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Abstract

In the 1950s, Markowitz proposed to combine different investment in-
struments to design a portfolio that either maximizes the expected return
under constraints on volatility (risk) or minimizes the risk under given
expected return. Markowitz’s formulas are still widely used in financial
practice. However, these formulas assume that we know the exact values
of expected return and variance for each instrument, and that we know
the exact covariance of every two instruments. In practice, we only know
these values with some uncertainty. Often, we only know the bounds of
these values – i.e., in other words, we only know the intervals that contain
these values. In this paper, we show how to select an optimal portfolio
under such interval uncertainty.

1 Formulation of the Problem

Variety of investments. There are different ways to invest money: we can
deposit the money in a bank, we can buy stocks or bonds, we can buy securities,
derivatives, and other financial instruments. Most investments come with risk:
stocks or bounds can decrease their values, companies can go bankrupt, etc.

Usually, the less risky investments – such as depositing money in a bank –
are the least profitable, while the most profitable schemes – such as investing in
promising start-ups – are the most risky ones.

Every investor has a certain tolerance to risk, so he/she would like select
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his/her investments so as to maximize the return within a given risk level.
Sometimes, an investor needs to maintain a certain growth level for his/her
investments; in this case, out of all possible investment strategies that guarantee
such return rate, the investor would like to select an investment that minimizes
the risk.

Investment portfolios as a way to minimize (leverage) risk. Historically,
among the most profitable investments are investments in stocks of promising
technological companies: investors who bought Microsoft or Apple stocks when
these stocks became available increased their original investment many times.
However, such potentially profitable investments carry high risk, since many
promising companies fail.

How to maintain high return while minimizing the risk? A natural idea is
that, instead of investing all the money into a single stock (“putting all the
eggs into one basket”), we spread our investment between different independent
stocks. While each of these stocks can still fail, it is highly improbable that all
these stocks will fail. As a result, in such a strategy, the risk of losing all the
money is much smaller.

How to describe an investment portfolio: reminder. On the qualitative
level, portfolios are clearly better than investing all the money into a single
financial instrument. It is desirable to select a portfolio that makes the maximal
use of this leveraging idea. For that, we need to be able to describe such
portfolios in precise terms.

To specify a portfolio, we need to decide which portion of our money to
invest in different available instruments. Let us denote the overall number of
available financial instruments by n, and let us denote the portion that we invest
in the i-th instrument by wi ≥ 0. Different investments should cover the whole

amount, i.e., we should have
n∑

i=1

wi = 1.

Let us denote by ri the return of the i-th investment. When the wi-th part
of the original money is invested in the i-th instrument, then the return from
this part is equal to wi · ri and thus, the overall return r per unit investment is

equal to r =
n∑

i=1

wi · ri.

How to estimate the investment risk. The risk associated with investments
is due to the fact that it is not possible to predict the return ri of each invest-
ment i. We can observe how this investment fared in the past; usually, in some
years, this instrument grew, in others, grew less or even decreased in value. We
can count the numbers of years with different increase and thus, estimate the
probabilities of different return values. In other words, we can view the return ri
of the i-th instrument as a random variable – a variable that may take different
values with different probabilities.

The portfolio’s return r is a linear combination of a large number of random
variables ri – i.e., a sum of a large number of random variables wi · ri. The
leverage works when the investments are reasonably independent, and when
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each of these investments gets a reasonably small portion of the overall amount.
Thus, r is a sum of a large number of small independent random variables wi ·ri.

It is known that for large n, the distribution of the sum of n small indepen-
dent random variables is close to Gaussian (normal). This fact is known as the
Central Limit Theorem; this is the main reason why normal distributions are
ubiquitous in nature; see, e.g., [4]. Thus, the portfolio’s return r can be viewed
as a normally distributed random variable.

To describe a normally distributed random variable r, it is sufficient to de-
scribe two parameters: its expected value µ = E [r] and its variance σ2 =
E
[
(r − µ)2

]
. Thus, these two parameters are sufficient to describe the behavior

of an investment portfolio: the expected return µ and the standard deviation
σ. In economics, the portfolio’s standard deviation is also called its volatility.

To formulate and solve the corresponding optimization problem, we need to
be able to describe these two parameters µ and σ2 in terms of the allocations
wi and of the parameters describing individual investments and the relation
between them. For the mean, the situation is simple: the mean of the linear
combination is equal to the linear combination of the means. Thus, we have

µ =
n∑

i=1

wi · µi, where µi = E [ri] is the expected return of the i-th investment.

Therefore,

r − µ =
n∑

i=1

wi · ri −
n∑

i=1

wi · µi =
n∑

i=1

wi · (ri − µi)

and hence,

(r − µ)2 =
n∑

i=1

n∑
j=1

wi · wj · (ri − µi) · (rj − µj).

So,

σ2 = E
[
(r − µ)2

]
=

n∑
i=1

n∑
j=1

wi · wj · σij ,

where
σij

def
= E [(ri − µi) · (rj − µj)]

is the corresponding covariance matrix.
Summarizing: to predict the expected return and volatility of each portfolio,

we need to know the expected returns µi of each instrument and the covariance
matrix σij describing the volatility of individual instruments and relation be-
tween these instruments.

Markowitz’s result: main assumptions and formulation of the prob-
lems. The main assumption behind the original Markowitz paper is that we do
know the exact values of the quantities µi and σij . Under this assumption, we
can formulate the following two reasonable problems.

The first problem is related to the fact that each investor has a certain
tolerance to risk. In precise terms, for each investor, there is the maximum
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value of volatility σ0 that this investor can tolerate. Within this limit, we need
to select a portfolio with the largest possible value of expected return µ. Of
course, the larger risk an investor tolerates, potentially the larger the expected
return, so it makes sense to always select a portfolio with the largest possible
value of volatility. In precise terms, we thus need to solve the following problem:

Maximize

n∑
i=1

wi · µi

under the constraints
n∑

i=1

n∑
j=1

wi · wj · σij = σ2
0 ;

n∑
i=1

wi = 1.

In some situation, the investor is interested in achieving a certain level of
average return µ0. In this case, among all the portfolios that guarantee this
level of expected return, we need to select a portfolio that minimizes the risk.
In precise terms, we thus need to solve the following problem:

Minimize
n∑

i=1

n∑
j=1

wi · wj · σij

under the constraints
n∑

i=1

wi · µi = µ0;

n∑
i=1

wi = 1.

Markowitz’s result: algorithms. To solve each of these constraint optimiza-
tion problems, we can the Lagrange multiplier method to reduce each of these
problem to an easy-to-solve unconstrained optimization problem. For the first
optimization problem, the Lagrange multiplier method leads to the problem of
optimizing the function

n∑
i=1

wi · µi − α ·

 n∑
i=1

n∑
j=1

wi · wj · σij − σ2
0

− β ·

(
n∑

i=1

wi − 1

)
,

(where α and β are Lagrange multipliers), or, equivalently, the problem of op-
timizing the function

n∑
i=1

wi · µi − α ·
n∑

i=1

n∑
j=1

wi · wj · σij − β ·
n∑

i=1

wi. (1)
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For the second problem, we get the problem of optimizing the function

n∑
i=1

n∑
j=1

wi · wj · σij − α′ ·

(
n∑

i=1

wi · µi − µ0

)
− β′ ·

(
n∑

i=1

wi − 1

)
,

or, equivalently, the problem of optimizing

n∑
i=1

n∑
j=1

wi · wj · σij − α′
n∑

i=1

wi · µi − β′ ·
n∑

i=1

wi.

If we divide this functional by α′, we get the expression (1) with α =
1

α′ and

β = − β

α′ . Thus, for both problems, we need to optimize the expression (1).

Differentiating this expression by wi and equating the derivatives to 0, we
conclude that

2 ·
n∑

j=1

σij · wj = α · µi + β.

Thus, we have

wi = α · w(1)
i + β · w(2)

i , (2)

where w
(k)
i (k = 1, 2) are the solutions to easy-to-solve systems of linear equa-

tions

2 ·
n∑

j=1

σij · w(1)
j = µi

and

2 ·
n∑

j=1

σij · w(2)
j = 1.

The values α and β can be determined from the corresponding constraints.

For the second problem, the constraints
n∑

i=1

wi ·µi = µ0 and
n∑

i=1

wi = 1 take the

form of an easy-to-solve system of two linear equations with two unknowns:

α · µ(1) + β · µ(2) = µ0;

α · s(1) + β · s(2) = 1,

where µ(k) def
=

n∑
i=1

wi · µ(k)
i and s(k)

def
=

n∑
i=1

w
(k)
i . Once we find the values α and

β, we can use the formula (2) to find the desired values wi.
For the first problem, we get the constraints

α2 · t11 + 2α · β · t12 + β2 · t22 = σ2
0 ; (3)

α · s(1) + β · s(2) = 1,
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where tkℓ
def
=

n∑
i=1

n∑
j=1

w
(k)
i · w(ℓ)

j · σij . We can use the second equation to express

β as a linear function of α, as

β =
1

s(2)
− α · s

(1)

s(2)
. (4)

Substituting this expression into the first equation of the system (3), we get an
easy-to-solve quadratic equation, from which we can find α. Based on this α,
we can use the formula (4) to find β and then the formula (2) to find the desired
values wi.

Remaining problem. Markowitz’s formulas assume that we know the exact
values of expected return and variance for each financial instrument, and that
we know the exact covariance of every two instruments. In practice, we only
know these values with some uncertainty.

Often, we only know the bounds of each of these values – i.e., in other
words, we only know the intervals that contain these values. This means that
instead of the exact values of the expected returns µi, we only know the bounds

µ
i
≤ µi ≤ µi, i.e., we only know the intervals

[
µ
i
, µi

]
that contain the actual

(unknown) values µi. Similarly, instead of the exact values of σij , we only know
the bounds σij ≤ σij ≤ σij , i.e., we only know the intervals

[
σij , σij

]
that

contain the actual (unknown) values σij .
How can we select an optimal portfolio under such interval uncertainty? This

is a question that we answer in this paper.

Comment. In addition to the intervals, we may have additional information
about the values µi and σij : partial information about the probabilities of
different possible values from these intervals, fuzzy information about the degree
of possibility of different values, etc. Several papers (see, e.g., [1, 3]) generalize
Markowitz’s ideas to situations when we have such additional information. In
this paper, we assume that intervals is all we know.

2 Formulation of the Problems in Precise Terms

Towards the formulation of the first problem: constraint on volatility.
In the first problem, we assume that an investor has a volatility threshold σ0. In
other words, we assume that the investor only considers investments for which
the variance does not exceed the value σ2

0 .
In our situation, this means that we select the portfolio for which, for all

possible combination of values σij ∈
[
σij , σij

]
, we must have

n∑
i=1

n∑
j=1

wi · wi · σij ≤ σ2
0 .
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Towards the formulation of the first problem: what do we maximize?

In the first problem, we maximize the expected return µ =
n∑

i=1

wi · µi. In the

idealized case, when we know the exact values of expected returns µi for different
instruments, we can use the above formula to uniquely determine the return
corresponding to a given portfolio (w1, w2, . . . , wn). In contrast, in the case of
interval uncertainty, we may have different values of the return, depending on

the actual values µi ∈
[
µ
i
, µi

]
.

We argue that the investor should base his/her selections on the smallest
possible return value. Indeed, this is the only expected return value that we can
guarantee – anything above that comes with an additional risk that it will not
happen.

Resulting formulation of the first problem. Thus, we arrive at the follow-
ing “maximin” problem:

Maximize min
µi∈
[
µ
i
,µi

]∑
i=1

wi · µi

under the constraints

n∑
i=1

n∑
j=1

wi · wj · σij ≤ σ2
0 for all σij ∈

[
σij , σij

]
;

n∑
i=1

wi = 1.

Towards the formulation of the second problem. In the second problem,

we want to guarantee the return rate µ =
n∑

i=1

wi ·µi to be at least µ0. The actual

return rate depends on the values µi ∈
[
µ
i
, µi

]
, so the only way to guarantee

that the actual return rate is greater than or equal to µ0 is to make sure that

all possible values of µ =
n∑

i=1

wi · µi are greater than or equal to µ0.

Under this constraint, we want to minimize the risk σ2. Again, the actual
value of the risk depends on the values σij ∈

[
σij , σij

]
. Minimizing the risk

usually minimizing the worst-case risk, i.e., minimize the maximum value of the
risk.

Resulting formulation of the second problem. Thus, we arrive at the
following “minimax” problem:

Minimize max
σij∈[σij ,σij]

n∑
i=1

n∑
j=1

wi · wj · σij
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under the constraints ∑
i=1

wi · µi for all µi ∈
[
µ
i
, µi

]
;

n∑
i=1

wi = 1.

3 Analysis of the Resulting Problems

Analyzing the first problem. In the first problem, the objective function is
min

µi∈
[
µ
i
,µi

] ∑
i=1

wi ·µi. Since all the allocations wi are non-negative, the expression∑
i=1

wi·µi is a monotonic (non-strictly increasing) function of the values µi. Thus,

its minimum is attained when each value µi attains its smallest possible value
µ
i
. So, the objective function takes the form

∑
i=1

wi · µi
.

The first constraint is that
n∑

i=1

n∑
j=1

wi · wj · σij ≤ σ2
0 for all σij ∈

[
σij , σij

]
.

This inequality is equivalent to

max
σij∈[σij ,σij]

n∑
i=1

n∑
j=1

wi · wj · σij ≤ σ2
0 .

Since the allocations wi are non-negative, the function
n∑

i=1

n∑
j=1

wi · wj · σij is a

monotonic (non-strictly increasing) function of the values σij . Thus, its maxi-
mum is attained when each value σij attains its largest possible value σij . So,

the constraint takes the form
n∑

i=1

n∑
j=1

wi · wj · σij ≤ σ2
0 .

Hence, the first problem takes the following form:

Maximize
∑
i=1

wi · µi

under the constraints
n∑

i=1

n∑
j=1

wi · wj · σij ≤ σ2
0 ;

n∑
i=1

wi = 1.

We have already mentioned that the larger the allowed risk, potentially the
larger the resulting gain. Thus, when we are maximizing the gain, it makes

sense to only consider situations in which the worst-case risk
n∑

i=1

n∑
j=1

wi ·wj · σij
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takes the largest possible value σ2
0 . In other words, it is reasonable to consider

the following optimization problem:

Maximize
∑
i=1

wi · µi

under the constraints
n∑

i=1

n∑
j=1

wi · wj · σij = σ2
0 ;

n∑
i=1

wi = 1.

This is the first original Markowitz problem for µi = µ
i
and σij = σij . Thus,

we can use the known algorithms for solving the first Markowitz problem for
exactly known µi and σij to solve a similar problem corresponding to interval
uncertainty.

Analyzing the second problem. In the second problem, the objective func-

tion is max
σij∈[σij ,σij]

n∑
i=1

n∑
j=1

wi·wj ·σij . Since all the allocations wi are non-negative,

the expression
n∑

i=1

n∑
j=1

wi · wj · σij is a monotonic (non-strictly increasing) func-

tion of the values σij . Thus, its maximum is attained when each value σij

attains its largest possible value σij . So, the objective function takes the form
n∑

i=1

n∑
j=1

wi · wj · σij .

The first constraint is that
n∑

i=1

wi · µi ≥ µ0 for all µi ∈
[
µ
i
, µi

]
. This

inequality is equivalent to

min
µi∈
[
µ
i
,µi

] n∑
i=1

wi · µi ≥ µ0.

Since the allocations wi are non-negative, the function
n∑

i=1

wi ·µi is a monotonic

(non-strictly increasing) function of the values µi. Thus, its minimum is attained
when each value µi attains its smallest possible value µ

i
. So, the constraint takes

the form
∑
i=1

wi · µi
≥ µ0.

Hence, the second problem takes the following form:

Minimize

n∑
i=1

n∑
j=1

wi · wj · σij

under the constraints ∑
i=1

wi · µi
≥ µ0;
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n∑
i=1

wi = 1.

As we have mentioned earlier, the higher return we want, potentially the higher
the corresponding risk. Thus, when we are minimizing the gain, it makes sense
to only consider situations in which the worst-case gain

∑
i=1

wi · µi
takes the

smallest possible value µ0. In other words, it is reasonable to consider the
following optimization problem:

Minimize
n∑

i=1

n∑
j=1

wi · wj · σij

under the constraints ∑
i=1

wi · µi
= µ0;

n∑
i=1

wi = 1.

This is the second original Markowitz problem for µi = µ
i
and σij = σij .

Thus, we can use the known algorithms for solving the second Markowitz prob-
lem for exactly known µi and σij to solve a similar problem corresponding to
interval uncertainty.

4 How to Select an Optimal Portfolio in the
Case of Interval Uncertainty: Resulting Rec-
ommendations

What information we have: reminder. We have n possible financial in-
struments. For each of the instruments i, we know the bounds µ

i
and µi on the

actual (unknown) return µi of this instrument: µ
i
≤ µi ≤ µi.

Also, for each pairs of instruments i and j, we know the bounds σij and σij

on the covariance σij between these two instruments: σij ≤ σij ≤ σij .

Comment. The original problem analyzed by Markowitz corresponds to the case
when we know the exact values of all these quantities, i.e., when µ

i
= µi and

σij = σij for all i and j.

Two possible situations: reminder. Similarly to the original Markowitz
problem, we consider two possible situations:

• In the first situation, we know the highest possible value of risk σ0 tolerated
by the investor. Under this constraint, we want to find a portfolio with
the largest guaranteed rate of return.

• In the second situation, we want to guarantee the rate of return µ0. Under
this constraint, we want to find the portfolio with the smallest risk.
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Our recommendation. The above analysis shows that in both situations, to
find the optimal portfolio, we must solve the original Markowitz problem for
µi = µ

i
and σij = σij .

Discussion. This mathematical recommendation makes perfect sense: we do
not want to add additional risk, so we operate under the worst-case conditions.
From the viewpoint of gain, the worst-case situation is when the gain is the
smallest, i.e., when µi = µ

i
. From the viewpoint of risk, the worst-case situation

is when the risk is the largest, i.e., when σij = σij .
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