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Abstract. Fuzzy methodology has been invented to describe imprecise
(“fuzzy”) human statements about the world, statements that use im-
precise words from natural language like “small” or ”large”. Usual ap-
plications of fuzzy techniques assume that the world itself is “crisp”,
that there are exact equations describing the world, and fuzziness of our
statements is caused by the incompleteness of our knowledge. But what
if the world itself is fuzzy? What if there is no perfect system of equations
describing the physical world — in the sense that no matter what system
of equations we try, there will always be cases when this system will lead
to wrong predictions? This is not just a speculation: this idea is actu-
ally supported by many physicists. At first glance, this is a pessimistic
idea: no matter how much we try, we will never be able to find the the
Ultimate Theory of Everything. But it turns out that this idea also has
its optimistic aspects: namely, in this chapter, we show (somewhat un-
expectedly), that if such a no-perfect-theory principle is true, then the
use of physical data can drastically enhance computations.

1 Fuzzy Techniques: The Original Zadeh’s Vision

Pre-Zadeh attitude: everything can be made precise. Scientists and engineers use
both formal languages and imprecise natural language. In engineering practice,
formulas, derivations, and computations — which are described in a precise lan-
guage — intertwine with explanations — which are usually described in a natural
language. Even in formal mathematics, when presenting a proof, a mathemati-
cian describes part of it in precise terms and part in imprecise terms from a
natural language: “one can easily see that”, “since e is small, the difference
f(z+¢) — f(x) is also small”, etc.

In formal mathematics, usually, the imprecise parts can be reformulated in
precise terms; professional mathematicians can do it, mathematics students are
taught how to do it — and math students do not get good grades until they are
able to perform such a reformulation. In rare occasions, an attempt for such a
formalization reveals a gap in the proof, but in most such cases, this gap is later
filled.
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Similarly, when an engineer makes an imprecise argument, it does not nec-
essarily mean that a more precise explanation is not possible: when needed,
an engineer can usually provide a precise quantitative justification of his/her
original qualitative decision.

A similar precisiation is often possible beyond science and engineering. For
example, instructors who grade students’ work use seemingly imprecise words
like “excellent”, “good”, “satisfactory”. However, in most cases, these words have
a very precise meaning. In the US grading system, we usually add up well-defined
points that the students got for different problems on the test. If the resulting
grade is 90 (or higher) out of 100 possible point, we assign the grade “excellent”
(A). If the resulting grade is at least 80 but smaller than 90, we consider this
work “good” (grade B), etc.

Similarly, in medicine, many terms that are, at first glance, imprecise, have a
very precise meaning. “High blood pressure” means upper blood pressure above
140, “fever” means temperature above 37.5 C, “overweight” means that the
body-mass index (body mass in kg divided by the squared height in meters) is
above 25, etc. In law, a child — a seemingly informal notion, with an imprecise
transition — is legally defined as someone younger than 18 years old.

These example led scientists and engineers to conclude that in principle, all
the statements can be made precise. According to this belief, when a statement
sounds imprecise, it is only because we have not learned the corresponding terms
yet. Once we learn these terms, the statement will become very precise.

Zadeh’s vision. In 1965, Lotfi Zadeh published his revolutionary paper, in which
he emphasized that:

— in addition to situations when use imprecise terms but have a precise mean-
ing in mind (“excellent test results” meaning 90+ points),

— there are also many situations when we use imprecise terms for which no
precise meaning is known.

Moreover, he showed that such situations, in which no precise meaning is known,
in which the meaning is “fuzzy”, are ubiquitous in many application areas.

To deal with such situations, L. Zadeh proposed techniques — which he called
fuzzy — that enable researchers to describe their imprecise statements in precise
mathematical terms, and thus, enables computer-based systems to process such
statements. These techniques has led to many successful applications; see, e.g.,
[3,5,6,9,16, 20,22, 23].

2 Is the World Itself Fuzzy? And If Yes, What Are
Possible Physical and Computational Consequences?

Traditional viewpoint. The traditional viewpoint in engineering and science is
that the world itself is crisp, it is described by precise equations which, in princi-
ple, enable us to predict either the events themselves (in classical, pre-quantum
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physics) or probabilities of different events (in quantum physics). The only rea-
son for “fuzzy” uncertainty is that we only have partial knowledge about the
world.

For example, when a meteorologist makes a “fuzzy” statement that there is
a good chance of rain, the meteorologist usually believes that with more infor-
mation, he/she would be able to make a more definite prediction.

But what if the world itself is fuzzy? But what if there are no ultimate equations?
What if, no matter what equations we formulate, no matter how accurate their
predictions are so far, there will always be cases when these equations will lead
to wrong predictions?

In other words, what is not only our knowledge is fuzzy, what if the world
itself is fuzzy?

Somewhat surprisingly, this is what many physicists actually believe. Many
physicists indeed believe that every physical theory is approximate — no mat-
ter how sophisticated a theory, no matter how accurate its current predictions,
inevitably new observations will surface which would require a modification of
this theory; see, e.g., [2].

This belief can be justified by the history of physics: no matter how good a
physical theory, no matter how good its accordance with observations, eventually,
new observations appeared which were not fully consistent with the original
theory — and thus, a theory needed to be modified. For example, for several
centuries, Newtonian physics seems to explain all observable facts — until later,
quantum (and then relativistic) effects were discovered which required changes
in physical theories.

At first glance, this belief is pessimistic. At first glance, this belief is pessimistic:
no matter how much we try, we will never find the Ultimate Theory of Every-
thing.

But maybe there is room for optimism. But is the situation indeed so pessimistic?
After all, physics is not just about finding equations. Finding equations are an
important first step, but the ultimate goal of physics is not to find equations,
but to predict future events — and equations are an important first step towards
this prediction.

Many physical equations are very complex, solving them is a complex com-
putational task. From this viewpoint, any possibility to enhance computations
would be a great optimistic development. For example, quantum physics is
clearly more pessimistic in terms of possibility of predictions, because in quan-
tum physics, we can often only predict probabilities of future events, and not
the events themselves. On the other hand, research on quantum computing has
shown that the use of quantum effects can drastically enhance computations;
see, e.g., [17].
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How does the no-perfect-theory belief affect computations? In this chapter, we
analyze how the no-perfect-theory belief affects our computational abilities.

At first glance, the fact that no theory is perfect seems to make the question of
computability rather hopeless: no matter how seriously we analyze computability
within a given physical theory, eventually, this theory will turn out to be, strictly
speaking, false — and thus, our analysis of what is computable will have to be
redone.

In this chapter, we show, however, that in spite of this seeming hopeless-
ness, some important answers to the question of what is computable can be de-
duced simply from the fact no physical theory is perfect — namely, in this case,
computations can be enhanced in comparison with the usual (Turing machine)
computability.

Comment. Some preliminary results of this chapter appeared in [7, 8,12, 25].

3 How to Describe, in Precise Terms, that No Physical
Theory Is Perfect

Discussion. The statement that no physical theory is perfect means that no
matter what physical theory we have, eventually there will be observations which
violate this theory. To formalize this statement, we need to formalize what are
observations and what is a theory.

What are observations? Each observation can be represented, in the computer,
as a sequence of Os and 1s; actually, in many cases, the sensors already produce
the signal in the computer-readable form, as a sequence of Os and 1s.

An exact description of each experiment can also be described in precise
terms, and thus, it will be represented in a computer as a sequence of Os and 1s.
An experiment should specify how long we wait for the result; in this way, we
are guaranteed that we get the result.

In each experiment, we can specify which bit of the result we are interested in;
for convenience, we can consider producing different bits as different experiments.

Each such experiment is represented as a sequence of 0s and 1s; by appending
1 at the beginning of this sequence, we can view this sequence as a binary
expansion of a natural number i. This natural number will serve as the “code”
describing the experiment. For example, a sequence 001 is transformed into i =
10012 = 91p. (We need to append 1, because otherwise two different sequences
001 and 01 will be represented by the same integer).

For natural numbers ¢ which correspond to experiment descriptions, let w;
denote the bit result of the experiment described by the code i.

Let us also define w; for natural numbers 7 which do not correspond to a
syntactically correct description of experiments. For example, we can fix a scheme
of an experiment that uses a natural number ¢ as a parameter (e.g., repeating a
certain procedure ¢ times), and define w; as the result of this scheme.

In these terms, all past and future observations form a (potentially) infinite
sequence w = wiws ... of Os and 1s, w; € {0,1}.
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What is a physical theory from the viewpoint of our problem: a set of sequences. A
physical theory may be very complex, but all we care about is which sequences
of observations w are consistent with this theory and which are not. In other
words, for our purposes, we can identify a physical theory T with the set of all
sequences w which are consistent with this theory.

Not every set of sequences corresponds to a physical theory: the set T must be
non-empty and definable. Not every set of sequences comes from a physical
theory. First, a physical theory must have at least one possible sequence of
observations, i.e., the set T' must be non-empty.

Second, a theory — and thus, the corresponding set — must be described by a
finite sequence of symbols in an appropriate language. Sets which are uniquely
by (finite) formulas are known as definable. Thus, the set T" must be definable.

Since at any moment of time, we only have finitely many observations, the set T
must be closed. Another property of a physical theory comes from the fact that
at any given moment of time, we only have finitely many observations, i.e., we
only observe finitely many bits. From this viewpoint, we say that observations
w1 . . - wy are consistent with the theory T if there is a continuing infinite sequence
which is consistent with this theory, i.e., which belongs to the set T'.

The only way to check whether an infinite sequence w = wywsy . . . is consistent
with the theory is to check that for every n, the sequences w; . . . w, are consistent
with the theory T'. In other words, we require that for every infinite sequence
W= WiWsg . . .,

— if for every n, the sequence ws ...w, is consistent with the theory T’ i.e., if
for every n, there exists a sequence w(™ € T which has the same first n bits

as w, i.e., for which wgn) =w;foralli=1,...,n,

— then the sequence w itself should be consistent with the theory, i.e., this
infinite sequence should also belong to the set T

From the mathematical viewpoint, we can say that the sequences w(™ converge

to w: w™ — w (or, equivalently, lim w(™ = w), where convergence is understood

in terms of the usual metric on the set of all infinite sequences d(w,w’) e

2N« where N(w,w') def max{k:wi...wp =wi...w}

In general, if w(™) — w in the sense of this metric, this means that for every
n, there exists an integer ¢ such that for every m > ¢, we have w%m) .. .w&m) =
Wi ...wy. Thus, if W™ € T for all m, this means that for every n, a finite
sequence ws . . . wy can be a part of an infinite sequence which is consistent with
the theory T'. In view of the above, this means that w € T

In other words, if w(™ — w and w(™ € T for all m, then w € T. So, the
set T" must contain all the limits of all its sequences. In topological terms, this

means that the set T must be closed.

A physical theory must be different from a fact and hence, the set T must be
nowhere dense. The assumption that we are trying to formalize is that no matter
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how many observations we have which confirm a theory, there eventually will
be a new observation which is inconsistent with this theory. In other words, for
every finite sequence w; . ..w, which is consistent with the set 7', there exists a
continuation of this sequence which does not belong to T'. The opposite would
be if all the sequences which start with w; ...w, belong to T’ in this case, the
set T will be dense in this set. Thus, in mathematical terms, the statement that
every finite sequence which is consistent with 7" has a continuation which is not
consistent with 7" means that the set T is nowhere dense.

Resulting definition of a theory. By combining the above properties of a set T’
which describes a physical theory, we arrive at the following definition.

Definition 1. By a physical theory, we mean a non-empty closed nowhere dense
definable set T.

Mathematical comment. To properly define what is definable, we need to have
a consistent formal definition of definability. In this chapter, we follow a natural
definition from [10, 11] — which is reproduced in Appendix A.

Formalization of the principle that no physical theory is perfect. In terms of the
above notations, the no-perfect-theory principle simply means that the infinite
sequence w (describing the results of actual observations) is not consistent with
any physical theory, i.e., that the sequence w does not belong to any physical
theory T'. Thus, we arrive at the following definition.

Definition 2. We say that an infinite binary sequence w is consistent with
the no-perfect-theory principle if the sequence w does not belong to any physical
theory (in the sense of Definition 1).

Comment. Are there such sequences in the first place? Our answer is yes. In-
deed, by definition, we want a sequence which does not belong to a union of all
definable physical theories. Every physical theory is closed nowhere dense set.
Every definable set is defined by a finite sequence of symbols, so there are no
more than countably many definable theories. Thus, the union of all definable
physical theories is contained in a union of countably many closed nowhere dense
sets. Such sets are knows as meager (or Baire first category); it is known that
the set of all infinite binary sequences is not meager. Thus, there are sequences
who do not belong to the above union — i.e., sequences which are consistent with
the no-perfect-theory principle; see, e.g., [4,18].

4 How to Describe When Access to Physical Observations
Enhances Computability

How to describe general computations. Each computation is a solution to a well-
defined problem. As a result, each bit in the resulting answer satisfies a well-
defined mathematical property. All mathematical properties can be described,
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e.g., in terms of Zermelo-Fraenkel theory ZF, the standard formalization of set
theory. For each resulting bit, we can formulate a property P which is true if and
only if this bit is equal to 1. In this sense, each bit in each computation result
can be viewed as the truth value of some statement formulated in ZF. Thus, our
general ability to compute can be described as the ability to (at least partially)
compute the sequence of truth values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic
order. Let «, denote the truth value of the n-th ZF statement, and let o =
Q@1 ...Qp ... denote the infinite sequence formed by these truth values. In terms
of this sequence, our ability to compute is our ability to compute the sequence a.

Kolmogorov complexity as a way to describe what is easier to compute. We
want to analyze whether the use of physical observations (i.e., of the sequence w
analyzed in the previous section) can simplify computations. A natural measure
of easiness-to-compute was invented by A. N. Kolmogorov, the founder of modern
probability theory, when he realized that in the traditional probability theory,
there is no formal way to distinguish between:

— finite sequences which come from observing from truly random processes,
and
— orderly sequences like 0101...01.

Kolmogorov noticed that an orderly sequence 0101...01 can be computed by a
short program, while the only way to compute a truly random sequence 0101 ... is
to have a print statement that prints this sequence. He suggested to describe this
differences by introducing what is now known as Kolmogorov complexity K (x)
of a finite sequence z: the shortest length of a program (in some programming
language) which computes the sequence z.

— For an orderly sequence x, the Kolmogorov complexity K (x) is much smaller
than the length len(z) of this sequence: K(z) < len(z).
— For a truly random sequence z, we have K(x) =~ len(z); see, e.g., [14].

The smaller the difference len(z) — K (z), the more we are sure that the sequence
x is truly random.

Relative Kolmogorov complexity as a way to describe when using an auzxiliary
sequence simplifies computations. The usual notion of Kolmogorov complexity
provides the complexity of computing x “from scratch”. A similar notion of the
relative Kolmogorov complezity K (x|y) can be used to describe the complexity
of computing  when a (potentially infinite) sequence y is given. This relative
complexity is based on programs which are allowed to use y as a subroutine, i.e.,
programs which, after generating an integer n, can get the n-th bit y, of the
sequence y by simply calling y. When we compute the length of such programs,
we just count the length of the call, not the length of the auxiliary program
which computes y,, — just like when we count the length of a C++ program, we
do not count how many steps it takes to compute, e.g., sin(m), we just count the
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number of symbols in this function call. The relative Kolmogorov complexity is
then defined as the shortest length of such a y-using program which computes x.

Clearly, if x and y are unrelated, having access to y does not help in com-
puting x, so K(z|y) =~ K(z). On the other hand, if  coincides with y, then
the relative complexity K (z|y) is very small: all we need is a simple for-loop, in
which we call for each bit y;, i = 1,...,n, and print this bit right away.

Resulting reformulation of our question. In terms of relative Kolmogorov com-
plexity, the question of whether observations enhance computations is translated
into checking whether K(a; ...a, |w) = K(«1 ... ay,) (in which case there is no
enhancement) or whether K(ay ... oy |w) < K(ag ... ay) (in which case there is
a strong enhancement). The larger the difference K (a1 ... ap)—K(ag ... o, |w),
the larger the enhancement.

5 First Result: No-Perfect-Theory Principle Enhances
Computability

Let us show that under the no-perfect-theory principle, observations do indeed
enhance computability.

Proposition 1. Let a be a sequence of truth values of ZF statements, and let
w be an infinite binary sequence which is consistent with the mo-perfect-theory
principle. Then, for every integer C' > 0, there exists an integer n for which
K(og...on|w) < K(ay...an) —C.

In other words, in principle, we can have an arbitrary large enhancement.

Comment. For readers’ convenience, all the proof are placed in a special ap-
pendix.

6 Can Access to Physical Observations Speed Up
Computations?

Are computations feasible? What we have shown so far is that under Zadeh-
inspired no-perfect-theory belief, it is possible to compute things that are not
computable in the usual physical paradigm. From the practical viewpoint, being
able to compute something in principle is important, but even more important
is how fast we can compute it. In many cases, computations are theoretically
possible, but not practically feasible, since they require computation times which
are longer than the lifetime of the Universe :-( It is therefore important to analyze
which problems are feasibly computable and which are not. To perform this
analysis, we need to define what is “feasible” and what is a “problem”.

In computer science, “feasible” is usually interpreted as computable in poly-
nomial time, i.e., in time ¢ bounded by a polynomial of the length n of the input;
see, e.g., [19]. This definition works in most cases:
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— time 2" is non-feasible already for n =~ 300, while

— time n? or n? is usually feasible.

This is not a perfect definition:

— on the one hand, time ¢ = 10%°°. 5 is polynomial in n but clearly not feasible;
— on the other hand, computation time exp(1071% - n) is not bounded by the
polynomial, but it clearly corresponds to feasible computations.

However, this is the best definition we have.
By a problem, computer scientists usually understand a problem in which it
is absolutely clear what is a solution and what is not. For example:

— finding a proof of a given mathematical statement,
— finding a formula that fits all experimental observations,
— designing a bridge under certain specifications of strength, cost, etc.,

these are all such problems — while, e.g., the problem of designing a beautiful
bridge is not clearly defined.

In general, we need to find a solution that satisfies a given set of constraints
— or at least check that such a solution is possible. Once we have a candidate
for the solution, we can feasibly check whether this candidate indeed satisfies all
the constraints.

A problem of checking whether a given set of constraints has solution is called
a problem of the class NP if we can check, in polynomial time, whether a given
candidate is a solution; see, e.g., [19].

Examples of such problem includes checking whether a given graph can be
colored in 3 colors, checking whether a given propositional formula —i.e., formula
of the type

(’Ul\/_\Ug\/Ug)&,(U4\/—\U2\/_|U5)& ey

is satisfiable, i.e., whether this formula is true by some combination of the propo-
sitional variables v;, etc.

Each problem from the class NP can be algorithmically solved by trying
all possible candidates. For example, we can check whether a graph can be
colored by trying all possible assignments of colors to different vertices of a
graph, and we can check whether a given propositional formula is satisfiable
by trying all 2" possible combinations of true-or-false values vy, ..., v,. Such
exhaustive search algorithms require computation time like 2™, time that grows
exponentially with n. For medium-size inputs, e.g., for n ~ 300, the resulting
time is larger than the lifetime of the Universe. So, these exhaustive search
algorithms are not practically feasible.

It is not known whether problems from the class NP can be solved feasibly

(i.e., in polynomial time): this is a famous open problem PLNP. Tt is known,
however, there are problems in the class NP which are NP-complete in the sense
that every problem from the class NP can be reduced to this problem. Reduction
means, in particular, that if we can find a way to efficiently solve one NP-
complete problem, then, by reducing other problems from the class NP to this
problem, we can thus efficiently solve all the problems from the class NP.
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So, it is very important to be able to efficiently solve even one NP-hard
problem. (By the way, both above example of NP problems — checking whether
a graph can be colored in 3 colors and whether coloring a propositional formula
is satisfiable — are NP-complete.)

Can the use of non-standard physics speed up the solution of NP-complete prob-
lems? NP-completeness of a problem means, crudely speaking, that the problem
may take an unrealistically long time to solve — at least on computers based on
the usual physical techniques. A natural question is: can the use of non-standard
physics speed up the solution of these problems?

This question has been analyzed for several specific physical theories, e.g., for
quantum filed theory, for cosmological solutions with wormholes and/or casual
anomalies. Several possible techniques for solving NP-complete problems are
described in [1,11, 13,15, 21].

How does the no-perfect-belief affect the speed of computations? In this chapter,
we show that an important speed-up can be deduced simply from the fact no
physical theory is perfect.

7 Second Result: The Use of Physical Observations Can
Help in Solving NP-Complete Problems

How to represent instances of an NP-complete problem. For each NP-complete
problem P, its instances are sequences of symbols. In the computer, each such
sequence is represented as a sequence of Os and 1s. Thus, as in the previous
section, we can append 1 in front of this sequence and interpret the resulting
sequence as a binary code of a natural number 1.

In principle, not all natural numbers ¢ correspond to instances of a problem P;
we will denote the set of all natural numbers which correspond to such instances
by Sp.

For each i € Sp, the correct answer (true or false) to the i-th instance of the
problem P will be denoted by sp ;.

What we mean by using physical observations in computations. In addition to
performing computations, our computational device can produce a scheme i for
an experiment, and then use the result w; of this experiment in future compu-
tations. In other words, given an integer i, we can produce w;.

In precise theory-of-computation terms, the use of physical observations in
computations thus means computations that use the sequence w as an oracle;
see, e.g., [19].

Definition 3. By a ph-algorithm A, we mean an algorithm which uses, as an
oracle, a sequence w which is consistent with the no-perfect-theory principle.

Notation. The result of applying an algorithm A using w to an input i will be
denoted by A(w,1).
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Definition 4. Let P be an NP-complete problem. We say that a feasible ph-
algorithm A solves almost all instances of P if for every ¢ > 0, and for every
natural number n, there exists an integer N > n for which the proportion of the
instances i < N of the problem P which are correctly solved by A is greater than
1—e:

v L
Ve > 0Vn 3N (Nzn&#{%N'ZGSP&A(‘”’Z) 87’”}>1s>.

#{i<N:i€ Sp}

Comment. The restriction to sufficiently long inputs N > n makes perfect sense:
for short inputs, NP-completeness is not an issue: we can perform exhaustive
search of all possible bit sequences of length 10, 20, and even 30. The challenge
starts when the length of the input is high.

Proposition 2. For every NP-complete problem P, there exists a feasible ph-
algorithm A that solves almost all instances of P.

In other words, we show that the use of physical observations makes all NP-
complete problems easier-to-solve (in the above-described sense).
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A A Formal Definition of Definable Sets

Definition Al. Let L be a theory, and let P(x) be a formula from the language
of the theory L, with one free variable x for which the set {x | P(x)} is defined
in the theory L. We will then call the set {x| P(z)} L-definable.



Is the Physical World Fuzzy? 13

Crudely speaking, a set is L-definable if we can explicitly define it in L. The
set of all real numbers, the set of all solutions of a well-defined equation, every
set that we can describe in mathematical terms: all these sets are L£-definable.

This does not mean, however, that every set is L-definable: indeed, every
L-definable set is uniquely determined by formula P(x), i.e., by a text in the
language of set theory. There are only denumerably many words and therefore,
there are only denumerably many L-definable sets. Since, e.g., in a standard
model of set theory ZF, there are more than denumerably many sets of integers,
some of them are thus not £-definable.

Our objective is to be able to make mathematical statements about L-
definable sets. Therefore, in addition to the theory £, we must have a stronger
theory M in which the class of all £-definable sets is a set — and it is a countable
set.

Denotation. For every formula F from the theory L, we denote its Godel
number by | F].

Comment. A Goédel number of a formula is an integer that uniquely determines
this formula. For example, we can define a Gédel number by describing what this
formula will look like in a computer. Specifically, we write this formula in ETEX,
interpret every TEX symbol as its ASCII code (as computers do), add 1 at
the beginning of the resulting sequence of Os and 1s, and interpret the resulting
binary sequence as an integer in binary code.

Definition A2. We say that a theory M is stronger than L if it contains
all formulas, all axioms, and all deduction rules from L, and also contains a
special predicate def(n,x) such that for every formula P(x) from L with one free
variable, the formula Yy (def(| P(z)],y) +> P(y)) is provable in M.

The existence of a stronger theory can be easily proven: indeed, for L=ZF,
there exists a stronger theory M. As an example of such a stronger theory,
we can simply take the theory £ plus all countably many equivalence formulas
as described in Definition A2 (formulas corresponding to all possible formulas
P(z) with one free variable). This theory clearly contains £ and all the desired
equivalence formulas, so all we need to prove is that the resulting theory M
is consistent (provided that L is consistent, of course). Due to compactness
principle, it is sufficient to prove that for an arbitrary finite set of formulas
Py(x),..., Py(x), the theory L is consistent with the above reflection-principle-
type formulas corresponding to these properties Pi(x),..., Pp(z).

This auxiliary consistency follows from the fact that for such a finite set, we
can take

def(n,y) < (n = [P(2)] & Pi(y)) V...V (n = [Pn(x)] & Pn(y)).

This formula is definable in £ and satisfies all m equivalence properties. The
statement is proven.
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Important comments. In the main text, we will assume that a theory M that is
stronger than £ has been fixed; proofs will mean proofs in this selected theory
M.

An important feature of a stronger theory M is that the notion of an L-
definable set can be expressed within the theory M: a set S is L£-definable if and
only if In € W Vy(def(n,y) < y € S).

In the chapter, when we talk about definability, we will mean this property
expressed in the theory M. So, all the statements involving definability become
statements from the theory M itself, not statements from metalanguage.

B Proofs

Proof of Proposition 1. Let us fix an integer C'. To prove the desired property
for this C, let us prove that the set T" of all the sequences which do not satisfy
this property, i.e., for which K(a; ..., |w) > K(a;...a,) — C for all n, is a
physical theory in the sense of Definition 1. For this, we need to prove that this
set T' is non-empty, closed, nowhere dense, and definable. Then, from Definition
2, it will follow that the sequence w does not belong to this set and thus, that
the conclusion of Proposition 1 is true.

The set T is clearly non-empty: it contains, e.g., a sequence w = 00...0...
which does not affect computations. The set T is also clearly definable: we have
just defined it.

Let us prove that the set 7" is closed. For that, let us assume that w("™) — w
and w(™) ¢ T for all m. We then need to prove that w € T. Indeed, let us
fix n, and let us prove that K(ag ...ap |w) > K(a;...a,) — C. We will prove
this by contradiction. Let us assume that K(ay ... |w) < K(og...ap) — C.
This means that there exists a program p of length len(p) < K(ay...ay) — C
which uses w to compute g ...a,. This program uses only finitely many bits
of w; let B be the largest index of these bits. Due to w(™ — w, there exists
M for which, for all m > M, the first B bits of w(™ coincide with the first B
bits of the sequence w. Thus, the same program p will work exactly the same
way — and generate the sequence o ...y, — if we use w(™) instead of w. But
since len(p) < K(aq...an) — C, this would means that the shortest length
K(ay...ap |w(m)) of all the programs which use w(™ to compute ag ...y, also
satisfies the inequality K (aj ..., |w™) < K(aq...a,) — C. This inequality
contradicts to our assumption that w(™ € T and thus, that K (a; ... ay, |w™) >
K(ay ...ap) — C. The contradiction proves that the set T is indeed closed.

Let us now prove that the set T' is nowhere dense, i.e., that for every fi-
nite sequence ws ...wy,, there exists a continuation w which does not belong
to the set T. Indeed, as such a continuation, we can simply take a sequence
W = wi...Wnraias... obtained by appending « at the end. For this new se-
quence, computing «; ..., is straightforward: we just copy the values a; from
the corresponding places of the new sequence w. Here, the relative Kolmogorov
complexity K(aj ..., |w) is very small and is, thus, much smaller than the
complexity K(aj ...a,) which — since ZF is not decidable — grows fast with n.
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The proposition is proven.

Proof of Proposition 2.

1°. As the desired ph-algorithm, we will, given an instance 4, simply produce
the result w; of the i-th experiment. Let us prove, by contradiction, that this
algorithm satisfies the desired property.

2°. We want to prove that for every € > 0 and for every n, there exists an integer
N > n for which

#{iSNZiESp&wiZSP7i}>(1—5)~#{i§N:iES7>}.

The assumption that this property is not satisfied means that for some ¢ > 0
and for some integer n, we have

#{i<N:ieSp&w =sp;}<(1—¢)- #{i<N:ieSp}forall N>n. (1)

Let T denote the set of all the sequences x that satisfy the property (1), i.e.,
let

7

{z :#{i<N:ieSp&a,=sp;} <(1—¢)-#{i < N:ie Sp}forall N >n}.

We will prove that this set T is a physical theory in the sense of Definition 1.

Then, due to Definition 2 and the fact that the sequence w satisfies the no-
perfect-theory principle, we will be able to conclude that w & T', and thus, that
the property (1) is not satisfied for the given sequence w. This will conclude the
proof by contradiction.

3°. By definition of a physical theory T, it is a set which is non-empty, closed,
nowhere dense, and definable. Let us prove these four properties one by one.

3.1°. Non-emptiness comes from the fact that the sequence x; for which x; =
—sp,; for i € Sp and z; = 0 otherwise clearly belongs to this set: for this
sequence, for every N, we have #{i < N :i € Sp & x; = sp;} = 0 and thus, the
desired property is satisfied.

3.2°. Let us prove that the set T is closed, i.e., that if we have a family of
sequences (™ € T for which 2™ — w, then z € T.
Indeed, let us take any N # n, and let us prove that

#{iSNSiESp&xi:Sp,i}S(1*6)'#{7;SNZZ.€S7)}

for this N. Due to 2™ — x, there exists M for which, for all m > M, the first
N bits of (™) coincide with the first N bits of the sequence x: mgm) = w; for all
1 < N. Thus,

#{Z <N:ieSp&kr; = Sp)i} = #{’L <N:i€ Sp&,.’ligm) = 87:71'}.
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Since (™) € T, we have
#i<N:ieSp&al™ =sp;} <(1—e)-#{i <N:i€Sp},
thus
#{iSN:iESp&xi:Sp’i}S(1—8)~#{i§N:i€Sp}.
So, the set T is indeed closed.

3.3°. Let us now prove that the set 1" is nowhere dense, i.e., that for every finite
sequence I ... I, there exists a continuation x which does not belong to the
set T

Indeed, as such a continuation, we can simply take a sequence

T=T1 - TnITm+1Lm+2---

where for ¢ > m, we take x; = sp; if i € Sp and z; = 0 otherwise. For this new
sequence, for every N, at most m first instances may lead to results different
from sp ;, so we have

#{iSN:iES'p&:Ei:Sp,i}z#{iSNtiES'p}—m.

When N — oo, then #{i < N : i € Sp} — o0, so for sufficiently large N, we
have
#Li<N:ieSpl—m>(1—c)-#{i<N:icSp},

thus,
#li<N:ieSp&ai=sp;}>(1—¢) - #{i<N:i€Sp}
and we cannot have
#{i<N:ieSp&zi=sp;}<(1—e) #{i<N:i€ Sp}.

Therefore, this continuation does not belong to the set 7'

3.4°. Finally, since the formula (1) explicitly defines the set T, this set T is
clearly definable.

So, T is a physical theory, hence w ¢ T', and the proposition is proven.



