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Abstract

One of the widely used methods to gauge risk is the Security Risk
Factor Table (SRFT) model. While this model has been empirically suc-
cessful, its use is limited by the fact that its formulas do not have a
theoretical explanation – and thus, there is no guarantee that these for-
mulas will work in other situations as well. In this paper, we provide a
theoretical explanation for the SFRT formulas.

1 Formulation of the Problem

Security Risk Factor Table (SRFT) model: a brief description. Many
systems face security risks. To properly protect these systems, it is important
to gauge relative security risk of different systems, so that more resources will
be used to protect systems with higher risk.

One of the widely used techniques for gauging risk is the Security Risk
Factor Table (SRFT) model; see, e.g., [1, 2, 3, 4]. In this model, important
factors affecting risk are listed, such as location, visibility, inventory, etc. For
each factor, experts estimate the risk corresponding to this factor by selecting a
number from 0 to 5, 0 meaning lowest risk and 5 meaning highest risk. Numbers
corresponding to different factors are then added into a single risk score. Based
on the value of the risk score, the system’s risk is then classified into low,
moderate, high, and extreme.

For example, for 15 factors:

• scores below 15 indicate low risk;

• scores from 16 to 30 indicate moderate risk;

• scores from 31 to 45 indicate high risk, and
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• scores above 45 indicate extreme risk.

Problem. The SRFT model has been empirically successful – as judged, e.g.,
by the fact that it is widely used. The fact that it is successful seems to indicate
that this model indeed reflects the actual risks. So, a natural question is: why
is the above simple model properly reflecting actual risks?

Specifically, why adding the scores makes sense? Why equally spaces thresh-
olds (15, 30, 45) make sense?

What we do in this paper. In this paper, we analyze the risk situation, and
we show that this analysis indeed explains the two main features of the SRFT
model: addition of scores and equal spacing of thresholds.

2 Why Adding Scores Make Sense: Our Expla-
nation

A natural way to gauge risk. A natural way to gauge risk for a system
is to estimate the expected value of the loss due to a possible attack on this
system. In general, the expected loss E is equal to the product E = P ·L of the
probability P of a successful attack and a loss L caused by this attack.

The success of an attack depends on several independent factors: for the
attack to be successful, the location must be vulnerable to an attack, the system
must be highly visible, perimeter protection must be weak, etc. Since these
factors are independent, the probability P of a successful attack is equal to the
product P = P1 · . . . · Pn of the probabilities P1, . . . , Pn corresponding to these
factors.

Thus, we conclude that the expected loss E is equal to the product

E = P1 · . . . · Pn · L, (1)

where the values Pi and E describe different factors affecting risk.

Analyzing the resulting formula. Let us show that the formula (1) enables
us to explain the addition of scores.

Before we start our explanation, let us note that while from the purely
mathematical viewpoint, the value E depends in a similar way on all n + 1
factors P1, . . . , Pn, and L, the ranges of possible values of these factors are
different:

• most of the factors are probabilities, i.e., numbers whose possible values
are between 0 and 1, while

• the numerical value of the loss L is usually much larger than 1.

To make the formula more symmetric, let us replace the actual loss in dollars

L with a relative loss ℓ
def
=

L

Lmax
, where Lmax is the largest possible loss. The

resulting product

p
def
= P1 · . . . · Pn · ℓ (2)
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describes the expected value of the relative loss.
The comparison of risk of different systems does not depend on the units

used to describe loss:

• a system with the higher value of E will have the higher value of ℓ =
E

Lmax
;

• similarly, a system with the lower value of E will have the lower value of ℓ.

Thus, we can use the formula (2) to gauge risks.
Now that all the factors P1, . . . , Pn, and ℓ are from the interval [0, 1], we can

denote ℓ by Pn+1 and get a simplified formula

p =
n+1∏
i=1

Pi. (3)

From the usual formula for risk to score addition. In the usual risk
formula, the risk measure is equal to the product of risk measures corresponding
to different factors. We would like to justify the SRFT technique in which we
compute the sum of the values corresponding to different factors. There is a
natural way to go from a product to a sum: by taking the logarithm – since the
logarithm of the product is equal to the sum of the logarithms.

The larger p, the larger its logarithm ln(p). So, to decide which schemes leads
to a smaller risk, instead of comparing the values p corresponding to different
schemes, we can alternatively compare the logarithms ln(p).

For the logarithms, the formula (3) leads to

ln(p) =
n∑

i=1

ln(Pi). (4)

If we use this formula, then, to estimate the overall risk ln(p) of a system, we
add the scores ln(Pi) corresponding to different factors – and this is exactly
what is done in the the SRFT technique.

We have therefore explained why the addition of scores makes sense when
assessing the overall risk.

Comment. While we explained why the SRFT idea of adding scores makes
sense, the scores ln(Pi) that we use in our explanation are different from the
scores used by SRFT: indeed, the SRFT scores are always non-negative (and
usually positive), while the logarithms ln(Pi) are always non-positive (and usu-
ally negative).

To come up with non-negative scores, we can use the fact that the comparison
between two quantities x1 and x2 does not change if we use a different scale
for measuring both quantities, i.e., a different starting point and a different
measuring unit. For example, a temperature which is large in the Fahrenheit
scale is also larger in the Celsius scale. In general, if we use the new scale

y = a ·x+b with a > 0, then x1 > x2 if and only if y1 > y2, where yi
def
= a ·xi+b.
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So, instead of the logarithms ln(Pi), we can use expressions Si = a·ln(Pi)+b.

Here,
∑

Si = a ·
n+1∑
i=1

ln(Pi) + (n+ 1) · b, so minimizing this sum is equivalent to

minimizing the expression (4). Let us select the values a and b in such a way
that the resulting scores match the scale used in the SRFT mode.

In SRFT, for each factor i, the worst risk has a score Si = 5, while the
smallest risk corresponds to Si = 0. In terms of the corresponding probability
Pi, the worst case is when Pi = 1, and the best case is when Pi is equal to some
pre-defined small value p0. (In real life, there is always some risk, so we cannot
reach Pi = 0.) Thus, we should have a · ln(1)+ b = 5 and a · ln(p0)+ b = 0. The
first equality implies b = 5, and thus, the second leads to a · ln(p0) = −b = −5

and a =
5

| ln(p0)|
.

3 Why Thresholds Are Equally Spaced: Our
Explanation

Main idea: let us take into account that risks can be only estimated
with some uncertainty. Based on the scores Si = a · ln(Pi)+ b corresponding
to different factors i, we form the summary score

S =
n+1∑
i=1

si = a · ln(p) + (n+ 1) · b. (5)

Since the probabilities Pi (and thus, the scores si = a · ln(Pi) + b) are only
approximately known, the resulting score is estimated with some estimation
error. If the difference between the scores of two different arrangements is
smaller than this estimation error, we may not be able to notice this difference
based on the estimates corresponding to these arrangements.

Instead of the numerical values of the risk scores – whose exact values are
affected by estimation errors – it thus makes sense to consider groups of distin-
guishable risks.

From the main idea to the actual classification of risks. Based on our
estimates for the probabilities Pi, we can estimate the resulting risk p only with
some uncertainty. Let us denote the relative accuracy of estimating p by k.

This means that when we know the estimate p̃ for the relative loss, the actual
(unknown) value p of this relative loss can be anywhere within the interval
[p̃− k · p̃, p̃+ k · p̃], i.e., within the interval [p̃ · (1− k), p̃ · (1 + k)].

When the two estimates p̃ < q̃ are close to each other, the corresponding
intervals [p̃ · (1 − k), p̃ · (1 + k)] and [q̃ · (1 − k), q̃ · (1 + k)] have a non-empty
intersection, which means that it is possible that both estimates correspond to
the same value of risk p.

The estimates are guaranteed to correspond to different values of risk if the
corresponding intervals do not intersect, i.e., when p̃ · (1 + k) < q̃ · (1 − k), or,
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equivalently, when q̃ > p̃ · 1 + k

1− k
.

For a given p̃, the minimum of the values q̃ which satisfy this inequality –

i.e., which correspond to a definitely higher actual risk – is equal to q̃ = p̃· 1 + k

1− k
.

Thus, if we select p̃ as a representative of a certain level of risk, then the next

higher level of risk starts at q̃ = p̃ · 1 + k

1− k
.

So, if we start with the value p̃0 corresponding to the smallest value of risk,

then the next representative risk values are p̃1 = p̃0 ·
1 + k

1− k
, p̃2 = p̃1 ·

1 + k

1− k
=

p̃0 ·
(
1 + k

1− k

)2

, and, in general, p̃j = p̃0 ·
(
1 + k

1− k

)j

.

Resulting explanation. For these values p̃j of relative loss, the corresponding

values of risk S̃j = a · ln(p̃j) + (n− 1) · b take the form

S̃j = a · ln(p̃0) + j · a · ln
(
1 + k

1− k

)
+ (n− 1) · b. (6)

We can see that these values linearly depend on j, i.e., that they are indeed
equally spaced: the difference S̃j+1− S̃j between the two consecutive thresholds

s̃j is a constant a · ln
(
1 + k

1− k

)
.

We have therefore explained why in the SRFT model, thresholds are equally
spaced.
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