
Asymptotically Optimal Algorithm for Checking

Whether a Given Vector Is a Solution to a Given

Interval-Quantifier Linear System∗

Vladik Kreinovich
University of Texas at El Paso, 500 W. University,
El Paso, TX 79968, USA

vladik@utep.edu

Abstract

In many practical situations, we have a linear dependence between
different quantities. In such situations, we often need to solve the corre-
sponding systems of linear equations. Often, we know the parameters of
these equations with interval uncertainty. In this case, depending on the
practical problem, we have different notions of a solution. For example,
if we determine parameters from observations, we are interested in all the
unknowns xj which satisfy the given system of linear equations for some
possible values of the parameters. If we design a system so that it does
not exceed given tolerance bounds, then we need to make sure that for all
possible values of the design parameters there exist possible values of the
outcome parameters for which the system is satisfied, etc. In general, we
can have an arbitrary sequence of quantifiers corresponding to different
parameters. The resulting systems are known as interval-quantifier linear
systems.

In this paper, we provide an asymptotically optimal algorithm for
checking whether a given vector is a solution to a given interval-quantifier
linear system. For a system of m equations with n unknown, this algo-
rithm takes time O(m · n).

Keywords: interval computations, interval-quantifier linear system, solutions to
interval liner systems, asymptotically optimal algorithm
AMS subject classifications: 65G20, 65G30, 65G40, 65F99

1 Formulation of the Problem

Dependencies are important for science and engineering. One of the
main objectives of science is to be able to predict the future state of the world. A state
of the world is described by the values of different physical quantities, so we can say
that one of the main objectives of science is to predict the values of different physical

∗Submitted: November 6, 2014; Revised: ? Accepted: ?.

1

2 Kreinovich, Interval-Quantifier Linear Systems

quantities. We want to predict tomorrow’s temperature, we want to predict the future
position of a spaceship, we want to predict how a patient will react to a certain drug.

Once we know how to predict the results of different actions, a natural next step
is to come up with actions and/or decisions that would lead to the desired result: how
to stop global warming, how to make sure that the spaceship reaches its destination,
how to select the medicine that will be the best for the given patient.

In all these situations, the fact that we can use the values of some quantities at some
moments of time to predict the values of the same (or other) quantities at different
moments of time means that there is a dependence between different quantities. Once
we know the function q = f(p1, . . . , pn) describing how the desired quantity q depends
on the known quantities p1, . . . , pn, we can use this function and the known values pj
to predict the value q.

Once we know the dependence qi = f(p1, . . . , pn) between desired difficult-to-
change quantities qi and easier-to-change quantities pj , then, to achieve the desired
values qi, we can find the corresponding values pi by solving the corresponding system
of equations.

Dependencies are often linear. In many cases, the range of possible values of
the quantities pi is small, i.e., all possible values pi are close to some “nominal” value
p
(0)
i . In such cases, we can expand the dependence q = f(p1, . . . , pn) in Taylor series

around the nominal point p(0) = (p
(0)
1 , . . . , p

(0)
n), and ignore terms which are quadratic

(or higher order) in terms of the small difference ∆pj
def
= pj − p

(0)
j :

q = c0 +

n∑
j=1

cj ·∆pj .

Substituting ∆pj = pj − p
(0)
j into this formula, we conclude that q linearly depends

on pj :

q = q0 +
n∑

j=1

cj · pj . (1)

Need to solve systems of linear equations. As we have mentioned, in many
practical situations, we need to solve systems of equations. When the dependence is
linear, we need to solve systems of linear equations. Let us give two simple examples
of such need.

To be able to use linear dependence (1), we need to know the values of the coef-
ficients q0 and cj . These coefficients can be determined if we repeatedly measure the
values p1, . . . , pn and the corresponding value q. If we denote, by pk1, . . . , pkn, and
qk, the values corresponding to the k-th measurement, then we get a system of linear
equations

qk = q0 +

n∑
j=1

ci · pki (2)

with n+ 1 unknowns q0, c1, . . . , cn.
Once we know the coefficients qi0, ci1, . . . , cin describing the dependence of different

desired quantities qi on the quantities pj :

qi = qi0 +
n∑

j=1

cij · pj , (3)

Reliable Computing XX, 20XX 3

we can then, for every desired tuple of values q1, q2, . . ., solve the system of linear equa-
tions (3) and find the values pj which guaranteed the desired values of the quantities
pi.

In all these cases, we need to consider a system of linear equations

n∑
j=1

aij · xj = bi, i = 1, . . . ,m, (4)

in which we know the coefficients aij and bi, and we need to find the values xj .

Checking whether a given vector satisfies the given system of linear
equations: computational complexity. When we solve a system of equations,
it is often a good idea to check whether the result of a system-solving algorithm actually
solves the original system. For a linear system, such a checking is easy: we plug in the
checked tuple x = (x1, . . . , xn) into each of the m equations (4), and we check whether

the sum
n∑

j=1

aij · xj is equal to bi.

For each equation i, we perform n multiplications to compute the products aij ·xj ,
and then n − 1 additions to add the products. For all m equations, this algorithm
takes m · (n+ (n− 1)) = O(n ·m) computation steps.

One can easily show that this algorithm is asymptotically optimal, in the sense
that it is not possible to have a much faster algorithm. Indeed, any algorithm must
process the values of all n·m+m+n quantities aij , bi, and xj (at least when all of them
are non-zeros): if one of these values is not used and the algorithm concludes that the
tuples satisfies the system, then this algorithm would return the same conclusion for
any other value of the unused quantity – but by changing this value, we can always
make at least one of the equations false. Each elementary operation takes at most two
inputs, so to process ≥ n ·m numbers, we must use at least (n ·m)/2 operations.

Thus, the above simple algorithm takes time ≤ C · n · m, while any algorithm
requires time ≥ c · n ·m. In other words, modulo a multiplicative constant, the above
simple algorithm is optimal.

What if we have a system of equalities and inequalities. In some cases,
we want to maintain a certain value of a quantity: for example, an ideal air conditioner
should maintain the most comfortable temperature. In other cases, the requirements
are relaxed: for example, when we store meat in the freezer, it is OK if the temperature
change a little bit as long as stays blow freezing. In such cases, instead of an equation,
we have an inequality. In general, we have a system consisting of equations and
inequalities (

n∑
j=1

aij · xj

)
σi bi, i = 1, . . . ,m, (5)

where σi ∈ {=,≥,≤}.
For such situations, we can similarly directly check, in time O(n · m), whether a

given vector x satisfies this system of equalities and inequalities, and this algorithm is
also asymptotically optimal.

Need for interval uncertainty. In practice, measurements are never exact; a
measurement result p̃, in general, different from the actual (unknown) value p of the
corresponding quantity. In many cases, the only information that we have about the

4 Kreinovich, Interval-Quantifier Linear Systems

measurement error ∆p
def
= p̃− p is the upper bound ∆ on its absolute value provided

by the manufacturer of the measuring instrument: |∆p| ≤ ∆; see, e.g., [4]. In this
situation, after the measurement, the only information that we have about the actual
value p is that this value belongs to the interval p = [p̃−∆, p̃+∆].

In particular, for linear systems, we have a system (5), in which the only available
information consists of the intervals aij that contain the actual (unknown) values aij

and the intervals bi that contain the actual (unknown) values bi.

Need for interval-quantifier systems. When the values aij and bi are known
exactly, it is clear what it means for a vector x to solve this system: all the equalities
and inequalities must be satisfied.

Under interval uncertainty, the notion of a solution depends on the practical prob-
lem. For example, if we want to find the coefficients xi of the linear dependence from
the observations, then we need to consider all possible tuples xi corresponding to dif-
ferent combination of values aij ∈ aij and bi ∈ bi. Different values aij and bi from
these intervals lead, in general, to different tuples x. In this case, a vector x satisfies
the system (5) if it satisfies this system for some possible values of aij and bi, i.e., if

∃a11 ∈ a11 ∃a12 ∈ a12 . . . ∃bn ∈ bn ∀i

((
n∑

j=1

aij · xj

)
σi bi

)
. (6)

The set of all such solutions is known as the united solution to the corresponding
interval linear system.

On the other hand, in the case of all equalities, for the decision problem, if we
want to make sure that the resulting values bi are within the given intervals bi for all
possible values aij ∈ aij , the problem takes the form

∀a11 ∈ a11 . . . ∀amn ∈ amn ∃b1 ∈ b1 . . . ∃bn ∈ bn ∀i

(
n∑

j=1

aij · xj = bi

)
. (7)

The set of all such solutions is known as the tolerance solution to the corresponding
interval linear system.

There are many other possible problems. In general, we can have a system (5)
preceded by an arbitrary sequence of quantifiers ∃aij ∈ aij , ∀aij ∈ aij , ∃bi ∈ bi,
and ∀bi ∈ bi, one for each of the variables aij and bi. Such a system is called a
interval-quantifier linear system.

Natural question: how complex is it to check whether a give vector x
is a solution to the given interval-quantifier system? A natural question
is: how to check that a given vector is a solution to a given system? Because of the
quantifiers, we can no longer check this directly: a direct checking would mean that
we check infinitely many values aij ∈ aij .

A related negative result. Instead of checking whether a given vector is a
solution, we may want to describe the set of all solutions – e.g., for each j, we can try
to describe the interval of possible values of xj corresponding to all possible solutions
x = (x1, . . . , xn). It turns out that computing such an interval is NP-hard; see, e.g.,
[1, 2].

Reliable Computing XX, 20XX 5

Known positive results. For united solutions to a system of interval linear equa-
tions, Oettli and Prager [3] showed that a vector x is a solution if and only if the
following set of inequalities is satisfied:∣∣∣∣∣

n∑
j=1

ãij − b̃i

∣∣∣∣∣ ≤ ∆bi +

n∑
j=1

∆aij · |xj |,

where ãij and b̃i are midpoints of the corresponding intervals, and ∆aij and ∆bi are
the half-widths of these intervals. These inequalities can be checked in time O(n ·m);
thus, in this case, we also have an asymptotically optimal checking algorithm.

In [6], this algorithm was extended to a more general AE case of interval-quantifier
equalities, i.e., to the case when we have a sequence of universal quantifiers followed
by a sequence of existential quantifiers.

The paper [5] showed that when all relations are inequalities, a similar algorithm
can be designed for all possible combinations of quantifiers.

What we do in this paper. In this paper, we show that an asymptotically
optimal O(n ·m) algorithm is possible for all possible sequences of quantifiers and for
all possible combination of equalities and inequalities.

2 Main Result

Definition 1. [5] By an interval-quantifier linear system, we mean a formula F
which is obtained from the formula

m∧
i=1

((
n∑

j=1

aij · xj

)
σi bi

)

where σi ∈ {=,≥,≤}, by applying quantifiers ∃aij ∈ aij , ∀aij ∈ aij , ∃bi ∈ bi, and
∀bi ∈ bi, where aij and bi are intervals with rational endpoints.

Definition 2. [5]We say that a given rational-valued tuple x = (x1, . . . , xn) satisfies
(or a solution to) the interval-quantifier linear system if the corresponding formula F
is true for this x.

Proposition.

• Every algorithm for checking whether a given tuple satisfies a given interval-
quantifier linear system needs at least c ·m · n computation steps.

• There exists an algorithm that checks, in time O(m · n), whether a given tuple
x satisfies a given interval-quantifier linear system.

Comment. The first part of the proposition implies that the algorithm mentioned
in the second part is asymptotically optimal.

6 Kreinovich, Interval-Quantifier Linear Systems

Proof.

1◦. Let us first prove that we cannot check whether x is a solution in time < (m ·n)/2.
Moreover, we will prove that such “fast” checking is impossible even for the case when
all the values xj are different from 0, and we have a system of linear equations with
exactly known values aij and bi, i.e., when all intervals are degenerate and all relations
σi are equalities.

Indeed, if the tuple satisfies the system, then we need to process all m ·n values aij

– because if we do not use one of the values, the algorithm will return the same answer
“satisfies” for all real values a′

ij ̸= aij , and this is not possible, since for a′
ij ̸= aij , the

i-th equation
n∑

j=1

aij · xj = bi will no longer be satisfied. Processing a value means

that there should be at least one elementary operation involving these values. Each
elementary operation involves at most 2 values, so to process all m ·n parameters aij ,
we need at least (m · n)/2 elementary operations.

The first part of the proposition is proven.

2◦. Let us now construct an algorithm that checks whether x is a solution in time
O(m · n). This algorithm is, in effect, a minor modification of an algorithm described
in [5].

Before we do anything, let us dismiss the terms xj for which xj = 0, since for
these terms, the product aij · xj is always equal to 0 and thus, does not contribute
anything to the corresponding sums. Thus, without losing generality, we can assume
that xj ̸= 0 for all j.

2.1◦. First, we can take into account that a = b is equivalent to a − b = 0, a ≥ b
is equivalent to a − b ≥ 0, and a ≤ b is equivalent to a − b ≤ 0. Thus, a σ b is

equivalent to (a−b)σ 0. In particular, each condition

(
n∑

j=1

aij · xj

)
σi bi is equivalent

to

(
n∑

j=1

aij · xj − bi

)
σi 0.

This condition can be simplified if we take x0
def
= −1 and define ai0

def
= bi. In these

terms, the condition

(
n∑

j=1

aij · xj − bi

)
σi 0 takes the form

(
n∑

j=0

aij · xj

)
σi 0.

For all three possible relations σi, this condition can be represented in the form

ci ≤
n∑

j=0

aij · xj ≤ ci : (8)

• when σi is =, we take ci = ci = 0;

• when σi is ≥, we take ci = 0 and ci = +∞;

• when σi is ≤, we take ci = −∞ and ci = 0.

When we represent bi as ai0, then all quantifiers take the form ∃aij ∈ aij or
∀aij ∈ aij .

2.2◦. We will process the given system quantifier-by-quantifier, starting with the
inmost quantifiers. We start with the system (8). In the beginning, none of the
quantifiers have been processed, so the set I of the pairs (i, j) corresponding to not-
yet-processed quantifiers consists of all possible pairs of values i = 1, . . . ,m and j =

Reliable Computing XX, 20XX 7

0, . . . , n. We will show that after we process each quantifier (i, j), we either conclude
that x is not a solution to the original system, or we get a similar system with remaining
quantifiers in front of the relations

ci ≤
∑

j:(i,j)∈I

aij · xj ≤ ci, (9)

for appropriately changed rational values ci and ci corresponding to the processed
quantifier (and all other inequalities will be unchanged);

As a result, once we eliminate all m ·(n+1) quantifiers, we will get I = ∅ and thus,
the system (9) will reduce to a system easy-to-check inequalities ci ≤ 0 ≤ ci between
rational numbers.

2.3◦. Let us first consider the case when the quantifier has the form ∃aij ∈ [aij , aij]. If
we apply this quantifier to the set of conditions (9), then, since this quantifier affects
only the i-th condition (9), we get the condition

∃aij

(aij ≤ aij ≤ aij)&

ci ≤
∑

j:(i,j)∈I

aij · xj ≤ ci

 . (10)

By separating the term containing aij in the second double inequality, we get an
equivalent expression

ci ≤ aij · xj +
∑
k ̸=j

aik · xk ≤ ci,

or, equivalently,

ci −
∑
k ̸=j

aik · xk ≤ aij · xj ≤ ci −
∑
k ̸=j

aik · xk. (11)

We know that xj ̸= 0, so we have either xj > 0 or xj < 0. Let is consider these
two cases one by one.

2.3.1◦. When xj > 0, the inequality (11) takes an equivalent form

ci −
∑
k ̸=j

aik · xk

xj
≤ aij ≤

ci −
∑
k ̸=j

aik · xk

xj
, (12)

i.e., that aij belongs to the corresponding interval. So, the formula (10) means that
there exists a value aij which belongs both to the interval [aij , aij] and to the interval
described by the formula (12). In other words, the formula (10) means that these two
intervals have a common point.

One can easily check that two intervals [p, p] and [q, q] have a common point z if
and only if the lower endpoint of each interval does not exceed the upper endpoint of
the other interval, i.e., if and only if p ≤ q and q ≤ p. Indeed:

• if there is a value z for which p ≤ z ≤ p and q ≤ z ≤ q, then p ≤ z ≤ q implies
p ≤ q and q ≤ z ≤ p implies q ≤ p;

• vice versa, if there two inequalities are satisfied, then we can take z = max(p, q);
clearly, z ≥ p and z ≤ q, so to conclude that z belongs to both intervals, we
need to check that z ≤ p and z ≤ q; indeed, we either have z = p or z = q; in
both cases, we have z ≤ p and z ≤ q.

8 Kreinovich, Interval-Quantifier Linear Systems

Based on this condition, the existence of the desired value aij is equivalent to the
satisfaction of the following two inequalities:

aij ≤
ci −

∑
k ̸=j

aik · xk

xj
; (13a)

ci −
∑
k ̸=j

aik · xk

xj
≤ aij . (13b)

Multiplying both inequalities by a positive number xj , we get equivalent inequalities

aij · xj ≤ ci −
∑
k ̸=j

aik · xk; (14a)

ci −
∑
k ̸=j

aik · xk ≤ aij · xj . (14b)

Moving terms from one side to another, we get an equivalent inequality

ci − aij · xj ≤
∑
k ̸=i

aik · xk ≤ ci − aij · xj , (15)

i.e., the desired form (9) with new bounds ci − aij · xj and ci − aij · xj instead of the
previous bounds ci and ci.

2.3.2◦. When xj < 0, the inequality (11) takes an equivalent form

ci −
∑
k ̸=j

aik · xk

xj
≤ aij ≤

ci −
∑
k ̸=j

aik · xk

xj
, (16)

i.e., that aij belongs to the corresponding interval. So, the formula (10) means that
there exists a value aij which belongs both to the interval [aij , aij] and to the interval
described by the formula (16).

Similarly to Part 2.3.1, the existence of the desired value aij is equivalent to the
satisfaction of the following two inequalities:

aij ≤
ci −

∑
k ̸=j

aik · xk

xj
; (17a)

ci −
∑
k ̸=j

aik · xk

xj
≤ aij . (17b)

Multiplying both inequalities by a negative number xj , we get equivalent inequalities

aij · xj ≤ ci −
∑
k ̸=j

aik · xk; (18a)

ci −
∑
k ̸=j

aik · xk ≤ aij · xj . (18b)

Moving terms from one side to another, we get an equivalent inequality

ci − aij · xj ≤
∑
k ̸=i

aik · xk ≤ ci − aij · xj , (19)

Reliable Computing XX, 20XX 9

i.e., the desired form (9) with new bounds ci − aij and ci − aij instead of the previous
bounds ci and ci.

2.4◦. Let us now consider the case of the universal quantifier, for which the original
condition takes the form

∀aij

(aij ≤ aij ≤ aij) ⇒

ci ≤
∑

j:(i,j)∈I

aij · xj ≤ ci

 . (20)

Similarly to Part 2.3 of this proof, the double inequality in the conclusion part of the
formula (20) is equivalent to aij being in an appropriate interval [p, p]: interval (12)
when xj > 0 and interval (16) when xj < 0.

In both cases, the implication (20) means that all the points from the interval
[aij , aij] belong to the interval [p, p]. One can easily check that this requirement is
equivalent to p ≤ aij and aij ≤ p.

For the case of xj > 0 and interval (12), this means that

ci −
∑
k ̸=j

aik · xk

xj
≤ aij ; (21a)

aij ≤
ci −

∑
k ̸=j

aik · xk

xj
. (21b)

Multiplying both sides by xj and moving terms around, we get an equivalent double
inequality

ci − aij · xj ≤
∑
k ̸=i

aik · xk ≤ ci − aij · xj . (22)

Here, two situations are possible:

• it is possible that ci − aij · xj > ci − aij · xj ; in this case, the double inequality
(22) cannot be satisfied, so we can conclude that the given vector x is not a
solution to the given interval-quaantifier linear system;

• otherwise, if ci − aij · xj ≤ ci − aij · xj , then we have a new double inequality of
the desired form (9).

In the case of xj < 0, we similarly get an equivalent double inequality

ci − aij · xj ≤
∑
k ̸=i

aik · xk ≤ ci − aij · xj . (23)

Here:

• it is possible that ci−aij ·xj > ci−aij ·xj , then we can conclude that the given
vector x is not a solution to the given interval-quantifier linear system;

• otherwise, we have a new double inequality of the desired form (9).

Reduction is proven.

2.5◦. To complete the proof, let us show that the above algorithm takes time O(m ·n).
Indeed, this algorithm consists of m · (n + 1) = O(m · n) stages – as many stages as
there are quantifiers, and each stage takes the same finite number of computational
steps. Thus, the overall computation time is

const ·O(m · n) = O(m · n).

The proposition is proven.

10 Kreinovich, Interval-Quantifier Linear Systems

Examples: description. To illustrate our algorithm, let us give two simple ex-
amples: when x is a solution and when x is not a solution. In both cases, we will have
n = m = 1, and σ1 is equality, so the system consists of a single equality a11 · x1 = b1.
We are looking for the tolerance solution, i.e., we are checking whether the following
formula holds:

∀a11 ∈ a11 ∃b1 ∈ b1 (a11 · x1 = b1).

In both examples, we take a11 = [1, 2] = b1 = [1, 2].
In the first example, we take x1 = 1; in this case, the desired formula is clearly

true: for each a11 ∈ a11, we can take b1 = a11. In the second example, we take x1 = 2.
In this case, for a11 = 2 ∈ a11, we have a11 · x1 = 4 ̸∈ b1. Let us apply our algorithm
to these two examples.

Applying our algorithm to Example 1. In this example, there are no zero
values xj , so we skip this step.

According to the above algorithm, we start by defining a10
def
= b1 and taking

x0 = −1. In these notations, the original problem has the form

∀a11 ∈ a11 ∃a10 ∈ a10 (a10 · x0 + a11 · x1 = 0).

Then, we describe the corresponding condition a10 · x0 + a11 · x1 = 0 as a double
inequality:

c1 = 0 ≤ a10 · x0 + a11 · x1 ≤ c1 = 0.

We now eliminate quantifiers, starting with the innermost quantifier ∃a10. In the
beginning, none of the quantifiers are eliminated, so I = {(1, 0), (1, 1)}. According
to the above algorithm, since the corresponding variable is negative x0 = −1 < 0,
eliminating the existential quantifier corresponding to results in the following double
inequality:

c1 − a10 · x0 ≤ a11 · x1 ≤ c1 − a10 · x0,

i.e., computing the new values of the bounds c1 − a10 · x0 = 0 − 1 · (−1) = 1 and
c1 − a10 · x0 = 0− 2 · (−1) = 2, the inequality

c1 = 1 ≤ a11 · x1 ≤ c1 = 2.

Now, the set of not-yet-eliminated quantifiers I consists of only one pairs of indices I =
{(1, 1)}. The corresponding quantifier is universal, and the value of the corresponding
variable x1 = 1 is positive, so eliminating this quantifier leads to the inequality

c1 − a11 · x1 ≤ 0 ≤ c1 − a11 · x1.

Here, c1 − a11 · x1 = 1 − 1 · 1 = 0 and c1 − a11 · x1 = 2 − 2 · 1 = 0, so the inequality
is satisfied. Thus, the given value x1 = 1 is a solution to the given interval-quantifier
linear system.

Applying our algorithm to Example 2. The only difference between Example
1 and Example 2 is that in Example 1, we had x1 = 1, while in Example 2, we have
x1 = 2. Hence, for Example 2, the above algorithm follows the same steps until, in
the process of eliminating the universal quantifier, it arrives at the inequality

c1 − a11 · x1 ≤ 0 ≤ c1 − a11 · x1.

Here, c1 − a11 · x1 = 1 − 1 · 2 = −1 and c1 − a11 · x1 = 2 − 2 · 2 = −2. So, the lower
bound (−1) is larger than the upper bound (−2). Thus, we conclude that the given
value x1 = 2 is not a solution to the given interval-quantifier linear system.

Reliable Computing XX, 20XX 11

Acknowledgments. This work was supported in part by the US National Science
Foundation grants HRD-0734825, HRD-124212, and DUE-0926721.

The author is thankful to the participants of the 16th International Symposium
on Scientific Computing, Computer Arithmetic, and Verified Numerical Computations
SCAN’2014 (Würzburg, Germany, September 21–26, 2014), especially to Sergey Shary,
for valuable discussions.

The author is also greatly thankful to Irina Sharaya; this paper is based on her
ideas, and she helped to edit this paper.

References

[1] Gaganov, A.A.: Computational complexity of the range of the polynomial in sev-
eral variables, Cybernetics, pp. 418–421, 1985.

[2] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht,
1997.

[3] Oettli, W., Prager, W.: Computability of approximate solution of linear equa-
tions with given error bounds on coefficients and right-hand sides, Numerische
Mathematik 6, pp. 405–409, 1964.

[4] S. G. Rabinovich, Measurement Errors and Uncertainty: Theory and Practice,
Springer Verlag, Berlin, 2005.

[5] Sharaya, I.A.: Quantifier-free descriptions for interval-quantifier linear systems,
Trudy Instituta Matematiki i Mehaniki UrO RAN – Proceedings of the Institute
of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
20(2), pp. 311–323, 2014 (in Russian).

[6] Shary, S.P.: Algebraic solutions to interval linear equations and their applications,
In: Alefeld, G., Herzberger, J. (eds.), Numerical Methods and Error Bounds, Pro-
ceedings of IMACS-GAMM International Symposium on Numerical Methods and
Error Bounds, Oldenburg, Germany, July 9–12, 1995; Akademie Verlag, Berlin,
1996, pp. 224–233.

