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Abstract

To take into account that expert’s degrees of certainty are not always
comparable, researchers have used partially ordered set of degrees instead
of the more traditional linearly (totally) ordered interval [0,1]. In most
cases, it is assumed that this partially ordered set is a lattice, i.e., every
two elements have the greatest lower bound and the least upper bound. In
this paper, we prove a theorem explaining why it is reasonable to require
that the set of degrees is a lattice.

1 Formulation of the Problem

Traditional [0,1]-based fuzzy logic: a brief reminder. To describe the
expert’s degree of certainty about different statements, Lofti A. Zadeh originally
proposed to use numbers from the interval [0, 1] [4], so that:

e 1 indicates full certainty in the statement,
e 0 indicates full certainty that the statement is false, and

e intermediate values describe intermediate degrees of certainty.



Need to go beyond the interval [0,1]. Numbers from the interval [0, 1]
are totally (linearly) ordered: for every two numbers ¢ and b, we either have
a < bor b < a. Thus, this representation implicitly assumes that we can always
compare our degrees of confidence and decide which one corresponds to larger
confidence.

In reality, we sometimes have incomparable degree of confidence, for which
neither the first not the second one corresponds to higher confidence. To capture
such situations, Zadeh proposed to use, as a set of possible degrees of confidence,
a partially ordered set, in which there may exists elements a and b for which
a£bandb £ a.

Lattices are frequently used: why. Different partially ordered sets have
been used to describe experts’ degrees of confidence. Most frequently, lattices
are used, i.e., partially ordered sets for which, for every two elements a and b,
there exist two special elements:

e the smallest of all elements ¢ which are larger than or equal to both a and
b; this smallest element is known as the least upper bound, or join of a
and b;

e the largest of all elements ¢ which are smaller than or equal to both a and
b; this largest element is known as the greatest lower bound, or meet of a
and b.

In precise terms, the join is an element j for which:

e first, a < j and b < j, and

e second, for every element ¢ for which a < ¢ and b < ¢, we have j < c.
Similarly, the meet is an element m such that:

e first, m < a and m < b, and

e second, for every element ¢ for which ¢ < a and ¢ < b, we have ¢ < m.

The idea to use lattices first appeared in [1]; see also [2, 3].

A natural question is: why lattices? There are many partially ordered sets
which are not lattice, so why namely lattices are mostly used?

In this paper, we provide a possible explanation of why lattices are used to
describe degrees of confidence.

2 Analysis of the Problem

Let us start analyzing the problem: what are degrees of confidence?
To resolve the mystery of using lattices, let us recall what are degrees of con-
fidence, whet they are used for, and what are reasonable operations on these
degrees.



We want to describe a set D of possible degrees of confidence. For some
pairs of degrees a and b, we know that the degree b corresponds to the higher or
same) confidence; we will denote this by a < b. From this definition, it is clear
that:

e a <a, and

e if a <band b < ¢, ie., if b corresponds to higher confidence than a and
¢ corresponds to higher confidence than b, then ¢ corresponds to higher
confidence than a, i.e., a < c.

These two properties mean that the relation < is a partial order.

Need for “and”- and “or”-operations. The expert’s knowledge consists of
several statements Sy, ..., S, for which of which we know the expert’s degree
of confidence d; = d(5;) in this statement. Once we have elicited this knowledge
from the expert(s), we can then use this knowledge to answer different queries Q.

In some cases, one of the available statements S; already provides an answer
to the query. In most cases, already, to answer the query, we need to combine
several statements. For example, we can conclude that @ is true if we use
two statements S; and S;. Since the experts are not 100% confidence in their
statements, we are therefore not fully confident that “true” is the correct answer
to this query. It is therefore desirable to provide the user not only with the “yes”
answer, but also with the degree to which we are confident in this answer.

In the above case, our degree of confidence that the answer to the query @
is “true” is equal to the degree of confidence that the propositional combination
S; & S is true. In other case, we may have different propositional combinations.

We have collected degrees of confidence d; corresponding to different state-
ments d;. It is known that the degree of confidence in A & B is not uniquely
determined by our degrees of confidence in A and in B. For example, if we know
nothing about A, then it is reasonable to say that d(A) = d(—A) = 0.5. In this
case:

e for B= A, we have A& B= A& A = A and thus, d(A) = d(B) = 0.5 and
d(A& B) = d(A) = 0.5;

e on the other hand, for B = - A, the statement A& B = A& —A is clearly
false, so we have d(A) = d(B) = 0.5 and d(A& B) = d(A) = 0.

So, ideally, we should not only elicit from the experts their degrees of belief
d; in different statements S;, we should also elicit their degrees of belief in
different propositional combinations of these statements. Unfortunately, this is
not realistic: there are exponentially many propositional combinations, e.g., 2"

combinations of the type S7' & ... & Si», where ¢; € {—,+}, ST g and

n
S— %" .S, For large n ~ 300, we have 239 ~ 10% — it is clearly not possible

to ask that many questions to the expert.

Since we cannot elicit the expert’s degree of belief in all possible propositional
combinations, we thus need to be able to estimate these degrees of belief based
on the expert’s degree of belief in the basic statements.



In particular, we need to be able, given the degrees a = d(A) and b = d(B),
to provide an estimate for the degree d(A & B). We will denote this estimate by
f&(a,b). The function fg(a,b) that transforms the given values a = d(A) and
b = d(B) into an estimate for d(A & B) is known as an and-operation.

Similarly, we need to be able, given the degrees a = d(A4) and b = d(B), to
provide an estimate for the degree d(A V B). We will denote this estimate by
fv(a,b). The function fy(a,b) that transforms the given values a = d(A) and
b = d(B) into an estimate for d(A V B) is known as an or-operation.

First reasonable property of “and”- and “or”-operations. Let us first
consider the simplest case when conjunction & connects the statement S with
itself, i.e., when we consider a propositional combination S & S. Let d = d(S)
denote the expert’s degree of confidence in the original statement S. In this case,
when we apply an “and”-operation fg (a,b) to estimate the expert’s degree of
confidence in S & S, we get the estimate fg (d, d).

For each statement S, the propositional combination S & S is simply equiv-
alent to S. It is therefore reasonable to require that our estimate fg(d,d) for
the degree of confidence d(S & S) in the propositional combination S & S should
coincide with the degree of confidence d = d(S) in the original statement S, i.e.,
that we should have fg (d,d) = d for all possible degrees d.

Similarly, since for each statement S, the propositional combination SV S
is equivalent to S, we should have f\ (d,d) = d for all possible degrees d.

Second reasonable property of “and”- and “or”-operations. In general,
the statement A & B is stronger than A and stronger than B. Thus, our degree of
certainty in A & B cannot exceed the degree of certainty in A or B: fg(a,b) <a
and fg(a,b) <0.

Similarly, the statement AV B is weaker than A and weaker than B. Thus,
the degrees of certainty in A and in B cannot exceed our degree of certainty in
AV B: a < fy(a,b) and b < fy(a,b).

Third reasonable property of “and”- and “or”-operations: mono-
tonicity. Another reasonable property is monotonicity: if our degree of confi-
dence in statements A and B increases, then the degree of confidence in propo-
sitional combinations A& B and A V B should also increase — or at least re-
mains the same. In other words, if @ < a’ and b < b/, then we should have

fe(a,b) < fe(a',b) and fy(a,b) < fy(d, V).
What we do. Let us show that these properties lead to the lattice structure.

3 Definitions and the Main Result

Definition. By a set of degrees, we mean a partially ordered set (D, <) with
two binary operations fg : D x D — D and f\, : D x D — D which satisfy the
following three properties:

e for each d € D, we have fg (d,d) = fy(d,d) = d;



e for all a,b € D, we have fg(a,b) < a, fe(a,b) < b, a < fy(a,b), and
b < fu(a,b);
o for alla < a' and b <V, we have fg(a,b) < fe(a', V) and fy(a,b) <
f\/(a/,b’).
Proposition.

e Fuery set of degrees is a lattice, with fg(a,b) as meet and fy(a,b) as join.

e Fuery lattice is a set of degree if we take meet as fg(a,b) and join as

f\/ (a, b) .

Proof. It is known that lattices satisfy all the properties which form our defi-
nition of a set of degrees. To prove our result, it is therefore sufficient to prove
that each set of degrees is a lattice, with fg (a,b) as meet and fy(a,b) as join.

1°. Let us first prove that for every two elements a and b, the value fg (a,b) is
a meet, i.e., that:

e the value fg (a,b) is smaller than or equal both a and b, i.e., that fg (a,b) <
a and fg(a,b) < b, and

e the value fg(a,b) is the largest of all the values ¢ which are smaller than
or equal to both a and b, then c¢ is smaller than or equal to fg(a,b): if
¢ <aand ¢ <b, then ¢ < fg(a,b).

Let us prove these two properties one by one.

1.1°. The first property follows directly from the second property listed in the
definition of a set of degrees.

1.2°. Let us now prove the second property. Due to the third property of a set
of degrees, ¢ < a and ¢ < b imply that fg (¢, ¢) < fe.(a,b). By the first property,
fa(c,¢) = ¢, so we indeed have ¢ < fg(a,b).
2°. Let us now prove that for every two elements a and b, the value f (a,b) is
a join, i.e., that:
e the value f\ (a,b) is greater than or equal both a and b, i.e., that a <
fv(a,b) and b < fy(a,b), and

e the value fy(a,b) is the smallest of all the values ¢ which are larger than
or equal to both a and b, then ¢ is larger than or equal to fy(a,b): if a < ¢
and b < ¢, then fy(a,b) <c.

Let us prove these two properties one by one.

2.1°. The first property follows directly from the second property listed in the
definition of a set of degrees.

2.2°. Let us now prove the second property. Due to the third property of a set
of degrees, a < ¢ and b < ¢ imply that f,(a,b) < fy(c,c). By the first property,
fv(c,¢) = ¢, so we indeed have f\ (a,b) < c.

The proposition is proven.



4 Discussion

Main conclusion: we have a desired explanation of the use of lattices.
The above result explains why lattices are a reasonable description of sets of
degrees.

Additional conclusion: we not need to explicitly require commutativ-
ity or associativity. In our description of a set of degrees, we only used the
fact that A& A means the same as A. There are other properties: e.g., since
A& B means the same as B & A, it is reasonable to require that the result-
ing estimates coincide, i.e., that fg(a,b) = fg(b,a) — in mathematical terms,
that the “and”-operation is commutative. Similarly, the fact that A& (B & C)
means the same as (A & B) & C makes it reasonable to require that the “and”-
operation is associative: fg (a, fe.(b,¢)) = fe.(fe(a,b),c). It also makes sense to
similarly require that the “or”-operation be commutative and associative.
These requirements are part of the usual definitions of “and”-operations (t-
norms) and “or”-operations (t-conorms) in fuzzy logic. Our proposition shows
that it is not necessary to explicitly requires commutativity and associativity:

e even without these requirements, the above result implies that the set of
degrees is a lattice, and

e in a lattice, meet and joint operations are always commutative and asso-
ciative — e.g., the join is commutative by definition, since it is the smallest
of all the values ¢ which exceeds both a and b.
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