Sn is equal to u =
n∑

i=1
ps(Ei) ·u(Si).

Auxiliary issue: almost-uniqueness of utility. The above definition of utility u depends
on the selection of two fixed alternatives A0 and A1. What if we use different alternatives A′

0

and A′
1? How will the new utility u′ be related to the original utility u?

By definition of utility, every alternative A is equivalent to a lottery L(u(A)) in which we get
A1 with probability u(A) and A0 with probability 1− u(A). For simplicity, let us assume that
A′

0 < A0 < A1 < A′
1. Then, for the utility u′, we get A0 ≡ L′(u′(A0)) and A1 ≡ L′(u′(A1)). So,

the alternative A is equivalent to a complex lottery in which:

• we select A1 with probability u(A) and A0 with probability 1− u(A);
• depending on which of the two alternatives Ai we get, we get A

′
1 with probability u′(Ai)

and A′
0 with probability 1− u′(Ai).

In this complex lottery, we get A′
1 with probability u′(A) = u(A) · (u′(A1) − u′(A0)) + u′(A0).

Thus, the utility u′(A) is related with the utility u(A) by a linear transformation u′ = a · u+ b,
with a > 0.

Traditional approach summarized. We assume that

• we know possible actions, and
• we know the exact consequences of each action.

Then, we should select an action with the largest value of expected utility.

3. Symmetry Idea: A Brief Description

General idea. In many, what is often helpful is a symmetry approach.
The main idea behind this approach is that if the situation is invariant with respect to some

natural symmetries, then it is reasonable to select an action which is also invariant with respect
to all these symmetries.
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Laplace Indeterminacy Principle as an example of the symmetry approach. Let
us assume that we have n possible alternatives A1, A2, . . . , An, and we have no information
about the probabilities of different alternatives. To make decisions, we need to assign subjective

probabilities ps(Ai) to these alternatives – in such a way that
n∑

i=1
ps(Ai) = 1.

In this case, since we have no reason to prefer one alternative to another, we can conclude
that this situation has natural symmetries: namely, permutations, such as a permutation that
simply swaps two alternatives Ai and Aj .

The symmetry approach implies that the subjective probabilities ps(Ai) should not change
under these perturbations. In particular, from the fact that the subjective probabilities should
not change after the swap between Ai and Aj , we can conclude that ps(Ai) = ps(Aj) for every
two alternatives Ai and Aj .

Since all n subjective probabilities are equal to each other, and their sum is equal to 1, thus

each of these probabilities is equal to ps(Ai) =
1

n
. This conclusion is known (and used) for

many centuries. It was first explicitly formulated by P.-S. Laplace and is thus known as Laplace
Indeterminacy Principle.

Thus, this known principle is indeed an example of the symmetry approach.

The symmetry approach has been helpful in dealing with uncertainty. There have been
many applications of this approach. In particular, it has been shown that for many empirically
successful techniques related to neural networks, fuzzy logic, and interval computations, their
empirical success can be explained by the fact that these techniques can be deduced from the
appropriate symmetries; see, e.g., [18]. In particular, this explains the use of a sigmoid activation

function s(z) =
1

1 + exp(−z)
in neural networks, the use of the most efficient t-norms and t-

conorms in fuzzy logic, etc.

4. How to Transform Labels from a Likert Scale into Uncertainty Degrees:
Fuzzy Technique Reconciled with the Traditional Decision Making Approach

Transforming labels on a Likert scale into uncertainty degrees: formulation of the
problem. A Likert scale is a sorted list of labels. Let us denote the number of labels on this
list by n. In these terms, e.g., a Likert scale for uncertainty is a list of n labels sorted in the
increased order of certainty:

• the first label corresponds to the smallest certainty,
• the second label corresponds to the second smallest certainty,
• etc.,
• until we reach the last label which corresponds to the largest certainty.

According to the traditional decision making theory approach, we need to describe these levels
of certainty by numerical degrees (what the traditional decision making theory calls subjective
probabilities). In other words, for each i from 1 to n, we need to assign, to each i-th label, a
value pi in such a way that labels corresponding to higher certainty should get larger numbers:
p1 < p2 < . . . < pn.

How can we do it?

Technical comment: from exact real numbers to computer-representable real num-
bers. One of the main objectives of assigning numerical values to different degrees is the same
objective that motivated fuzzy logic in the first place:

• we want computers to help us solve the corresponding decision problems, and
• computers are not very good in dealing with labels on a scale; their natural language is
the language of numbers.
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From this viewpoint, it makes sense to consider not all theoretically possible exact real numbers,
but only computer-representable real numbers.

In a computer, real numbers from the interval [0, 1] are usually represented by the first d

digits of their binary expansion. Thus, computer-representable numbers are 0, h
def
= 2−d, 2h, 3h,

. . . , until we reach the value 2d · h = 1.
In our analysis, we will assume that the “machine unit” h > 0 is fixed, and we will this assume

that only multiples of this machine units are possible values of all n probabilities pi.

Illustrative example. When h = 0.1, each probability pi takes 11 possible values: 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

Comment. In the modern computers, the value h is extremely small; thus, whenever necessary,
we can assume that h ≈ 0 – i.e., use limit case of h → 0 instead of the actual small “machine
unit” h.

Possible combinations of probabilities. For each h, we consider all possible combinations
of probabilities p1 < . . . < pn in which all the numbers pi are proportional to the selected step
h, i.e., all possible combinations of values (k1 · h, . . . , kn · h) with k1 < . . . < kn.

Example. When n = 2 and h = 0.1, we consider all possible combinations of values (k1 ·h, k2 ·h)
with k1 < k2:

• For k1 = 0 and p1 = 0, we have 10 possible combinations (0, 0.1), (0, 0.2), . . . , (0, 1).
• For k1 = 1 and p1 = 0.1, we have 9 possible combinations (0.1, 0.2), (0.1, 0.3), . . . ,
(0.1, 1).

• . . .
• Finally, for k1 = 9 and p1 = 0.9, we have only one possible combination (0.9, 1).

How to assign probabilities: an approach based on the traditional decision theory.
As we have describes in Section 2, in the traditional decision theory, subjective probabilities are
defined, in effect, as utilities of the corresponding lotteries.

For each i, for different possible combinations (p1, . . . , pn), we get different value of this utility
pi. According to the traditional decision theory, the proper utility value Pi to assign to the i-th
label should be the expected utility, i.e., the weighted combination of the values pi assigned by
different combinations, with the probability of each combination as a weight.

So, to find the desired values Pi, we need to assign probabilities to different combinations
(p1, . . . , pn).

How to assign probabilities to different combinations: let us use symmetry. Since we
have no reason to believe that some combinations (p1, . . . , pn) are more probable and some are
less probable, it is thus reasonable to assume that all these combinations are equally probable –
this is exactly what the symmetry idea (as described in Section 3) prescribes in such cases.

Let us use this assumption to estimate Pi.

Example. For n = 2 and h = 0.1, we thus estimate P1 by taking an arithmetic average of the
values p1 corresponding to all possible pairs. Specifically, we average:

• ten values p1 = 0 corresponding to ten pairs (0, 0.1), . . . , (0, 1);
• none values p1 = 0.1 corresponding to nine pairs (0.1, 0.2), . . . , (0.1, 1);
• . . .
• and a single value p1 = 0.9 corresponding to the single pair (0.9, 1).

As a result, we get the value

P1 =
10 · 0.0 + 0 · 0.1 + . . .+ 1 · 0.9

10 + 9 + . . .+ 1
=

16.5

55
= 0.3.

Similarly, to get the value p2, we average:

• a single value p2 = 0.1 corresponding to the single pair (0, 0.1);
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• two values p2 = 0.2 corresponding to two pairs (0, 0.2) and (0.1, 0.2);
• . . .
• ten values p2 = 1.0 corresponding to ten pairs (0, 1), . . . , (0.9, 1).

As a result, we get the value

P2 =
1 · 0.1 + 2 · 0.2 + . . .+ 10 · 1.0

1 + 2 + . . .+ 10
=

37.5

55
= 0.7.

Estimating Pi: towards a precise formulation of the problem. The probability pi of
each label can take any of the equidistant values 0, h, 2h, 3h, . . . , with equal probability. In
the limit h → 0, the resulting probability distribution tends to the uniform distribution on the
interval [0, 1].

In this limit h → 0, we get the following problem:

• we start with n independent random variable v1, . . . , vn which are uniformly distributed
on the interval [0, 1];

• we then need to find, for each i, the conditional expected value E[vi | v1 < . . . < vn] of
each variable vi under the condition that the values vi are sorted in increasing order.

Estimating Pi: solving the problem. Conditional expected values are usually more difficult
to compute than unconditional ones. So, to solve our problem, let us reduce our problem to the
problem of computing the unconditional expectation.

Let us consider n independent random variables each of which is uniformly distributed on the
interval [0, 1]. One can easily check that for any two such variables vi and pj , the probability
that they are equal to each other is 0. Thus, without losing generality, we can safely assume that
all n random values are different. Therefore, the whole range [0, 1]n is divided into n! sub-ranges
corresponding to different orders between vi. Each sub-range can be reduced to the sub-range
corresponding to v1 < . . . < vn by an appropriate permutation in which v1 is swapped with the
smallest v(1) of n values, v2 is swapped with the second smallest v(2), etc.

Thus, the conditional expected value of vi is equal to the (unconditional) expected value of
the i-th value v(i) in the increasing order. This value v(i) is known as an order statistic, and for
uniform distributions, the expected values of all order statistics are known (see, e.g., [1, 2, 5]):

Pi =
i

n+ 1
.

Resulting formula. If all we know is that our degree of certainty is expressed by i-th label on

an n-label Likert scale, then we should assign, to this case, the degree of certainty pi =
i

n+ 1
.

Relation with fuzzy logic. For the scale from 0 to m, the total number of labels is n = m+1,
and each label j is the (j+1)-st in increasing order. Thus, we should assign, to this label j, the

degree pj =
j + 1

m+ 2
.

This value is very close to the usual assignment pj =
j

m
, especially when m is large. Thus,

the usual fuzzy assignment can indeed be justified by the traditional decision theory approach.

5. Symmetry Approach Helps Explain Seemingly Irrational Human Behavior:
A Case Study

Customers make decisions. A customer shopping for an item usually has several choices.
Some of these choices have better quality, leading to more possibilities, etc. – but are, on the
other hand, more expensive. For example, a customer shopping for a photo camera has plenty
of choices ranging from the cheapest one, whose photos are good, to very professional cameras
enabling the user to make highest-quality photos, even under complex circumstances. A person
planning to spend a night at a different city has a choice from the cheapest motels which provide
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a place to sleep to luxurious hotels providing all kinds of comfort, etc. A customer selects one
of the alternatives by taking into account the additional advantages of more expensive choices
versus the need to pay more money for these choices.

It is important to understand customer’s decisions. Whether we are motivated by a
noble goal of providing alternatives which are the best for the customers – or whether a company
wants to make more money by providing what is wanted by the customers – it is important to
understand how customers make decisions.

Experimental studies. In many real-life situations, customers face numerous choices. As
usual in science, a good way to understand complex phenomena is to start by analyzing the
simplest cases. In line with this reasoning, researchers provided customers with two alternatives
and recorded which of these two alternatives a customer selected. In many particular cases,
these experiments helped better understand the customer’s selections – and sometimes even
predict customer selections.

At first glance, it seems like such pair-wise comparisons are all we need to know: if a customer
faces several choices a1, a2, . . . , an, then a customer will select an alternative ai if and only if
this alternative is better in pair-wise comparisons that all other possible choices. To confirm
this common-sense idea, in the 1990s, several researchers asked the customers to select one of
the three randomly selected alternatives.

What was expected. The experimenters expected that since the three alternatives were
selected at random, a customers would:

• sometimes select the cheapest of the three alternative (of lowest quality of all three),
• sometimes select the intermediate alternative (or intermediate quality), and
• sometimes select the most expensive of the three alternatives (of highest quality of
all three).

What was observed. Contrary to the expectations, the experimenters observed that in the
overwhelming majority of cases, customers selected the intermediate alternative; see, e.g., [24,
25, 28]. In all these cases, the customer selected an alternative which provided a compromise
between the quality and cost; because of this, this phenomenon was named compromise effect.

Why is this irrational? At first glance, selecting the middle alternative is reasonable. How-
ever, it is not.

For example, let us assume that we have four alternative a1 < a2 < a3 < a4 ordered in the
increasing order of price and at the same time, increasing order of quality. Then:

• if we present the user with three choices a1 < a2 < a3, in most cases, the user will select
the middle choice a2; this means, in particular, that, to the user, a2 better than the
alternative a3;

• on the other hand, if we present the user with three other choices a2 < a3 < a4, in most
cases, the same user will select the middle choice a3; but this means that, to the user,
the alternative a3 better than the alternative a2.

If in a pair-wise comparison, a2 is better, then the second choice is wrong. If in a pair-wise
comparison, the alternative a3 is better, then the first choice is wrong. In both cases, one of the
two choices is irrational.

This is not just an experimental curiosity, customers’ decisions have been manip-
ulated this way. At first glance, the above phenomena may seem like one of optical illusions
or logical paradoxes: interesting but not that critically important. Actually, it is serious and
important, since, according to anecdotal evidence, many companies have tried to use this phe-
nomenon to manipulate the customer’s choices: to make the customer buy a more expensive
product.
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For example, if there are two possible types of a certain product, a company can make sure
that most customers select the most expensive type – simply by offering, as the third option, an
even more expensive type of the same product.

Manipulation possibility has been exaggerated. Recent research shows that manipulation
is not very easy: the compromise effect only happens when a customer has no additional infor-
mation – and no time (or no desire) to collect such information. In situations when customers
were given access to additional information, they selected – as expected from rational folks –
one of the three alternatives with almost equal frequency, and their pairwise selections, in most
cases, did not depend on the presence of any other alternatives; see, e.g., [27].

Compromise effect: mystery remains. The new experiment shows that the compromise
effect is not as critical and not as wide-spread as it was previously believed. However, in situation
when decisions need to be made under major uncertainty, this effect is clearly present – and its
seemingly counterintuitive, inconsistent nature is puzzling.

How can we explain such a seemingly irrational behavior?

It is possible to find a rational explanation for such a behavior. In this section, we use
symmetry to show that it is possible to find a rational explanation for such a behavior.

Comment. This section focuses on one specific example of a seemingly irrational behavior. We
should emphasize, however, that there are many well-known examples of such behavior; see, e.g.,
[8] and references therein. These examples cover both seemingly irrational individual choices
and seemingly irrational group choices.

In some cases, a seemingly irrational behavior can be explained in rational terms – sometimes,
by using fuzzy techniques; see, e.g., [12, 13]. In particular, many seeming paradoxes related to
group decision making – paradoxes related to Arrow’s impossibility result – can be explained if
instead of simply recording which participant prefers which alternative, we also take into account
the degree to which to each participants prefer one alternative to another (see, e.g., [17]) – in
line with Zadeh’s idea pioneered in [3, 4, 30, 31, 32, 33].

It should be also mentioned that many instances of human behaviors are indeed irrational –
in the sense that humans sometimes select actions which are detrimental to the decision maker’s
own interests. There are many examples of such actions, from irrational decision making in
simple economic situations to self-damaging behavior related to drug and alcohol addiction.

For purposes of this explanation, we concentrate only on one specific case of seemingly irra-
tional human behavior.

Description of the situation. We have three alternative a, a′ and a′′:

• the alternative a is the cheapest – and is, correspondingly, of the lowest quality among
the give there alternatives;

• the alternative a′ is intermediate in terms of price – and is, correspondingly, intermediate
in terms of quality;

• finally, the alternative a′′ is the most expensive – and is, correspondingly, of the highest
quality among the give there alternatives.

What do we know about the utility of each alternative. The utility of each alternatives
comes from two factors:

• the first factor comes from the quality: the higher the quality, the better – i.e., larger
the corresponding component u1 of the utility;

• the second factor comes from price: the lower the price, the better for the user – i.e.,
the larger the corresponding component u2 of the utility.

In the first experiments which established the compromise effect, the users did not have enough
time and/or information to find the corresponding utility values ui, u

′
i, and u′′i corresponding

to different alternatives. Also, we do not know how, for each alternative, the corresponding
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components u1 and u2 are combined into a single utility value characterizing this alternative –
we do not even know which of the two components is more important.

Since we do not know how utility components are combined, a reasonable way to represent
each alternative is by assigning to it a pair consisting of the two component utilities:

• to the alternative a, we assign the pair of values (u1, u2);
• to the alternative a′, we assign the pair of values (u′1, u

′
2); and

• to the alternative a′′, we assign the pair (u′′1, u
′′
2).

We do not know the actual values of the component utilities, all we know is the relative order
of the corresponding values: namely, we know that u1 < u′1 < u′′1 and u′′2 < u′2 < u2. Since we
do not know the actual values of each utility component, the only we know about each of these
values is whether this value is:

• the lowest of the three values; we will denote such a value by L;
• the intermediate (median) value; we will denote such a value by M ; and
• the highest of the three values; we will denote such a value by H.

In these terms, we have:

• for the first utility component, u1 = L, u′1 = M , and u′′1 = H;
• for the second utility component: u2 = H, u′2 = M , and u′′2 = L.

In these terms, the above description of each alternative by the corresponding pair of utility
values takes the following form:

• the alternative a is characterized by the pair (L,H);
• the alternative a′ is characterized by the pair (M,M); and
• the alternative a′′ is characterized by the pair (H,L).

Natural transformations and natural symmetries. As we have mentioned, we do not know
a priori which of the utility components is more important. As a result, it is reasonable to treat
both components equally. So, swapping the two components is a reasonable transformation, in
the sense that we should select the same of three alternatives before and after swap:

• if we are selecting an alternative based on the pairs (L,H), (M,M), and (H,L),
• then we should select the exact same alternative if the pairs were swapped, i.e., if:

– the alternative a was characterized by the pair (H,L);
– the alternative a′ was characterized by the pair (M,M); and
– the alternative a′′ was characterized by the pair (L,H).

Similarly, there is no reason to a priori prefer one alternative versus the other. So, the
selection should not depend on which of the alternatives we mark as a, which we mark as
a′, and which we mark as a′′. In other words, any permutation of the three alternatives is
a reasonable transformation. For example, if, in our case, we select an alternative a which is
characterized by the pair (L,H), then, after we swap a and a′′ and get the choice of the following
three alternatives:

• the alternative a which is characterized by the pair (H,L);
• the alternative a′ is characterized by the pair (M,M); and
• the alternative a′′ is characterized by the pair (L,H),

then we should select the same alternative – which is now denoted by a′′.

What can be conclude based on these symmetries. Now, we can observe the following:
that if we both swap u1 and u2 and swap a and a′′, then you get the exact same characterization
of all alternatives:

• the alternative a is still characterized by the pair (L,H);
• the alternative a′ is still characterized by the pair (M,M); and
• the alternative a′′ is still characterized by the pair (H,L).

The only difference is that:
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• now, a indicates an alternative which was previously denoted by a′′, and
• a′′ now denotes the alternative which was previously denoted by a.

As we have mentioned, it is reasonable to conclude that:

• if in the original triple selection, we select the alternative a,
• then in the new selection – which is based on the exact same pairs of utility values – we
should also select an alternative denoted by a.

But this “new” alternative a is nothing else but the old a′′. So, we conclude that:

• if we selected a,
• then we should have selected a different alternative a′′ in the original problem.

This is clearly a contradiction:

• we started by assuming that, to the user a was better than a′′ (because otherwise a
would not have been selected in the first place), and

• we ended up concluding that to the same user, the original alternative a′′ is better than
a.

This contradiction shows that, under the symmetry approach, we cannot prefer a.
Similarly:

• if in the original problem, we preferred an alternative a′′,
• then this would mean that in the new problem, we should still select an alternative which
marked by a′′.

But this “new” a′′ is nothing else but the old a. So, this means that:

• if we originally selected a′′,
• then we should have selected a different alternative a in the original problem.

This is also a contradiction:

• we started by assuming that, to the user a′′ was better than a (because otherwise a′′

would not have been selected in the first place), and
• we ended up concluding that to the same user, the original alternative a is better than
a′′. This contradiction shows that, under the symmetry approach, we cannot prefer a′′.

We thus conclude that out of the three alternatives a, a′, and a′′:

• we cannot select a, and
• we cannot select a′′.

This leaves us only once choice: to select the intermediate alternative a′. This is exactly the
compromise effect that we planned to explain.

Conclusion. Experiments show when people are presented with three choices a < a′ < a′′ of
increasing price and increasing quality, and they do not have detailed information about these
choices, then in the overwhelming majority of cases, they select the intermediate alternative a′.

This “compromise effect” is, at first glance, irrational: selecting a′ means that, to the user, a′

is better than a′′, but in a similar situation when the user is presented with a′ < a′′ < a′′′, the
same principle would indicate that the user will select a′′ – meaning that a′′ is better than a′.

Somewhat surprisingly, a natural symmetry approach explains this seemingly irrational be-
havior.

6. How to Explain Kahmenan and Tversky’s Empirical Decision Weights

How people actually make decisions. Based on the arguments of the traditional decision
making theory, we expect that a decision maker selects the action a for which this expected
value u(a) is the largest.

However, in their famous experiments, the Nobelist Daniel Kahneman and his co-author
Amos Tversky found out that a much more accurate description of human decision making can
be obtained if we assume that, instead of maximizing the expected gain, people maximize a
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weighted gain, with weights determined by the corresponding probabilities; see, e.g., [8] and
references therein.

In other words, people select the action a for which the weighted gain

w(a)
def
=

∑
i

wi(a) · ui

attains the largest possible value, where wi(a) = f(pi(a)) for an appropriate function f(x).
This empirical transformation f(x) from probabilities to weights takes the following form:

probability 0 1 2 5 10 20 50 80 90 95 98 99 100
weight 0 5.5 8.1 13.2 18.6 26.1 42.1 60.1 71.2 79.3 87.1 91.2 100

How can we explain this empirical transformation? There are qualitative explanations
for this phenomenon, but not the quantitative one.

So, we propose a quantitative explanation – related to the fuzzy logic ideas.

Main idea. The main idea behind our explanation is based on the fact that when people
make decisions, they do not estimate probabilities as numbers from the interval [0, 1] and do not
process them. If a person is asked about the probability of a certain event, in many cases, the
answer will not come as an exact number, it will most probably come as an imprecise (“fuzzy”)
word, like “low”, “high”, “medium”, etc.; see, e.g., [10, 21, 29].

In other words, instead of using all infinitely many possible real numbers from the interval
[0, 1], we only use finitely many possible values – i.e., in effect, we estimate the probability on a
finite Likert scale. The reason for this discretization is that if the two probability values are close
to each other, intuitively, we do not feel the difference. For example, there is a clear different
between 10% chances of rain or 50% chances of rain, but we do not think that anyone can feel
the difference between 50% and 51% chances. So, the discrete scale is formed by probabilities
which are distinguishable from each other. Let us show how this idea can be formalized.

Comment. In this formalization, we will follow ideas first outlined in [19].

How to formalize when probabilities are distinguishable. Probability of an event is
estimated, from observations, as the frequency with which this event occurs. For example, if out
of 100 days of observation, rain occurred in 40 of these days, then we estimate the probability
of rain as 40%. In general, if out of n observations, the event was observed in m of them, we

estimate the probability as the ratio
m

n
.

This ratio is, in general, different from the actual (unknown) probability. For example, if we
take a fair coin, for which the probability of head is exactly 50%, and flip it 100 times, we may
get 50 heads, but we may also get 47 heads, 52 heads, etc.

It is known (see, e.g., [26]), that the expected value of the frequency is equal to p, and that

the standard deviation of this frequency is equal to σ =

√
p · (1− p)

n
. It is also known that,

due to the Central Limit Theorem, for large n, the distribution of frequency is very close to the
normal distribution (with the corresponding mean p and standard deviation σ).

For normal distribution, we know that with a high certainty all the values are located within
2 to 3 standard deviations from the mean, i.e., in our case, within the interval

(p− k0 · σ, p+ k0 · σ),
where k0 = 2 or k0 = 3: for example, for k0 = 3, this is true with confidence 99.9%. We can thus
say that the two values of probability p and p′ are (definitely) distinguishable if the corresponding
intervals of possible values of frequency do not intersect – and thus, we can distinguish between
these two probabilities just by observing the corresponding frequencies.

In precise terms, the probabilities p < p′ are distinguishable if

(p− k0 · σ, p+ k0 · σ) ∩ (p′ − k0 · σ′, p+ k0 · σ′) = ∅,
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where

σ′ def=

√
p′ · (1− p′)

n
,

i.e., if p′ − k0 · σ′ ≥ p+ k0 · σ. The smaller p′, the smaller the difference p′ − k0 · σ′. Thus, for a
given probability p, the next distinguishable value p′ is the one for which

p′ − k0 · σ′ = p+ k0 · σ.

When n is large, these value p and p′ are close to each other; therefore, σ′ ≈ σ. Substituting
an approximate value σ instead of σ′ into the above equality, we conclude that

p′ ≈ p+ 2k0 · σ = p+ 2k0 ·
p · (1− p)

n
.

If the value p corresponds to the i-th level out of m – i.e., in fuzzy terms, corresponds to the

truth value
i

m
, then the next value p′ corresponds to the (i+ 1)-st level, i.e., to the truth value

i+ 1

m
.

Let g(p) denote the fuzzy truth value corresponding to the probability p. Then, g(p) =
i

m
and g(p′) =

i+ 1

m
. Since the values p and p′ are close, the difference p′ − p is small, and

therefore, we can expand the expression g(p′) = g(p + (p′ − p)) in Taylor series and keep only

linear terms in this expansion: g(p′) ≈ g(p) + (p′ − p) · g′(p), where g′(p) =
dg

dp
denotes the

derivative of the function g(p). Thus,

g(p′)− g(p) =
1

m
= (p′ − p) · g′(p).

Substituting the known expression for p′ − p into this formula, we conclude that

1

m
= 2k0 ·

√
p · (1− p)

n
· g′(p).

This can be rewritten as

g′(p) ·
√

p · (1− p) = const

for some constant, and thus,

g′(p) = const · 1√
p · (1− p)

.

Integrating this expression and taking into account that p = 0 corresponds to the lowest 0-th
level – i.e., that g(0) = 0 – we conclude that

g(p) = const ·
∫ p

0

dq√
q · (1− q)

.

This integral can be easily computed if introduce a new variable t for which q = sin2(t). In this
case,

dq = 2 · sin(t) · cos(t) · dt,
1− p = 1− sin2(t) = cos2(t) and therefore,√

p · (1− p) =

√
sin2(t) · cos2(t) = sin(t) · cos(t).

The lower bound q = 0 corresponds to t = 0 and the upper bound q = p corresponds to the
value t0 for which sin2(t0) = p – i.e., sin(t0) =

√
p and t0 = arcsin

(√
p
)
. Therefore,

g(p) = const ·
∫ p

0

dq√
q · (1− q)

= const ·
∫ t0

0

2 · sin(t) · cos(t) · dt
sin(t) · cos(t)

=

∫ t0

0
2 · dt = 2 · const · t0.



J. LORKOWSKI, V. KREINOVICH: FUZZY UNCERTAINTY FROM DECISION MAKING VIEWPOINT ... 15

We know how t0 depends on p, so we get

g(p) = 2 · const · arcsin (√p ) .

We can determine the constant from the condition that the largest possible probability value
p = 1 should correspond to the right-most point g(p) = 1. From the condition that g(1) = 1,
taking into account that

arcsin
(√

1
)
= arcsin(1) =

π

2
,

we conclude that

g(p) =
2

π
· arcsin (√p ) . (6.1)

Description of the resulting discretization. For a scale from 0 to some number m, the

value g(m) is equal to the ratio
i

m
. So, i = m · g(p).

Thus, the desired discretization means that to each probability p, we assign the value i ≈
m · g(p) on the scale from 0 to m, where g(p) is described by the above formula.

How do we select weights? If we need to select finitely many weights from the interval [0, 1],
then it is natural to select weights which are equally distributed on this interval, i.e., weights

0,
1

m
,
2

m
, . . . ,

m− 1

m
, 1. (6.2)

This is how it is done in fuzzy logic, this is what, according to Section 4, follows from the
traditional decision making theory.

How to assign weights to probabilities: idea. We have m a finite list of distinguishable
probabilities 0 = p0 < p1 < . . . < pm = 1. These probabilities correspond to degree

g(pi) =
i

m
, (6.3)

where g(p) is determined by the formula (6.1). We need to assign, to each of these probabilities,
an appropriate weight from the above list (6.2).

The larger the probability, the more weight we should assign to the corresponding outcome.
Thus, we arrive at the following assignment of weights to probabilities:

• to the value p0 = 0, we assign the smallest possible weight w0 = 0;
• to the next value p1, we assign the next weight

w1 =
1

m
;

• to the next value p2, we assign the next weight

w2 =
2

m
;

• . . .
• to the value pm−1, we assign the weight

wm−1 =
m− 1

m
;

• finally, to the value pm = 1, we assign the weight wm = 1.

In general, to the value pi, we assign the weight

wi =
i

m
.

By comparing this assignment with the formula (6.3), we conclude that to each value pi, we
assign the value wi = g(pi).
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How to assign weights to probabilities: result. Our arguments show that to each proba-
bility p ∈ [0, 1], we assign the weight g(p), where the function g(p) is determined by the formula
(1).

Comparing our weights with empirical weights: first try. Let us compare the proba-
bilities pi, Kahneman’s empirical weights w̃i, and the weight wi = g(pi) computed by using the
formula (1):

pi 0 1 2 5 10 20 50 80 90 95 98 99 100
w̃i 0 5.5 8.1 13.2 18.6 26.1 42.1 60.1 71.2 79.3 87.1 91.2 100

wi = g(pi) 0 6.4 9.0 14.4 20.5 29.5 50.0 70.5 79.5 85.6 91.0 93.6 100

The estimates wi = g(pi) are closer to the observed weights w̃i than the original probabilities,
but the relation does not seem very impressive.

We will show that the fit is much better than it seems at first glance. At first
glance, the above direct comparison between the observed weights w̃i and the estimated weights
wi = g(pi) seems to make perfect sense. However, let us look deeper.

The weights come from the fact that users maximize the weighted gain w(a) =
∑

wi(a) · ui.
It is easy to observe that if we multiply all the weights by the same positive constant λ > 0, i.e.,
consider the weights w′

i(a) = λ · wi(a), then for each action, the resulting value of the weighted
gain will also increase by the same factor:

w′(a) =
∑

w′
i(a) · ui =

∑
λ · wi(a) · ui = λ ·

∑
wi(a) · ui = λ · wi(a).

The relation between the weighted gains of two actions a and a′ does not change if we simply
multiply both gains by a positive constant:

• if wi(a) < wi(a
′), then, multiplying both sides of this inequality by λ, we get

w′
i(a) < w′

i(a
′);

• if wi(a) = wi(a
′), then, multiplying both sides of this equality by λ, we get w′

i(a) = w′
i(a

′);
• if wi(a) > wi(a

′), then, multiplying both sides of this inequality by λ, we get

w′
i(a) > w′

i(a
′).

All we observe is which of the two actions a person selects. Since multiplying all the weights
by a constant does not change the selection, this means that based on the selection, we cannot
uniquely determine the weights: an empirical selection which is consistent with the weights wi

is equally consistent with the weights w′
i = λ · wi.

This fact can be use to normalize the empirical weights, i.e., to multiply them by a constant
so as to satisfy some additional condition.

In [8], to normalize the weights, the authors use the requirement that the weight corresponding
to probability 1 should be equal to 1. Since for p = 1, the estimated weight g(1) is also equal
to 1, we get a perfect match for p = 1, but a rather lousy match for probabilities intermediate
between 0 and 1.

Instead of this normalization, we can select λ so as to get the best match “on average”.

How to improve the fit: details. A natural idea is to select λ from the Least Squares
method, i.e., select λ for which the relative mean squares difference∑

i

(
λ · wi − w̃i

wi

)2

is the smallest possible. Differentiating this expression with respect to λ and equating the
derivative to 0, we conclude that ∑

i

(
λ− w̃i

wi

)
= 0,
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i.e., that

λ =
1

m
·
∑
i

w̃i

wi
.

Resulting match. For the above values, this formula leads to λ = 0.910.

Result. The resulting values w′
i = λ · wi are much closer to the empirical weights x̃i:

pi 0 1 2 5 10 20 50 80 90 95 98 99 100
w̃i 0 5.5 8.1 13.2 18.6 26.1 42.1 60.1 71.2 79.3 87.1 91.2 100

w′
i = λ · g(pi) 0 5.8 8.2 13.1 18.7 26.8 45.5 64.2 72.3 77.9 82.8 87.4 91.0

For most probabilities pi, the difference between the fuzzy-motivated weights w′
i and the

empirical weights w̃i is so small that it is below the accuracy with which the empirical weights
can be obtained from the experiment.

Thus, fuzzy-related ideas indeed explain Kahneman and Tversky’s empirical decision weights.

7. Likert-Scale Fuzzy Uncertainty from a Traditional Decision Making
Viewpoint (cont-d): Advantages of Fuzzy Approach

How do we select a mark on a Likert scale? In Section 4, we simply used the labels marked
by people on a Likert scale. But how do people select which labels to mark? To understand
this, let us recall how this marking is done. Suppose that we have a Likert scale with n + 1
labels 0, 1, 2, . . . , n, ranging from the smallest to the largest.

Then, if the actual value of the quantity x is very small, we mark label 0. At some point, we
change to label 1; let us mark this threshold point by x1. When we continue increasing x, we
first have values marked by label 1, but eventually reach a new threshold after which values will
be marked by label 2; let us denote this threshold by x2, etc. As a result, we divide the range
[X,X] of the original variable into n + 1 intervals [x0, x1], [x1, x2], . . . , [xn−1, xn], [xn, xn+1],
where x0 = X and xn+1 = X:

• values from the first interval [x0, x1] are marked with label 0;
• values from the second interval [x1, x2] are marked with label 1;
• . . .
• values from the n-th interval [xn−1, xn] are marked with label n− 1;
• values from the (n+ 1)-st interval [xn, xn+1] are marked with label n.

Then, when we need to make a decision, we base this decision only on the label, i.e., only on the
interval to which x belongs. In other words, we make n different decisions depending on whether
x belongs to the interval [x0, x1], to the interval [x1, x2], . . . , or to the interval [xn, xn+1].

Decisions based on the Likert discretization are imperfect. Ideally, we should take into
account the exact value of the variable x. When we use Likert scale, we only take into account
an interval containing x and thus, we do not take into account part of the original information.
Since we only use part of the original information about x, the resulting decision may not be as
good as the decision based on the ideal complete knowledge.

For example, an ideal office air conditioner should be able to maintain the exact temperature
at which a person feels comfortable. People are different, their temperature preferences are
different, so an ideal air conditioner should be able to maintain any temperature value x within
a certain range [X,X]. In practice, some air conditioners only have a finite number of settings.
For example, if we have setting corresponding to 65, 70, 75, and 80 degrees, then a person who
prefers 72 degrees will probably select the 70 setting or the 75 setting. In both cases, this person
will be somewhat less comfortable than if there was a possibility of an ideal 72 degrees setting.
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How do we select a Likert scale: main idea. According to the general ideas of tradi-
tional (utility-based) approach to decision making, we should select a Likert scale for which the
expected utility is the largest.

To estimate the utility of decisions based on each scale, we will take into account the just-
mentioned fact that decisions based on the Likert discretization are imperfect. In utility terms,
this means that the utility of the Likert-based decisions is, in general, smaller than the utility
of the ideal decision.

Which decision should we choose within each label? In the ideal situation, if we could
use the exact value of the quantity x, then for each value x, we would select an optimal decision
d(x), a decision which maximizes the person’s utility.

If we only know the label k, i.e., if we only know that the actual value x belongs to the
(k + 1)-st interval [xk, xk+1], then we have to make a decision based only on this information.
In other words, we have to select one of the possible values x̃k ∈ [xk, xk+1], and then, for all x
from this interval, use the decision d(x̃k) based on this value.

Which value x̃k should we choose: idea. According to the traditional approach to decision
making, we should select a value for which the expected utility is the largest.

Which value x̃k should we choose: towards a precise formulation of the problem. To
find this expected utility, we need to know two things:

• we need to know the probability of different values of x; these probabilities can be
described, e.g., by the probability density function ρ(x);

• we also need to know, for each pair of values x′ and x, what is the utility u(x′, x) of
using a decision d(x′) in the situation in which the actual value is x.

In these terms, the expected utility of selecting a value x̃k can be described as∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (7.1)

Thus, for each interval [xk, xk+1], we need to select a decision d(x̃k) corresponding to the value
x̃k for which the expression (7.1) attains its largest possible value. The resulting expected utility
is equal to

max
x̃k

∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (7.2)

How to select the best Likert scale: general formulation of the problem. The actual
value x can belong to any of the n + 1 intervals [xk, xk+1]. Thus, to find the overall expected
utility, we need to add the values (7.2) corresponding to all these intervals. In other words, we
need to select the values x1, . . . , xn for which the following expression attains its largest possible
value:

n∑
k=0

max
x̃k

∫ xk+1

xk

ρ(x) · u(x̃k, x) dx. (7.3)

Equivalent reformulation in terms of disutility. In the ideal case, for each value x, we
should use a decision d(x) corresponding to this value x, and gain utility u(x, x). In practice,
we have to use decisions d(x′) corresponding to a slightly different value, and thus, get slightly

worse utility values u(x′, x). The corresponding decrease in utility U(x′, x)
def
= u(x, x)− u(x′, x)

is usually called disutility. In terms of disutility, the function u(x′, x) has the form

u(x′, x) = u(x, x)− U(x′, x),

and thus, the optimized expression (7.1) takes the form∫ xk+1

xk

ρ(x) · u(x, x) dx−
∫ xk+1

xk

ρ(x) · U(x̃k, x) dx.
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The first integral does not depend on x̃k; thus, the expression (7.1) attains its maximum if and
only if the second integral attains its minimum. The resulting maximum (7.2) thus takes the
form ∫ xk+1

xk

ρ(x) · u(x, x) dx−min
x̃k

∫ xk+1

xk

ρ(x) · U(x̃k, x) dx. (7.4)

Thus, the expression (7.3) takes the form

n∑
k=0

∫ xk+1

xk

ρ(x) · u(x, x) dx−
n∑

k=0

min
x̃k

∫ xk+1

xk

ρ(x) · U(x̃k, x) dx.

The first sum does not depend on selecting the thresholds. Thus, to maximize utility, we should
select the values x1, . . . , xn for which the second sum attains its smallest possible value:

n∑
k=0

min
x̃k

∫ xk+1

xk

ρ(x) · U(x̃k, x) dx → min . (7.5)

Let is recall that are interested in the membership function. For a general Likert scale,
we have a complex optimization problem (7.5). However, we are not interested in general Likert
scales per se, what we are interested in is the use of Likert scales to elicit the values of the
membership function µ(x).

As we have mentioned earlier, in an n-valued scale:

• the smallest label 0 corresponds to the value µ(x) = 0/n,
• the next label 1 corresponds to the value µ(x) = 1/n,
• . . .
• the last label n corresponds to the value µ(x) = n/n = 1.

Thus, for each n:

• values from the interval [x0, x1] correspond to the value µ(x) = 0/n;
• values from the interval [x1, x2] correspond to the value µ(x) = 1/n;
• . . .
• values from the interval [xn, xn+1] correspond to the value µ(x) = n/n = 1.

The actual value of the membership function µ(x) corresponds to the limit n → ∞, i.e., in effect,
to very large values of n. Thus, in our analysis, we will assume that the number n of labels is
huge – and thus, that the width of each of n+ 1 intervals [xk, xk+1] is very small.

Let us take into account that each interval is narrow. Let us use the fact that each
interval is narrow to simplify the expression U(x′, x) and thus, the optimized expression (7.5).

In the expression U(x′, x), both values x′ and x belong to the same narrow interval and thus,

the difference ∆x
def
= x′−x is small. Thus, we can expand the expression U(x′, x) = U(x+∆x, x)

into Taylor series in ∆x, and keep only the first non-zero term in this expansion. In general, we
have

U(x+∆, x) = U0(x) + U1 ·∆x+ U2(x) ·∆x2 + . . . ,

where

U0(x) = U(x, x), U1(x) =
∂U(x+∆x, x)

∂(∆x)
,

U2(x) =
1

2
· ∂

2U(x+∆x, x)

∂2(∆x)
. (7.7)

Here, by definition of disutility, we get U0(x) = U(x, x) = u(x, x)−u(x, x) = 0. Since the utility
is the largest (and thus, disutility is the smallest) when x′ = x, i.e., when ∆x = 0, the derivative
U1(x) is also equal to 0 – since the derivative of each (differentiable) function is equal to 0 when
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this function attains its minimum. Thus, the first non-trivial term corresponds to the second
derivative:

U(x+∆x, x) ≈ U2(x) ·∆x2,

i.e., in other words, that

U(x̃k, x) ≈ U2(x) · (x̃k − x)2.

Substituting this expression into the expression∫ xk+1

xk

ρ(x) · U(x̃k, x) dx

that needs to be minimized if we want to find the optimal x̃k, we conclude that we need to
minimize the integral ∫ xk+1

xk

ρ(x) · U2(x) · (x̃k − x)2 dx. (7.8)

This new integral is easy to minimize: if we differentiate this expression with respect to the
unknown x̃k and equate the derivative to 0, we conclude that∫ xk+1

xk

ρ(x) · U2(x) · (x̃k − x) dx = 0,

i.e., that

x̃k ·
∫ xk+1

xk

ρ(x) · U2(x) dx =

∫ xk+1

xk

x · ρ(x) · U2(x) dx,

and thus, that

x̃k =

∫ xk+1

xk
x · ρ(x) · U2(x) dx∫ xk+1

xk
ρ(x) · U2(x) dx

. (7.9)

This expression can also be simplified if we take into account that the intervals are narrow.

Specifically, if we denote the midpoint of the interval [xk, xk+1] by xk
def
=

xk + xk+1

2
, and denote

∆x
def
= x−xk, then we have x = xk +∆x. Expanding the corresponding expressions into Taylor

series in terms of a small value ∆x and keeping only main terms in this expansion, we get

ρ(x) = ρ(xk +∆x) = ρ(xk) + ρ′(xk) ·∆x ≈ ρ(xk),

where f ′(x) denoted the derivative of a function f(x), and

U2(x) = U2(xk +∆x) = U2(xk) + U ′
2(xk) ·∆x ≈ U2(xk).

Substituting these expressions into the formula (7.9), we conclude that

x̃k =
ρ(xk) · U2(xk) ·

∫ xk+1

xk
x dx

ρ(xk) · U2(xk) ·
∫ xk+1

xk
dx

=

∫ xk+1

xk
x dx∫ xk+1

xk
dx

=

1

2
· (x2k+1 − x2k)

xk+1 − xk
=

xk+1 + xk
2

= xk.

Substituting this midpoint value x̃k = xk into the integral (7.8) and taking into account that on
the k-th interval, we have ρ(x) ≈ ρ(xk) and U2(x) ≈ U2(xk), we conclude that the integral (8)
takes the form∫ xk+1

xk

ρ(xk) · U2(xk) · (xk − x)2 dx = ρ(xk) · U2(xk) ·
∫ xk+1

xk

(xk − x)2 dx. (7.8a)

When x goes from xk to xk+1, the difference ∆x = x−xk between the value x and the interval’s
midpoint xk ranges from −∆k to ∆k, where ∆k is the interval’s half-width:

∆k
def
=

xk+1 − xk
2

.
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In terms of the new variable ∆x, the integral in the right-hand side of (7.8a) has the form∫ xk+1

xk

(xk − x)2 dx =

∫ ∆k

−∆k

(∆x)2 d(∆x) =
2

3
·∆3

k.

Thus, the integral (7.8) takes the form

2

3
· ρ(xk) · U2(xk) ·∆3

k.

The problem (7.5) of selecting the Likert scale thus becomes the problem of minimizing the sum
(7.5) of such expressions (7.8), i.e., of the sum

2

3
·

n∑
k=0

ρ(xk) · U2(xk) ·∆3
k. (7.10)

Here, xk+1 = xk+1 + ∆k+1 = (xk + ∆k) + ∆k+1 ≈ xk + 2∆k, so ∆k = (1/2) · ∆xk, where

∆xk
def
= xk+1 − xk. Thus, (7.10) takes the form

1

3
·

n∑
k=0

ρ(xk) · U2(xk) ·∆2
k ·∆xk. (7.11)

In terms of the membership function, we have µ(xk) = k/n and µ(xk+1) = (k + 1)/n. Since
the half-width ∆k is small, we have

1

n
= µ(xk+1)− µ(xk) = µ(xk + 2∆k)− µ(xk) ≈ µ′(xk) · 2∆k,

thus, ∆k ≈ 1

2n
· 1

µ′(xk)
. Substituting this expression into (7.11), we get the expression

1

3 · (2n)2
·I,

where

I =

n∑
k=0

ρ(xk) · U2(xk)

(µ′(xk))2
·∆xk. (7.12)

The expression I is an integral sum, so when n → ∞, this expression tends to the corresponding
integral

I =

∫
ρ(x) · U2(x)

(µ′(x))2
dx. (7.11)

Minimizing (7.5) is equivalent to minimizing I. With respect to the derivative d(x)
def
= µ′(x), we

need to minimize the objective function

I =

∫
ρ(x) · U2(x)

d2(x)
dx (7.12)

under the constraint that ∫ X

X
d(x) dx = µ(X)− µ(X) = 1− 0 = 1. (7.13)

By using the Lagrange multiplier method, we can reduce this constraint optimization problem
to the unconstrained problem of minimizing the functional

I =

∫
ρ(x) · U2(x)

d2(x)
dx+ λ ·

∫
d(x) dx, (7.14)

for an appropriate Lagrange multiplier λ. Differentiating (7.14) with respect to d(x) and equating

the derivative to 0, we conclude that −2· ρ(x) · U2(x)

d3(x)
+λ = 0, i.e., that d(x) = c·(ρ(x)·U2(x))

1/3

for some constant c. Thus, µ(x) =
∫ x
X d(t) dt = c ·

∫ x
X(ρ(t) ·U2(t))

1/3 dt. The constant c must be

determined by the condition that µ(X) = 1. Thus, we arrive at the following formula (7.15).
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Resulting formula. The membership function µ(x) obtained by using Likert-scale elicitation
is equal to

µ(x) =

∫ x
X(ρ(t) · U2(t))

1/3 dt∫ X
X (ρ(t) · U2(t))1/3 dt

, (7.15)

where ρ(x) is the probability density describing the probabilities of different values of x, U2(x)
def
=

1

2
· ∂

2U(x+∆x, x)

∂2(∆x)
, U(x′, x)

def
= u(x, x)− u(x′, x), and u(x′, x) is the utility of using a decision

d(x′) corresponding to the value x′ in the situation in which the actual value is x.

Comment. The above formula only applies to membership functions like “large” whose values
monotonically increase with x. It is easy to write a similar formula for membership functions
like “small” which decrease with x. For membership functions like “approximately 0” which
first increase and then decrease, we need to separately apply these formula to both increasing
and decreasing parts.

Conclusion. The resulting membership degrees incorporate both probability and utility infor-
mation. This fact explains why fuzzy techniques often work better than probabilistic techniques –
because the probability techniques only take into account the probability of different outcomes.

8. Acknowledgment

This work was supported in part by the National Science Foundation grants HRD-0734825
and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721.

The authors are thankful to Dr. Fikret Aliev for his support and encouragement, and
to the participants of the Joint World Congress of the International Fuzzy Systems Associ-
ation and Annual Conference of the North American Fuzzy Information Processing Society
IFSA/NAFIPS’2013 (Edmonton, Canada, June 24–28, 2013), 4th World Conference on Soft
Computing (Berkeley, California, May 25–27, 2014), and 2014 Annual Conference of the North
American Fuzzy Information Processing Society NAFIPS’2014 (Boston, Massachusetts, June
24–26, 2014) for valuable discussions.

References

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An Introduction to Order Statistics, Atlantis Press, Paris,
2013.

[2] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in Order Statistics, Society of Industrial
and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 2008.

[3] R. E. Bellman and L. A. Zadeh, “Decision making in a fuzzy environment”, Management Science, 1970,
Vol. 17, No. 4, pp. B141–B164.

[4] M. D. Cohen, G. Huber, R. L. Keeney, A. H. Levis, L. L. Lopes, A. P. Sage, S. Sen, A. B. Whinston,
R. L. Winkler, D. von Winterfeldt, and L. A. Zadeh, “Research needs and the phenomena of decision making
and operations”, IEEE Transactions on Systems, Man, and Cybernetics, 1985, Vol. 15, No. 6, pp. 764–775.

[5] H. A. David and H. N. Nagaraja, Order Statistics, Wiley, New York, 2003.
[6] P. C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons Inc., New York, 1969.
[7] P. C. Fishburn, Nonlinear Preference and Utility Theory, The John Hopkins Press, Baltimore, Maryland,

1988.
[8] D. Kahneman, Thinking, Fast and Slow, Farrar, Straus, and Giroux, New York, 2011.
[9] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives, John Wiley and Sons, New York, 1976.

[10] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River, New Jersey, 1995.
[11] V. Kreinovich, “Decision Making under Interval Uncertainty (and beyond)”, In: P. Guo and W. Pedrycz

(eds.), Human-Centric Decision-Making Models for Social Sciences, Springer Verlag, 2014, pp. 163-193.
[12] J. Lorkowski and V. Kreinovich, “Likert-scale fuzzy uncertainty from a traditional decision making viewpoint:

it incorporates both subjective probabilities and utility information”, Proceedings of the Joint World Con-
gress of the International Fuzzy Systems Association and Annual Conference of the North American Fuzzy
Information Processing Society IFSA/NAFIPS’2013, Edmonton, Canada, June 24–28, 2013, pp. 525–530.



J. LORKOWSKI, V. KREINOVICH: FUZZY UNCERTAINTY FROM DECISION MAKING VIEWPOINT ... 23

[13] J. Lorkowski and V. Kreinovich, “Fuzzy Logic Ideas Can Help in Explaining Kahneman and Tversky’s Em-
pirical Decision Weights”, Proceedings of the 4th World Conference on Soft Computing, Berkeley, California,
May 25–27, 2014, pp. 285–289.

[14] J. Lorkowski and V. Kreinovich, “Interval and Symmetry Approaches to Uncertainty – Pioneered by Wiener
– Help Explain Seemingly Irrational Human Behavior: A Case Study”, Proceedings of the 2014 Annual Con-
ference of the North American Fuzzy Information Processing Society NAFIPS’2014, Boston, Massachusetts,
June 24–26, 2014, to appear.

[15] R. D. Luce and R. Raiffa, Games and Decisions: Introduction and Critical Survey, Dover, New York, 1989.
[16] J. March, “Bounded Rationality, Ambiguity, and the Engineering of Choice,” The Bell Journal of Economics,

Vol. 9, No. 2, 1978, pp. 587–608.
[17] H. T. Nguyen, O. Kosheleva, and V. Kreinovich, “Decision Making Beyond Arrow’s ‘Impossibility Theo-

rem’, With the Analysis of Effects of Collusion and Mutual Attraction”, International Journal of Intelligent
Systems, 2009, Vol. 24, No. 1, pp. 27–47.

[18] H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathematics to Computer Science, Kluwer,
Dordrecht, 1997.

[19] H. T. Nguyen, V. Kreinovich, and B. Lea, “How to combine probabilistic and fuzzy uncertainties in fuzzy
control”, Proceedings of the Second International Workshop on Industrial Applications of Fuzzy Control and
Intelligent Systems, College Station, December 2–4, 1992, pp. 117–121.

[20] H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, Computing Statistics under Interval and Fuzzy Uncer-
tainty, Springer Verlag, Berlin, Heidelberg, 2012.

[21] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman and Hall/CRC, Boca Raton,
Florida, 2006.

[22] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice, Springer Verlag, Berlin, 2005.
[23] H. Raiffa, Decision Analysis, McGraw-Hill, Columbus, Ohio, 1997.
[24] D. Redelmeier and E. Shafir, “Medical decision mading in situations that offer multiple alternatives,” Journal

of the American Medical Association, 1995, Vol. 273, No. 4, pp. 302–305.
[25] E. Shafir, I. Simonson, and A. Tversky, “Reason-based choice,” Cognition, 1993, Vol. 49, pp. 11–36.
[26] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC,

Boca Raton, Florida, 2011.
[27] I. Simonson and E. Rosen, Absolute Value: What Really Influences Customers in the Age of (Nearly) Perfect

Information, HarperBusiness, New York, 2014.
[28] A. Tversky and I. Simonson, “Context-dependent preferences,” Management Science, 1993, Vol. 39, No. 10,

pp. 1179–1189.
[29] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.
[30] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes”,

IEEE Transactions on Systems, Man, and Cybernetics, 1973, Vol. 3, No. 1, pp. 28–44.
[31] L. A. Zadeh. “Precisiated Natural Language-Toward a Radical Enlargement of the Role of Natural Lan-

guages in Information Processing, Decision and Control”, In: L. Wang, S. K. Halgamuge, and X. Yao (Eds.),
Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery FSDK’02: Com-
putational Intelligence for the E-Age, Singapore, November 18–22, 2002, Vol. 1, pp. 1–3.

[32] L. A. Zadeh, “Computing with Words and Perceptions - A Paradigm Shift in Computing and Decision
Analysis and Machine Intelligence”, In: A. Wani, K. J. Cios, and K. Hafeez (Eds.), Proceedings of the 2003
International Conference on Machine Learning and Applications ICMLA’2003, Los Angeles, California, June
23–24, 2003, pp. 3–5.

[33] L. A. Zadeh, “A New Direction in Decision Analysis-Perception-based Decisions”, In: A. L. Ralescu (Ed.),
Proceedings of the Fourteenth Midwest Artificial Intelligence and Cognitive Sciences Conference MAICS’2003,
Cincinnati, Ohio, April 12–13, 2003, pp. 1–2.


