
December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 1

1

Interval computations and interval-related statistical techniques:

estimating uncertainty of the results of data processing and

indirect measurements

V. Kreinovich

Computer Science Department, University of Texas at El Paso,

El Paso, Texas 79968, USA
E-mail: vladik@utep.edu

http://www.cs.utep.edu/vladik

In many practical situations, we only know the upper bound ∆ on the measure-
ment error: |∆x| ≤ ∆. In other words, we only know that the measurement

error is located on the interval [−∆,∆]. The traditional approach is to assume
that ∆x is uniformly distributed on [−∆,∆]. In some situations, however, this
approach underestimates the error of indirect measurements. It is therefore
desirable to directly process this interval uncertainty. Such “interval computa-

tions” methods have been developed since the 1950s. In this paper, we provide
a brief overview of related algorithms and results.

Keywords: interval uncertainty, interval computations, interval-related statis-
tical techniques

1. Need for Interval Computations

Data processing and indirect measurements. We are often interested

in a physical quantity y that is difficult (or impossible) to measure directly:

distance to a star, amount of oil in a well. A natural idea is to measure y

indirectly: we find easier-to-measure quantities x1, . . . , xn related to y by a

known relation y = f(x1, . . . , xn), and then use the results x̃i of measuring

xi to estimate ỹ:

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 2

2

This is known as data processing.

Estimating uncertainty of the results of indirect measurements: a

problem. Measurements are never 100% accurate. The actual value xi of

i-th measured quantity can differ from the measurement result x̃i; in other

words, there are measurement errors ∆xi
def
= x̃i − xi. Because of that, the

result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general, different from the

actual value y: ỹ = f(x̃1, . . . , x̃n) ̸= f(x1, . . . , xn) = y. It is desirable to

describe the error ∆y
def
= ỹ − y of the result of data processing. For this,

we must have information about the errors of direct measurements.

Uncertainty of direct measurements: need for overall error

bounds (i.e., interval uncertainty). Manufacturers of a measuring in-

strument (MI) usually provide an upper bound ∆i for the measurement

error: |∆xi| ≤ ∆i. (If no such bound is provided, then x̃i is not a measure-

ment, it is a wild guess.)

Once we get the measured value x̃i, we can thus guarantee that the

actual (unknown) value of xi is in the interval xi
def
= [x̃i −∆i, x̃i +∆i]. For

example, if x̃i = 1.0 and ∆i = 0.1, then xi ∈ [0.9, 1.1].

In many practical situations, we also know the probabilities of different

values ∆xi within this interval. It is usually assumed that ∆xi is normally

distributed with 0 mean and known standard deviation.

In practice, we can determine the desired probabilities by calibration,

i.e., by comparing the results x̃i of our MI with the results x̃ st
i of measuring

the same quantity by a standard (much more accurate) MI. However, there

are two cases when calibration is not done: (1) cutting-edge measurements

(e.g., in fundamental science), when our MI is the best we have, and (2)

measurements on the shop floor, when calibration of MI is too expensive.

In both cases, the only information we have is the upper bound on the

measurement error. In such cases, we have interval uncertainty about the

actual values xi; see, e.g.,
11.

Interval computations: a problem. When the inputs xi of the data

processing algorithms are known with interval uncertainty, we face the fol-

lowing problem:

• Given: an algorithm y = f(x1, . . . , xn) and n intervals xi = [xi, xi].

• Compute: the corresponding range of y:

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 3

3

-

· · ·

-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

It is known that this problem is NP-hard even for quadratic f ; see, e.g.,8.

In other words, unless P=NP (which most computer scientists believe to be

impossible), no feasible algorithm is possible that would always compute

the exact range y. We thus face two major challenges: (1) find situations

feasible algorithms are possible, and (2) in situations when the exact com-

putation of y is not feasibly possible, find feasible algorithms for computing

a good approximation Y ⊇ y.

2. Alternative Approach: Maximum Entropy (MaxEnt)

Idea: a brief reminder. Traditional engineering approach to uncertainty

is to use probablistic techniques, based on probability density functions

(pdf) ρ(x) and cumulative distribution functions (cdf) F (x)
def
= P (X ≤ x).

As we have mentioned, in many practical applications, it is very difficult

to come up with the probabilities. In such applications, many different

probability distributions are consistent with the same observations. In such

situations, a natural idea is to select one of these distributions – e.g., the

one with the largest entropy S
def
= −

∫
ρ(x) · ln(ρ(x)) dx; see, e.g.,5.

Often, this idea works. This approach often leads to reasonable results.

For example, for the case of a single variable x, if all we know is that

x ∈ [x, x], then MaxEnt leads to a uniform distribution on [x, x]. For sev-

eral variables, if we have no information about their dependence, MaxEnt

implies that different variables are independently distributed.

Sometimes, this idea does not work. Sometimes, the results of Max-

Ent are misleading. As an example, let us consider the simplest algorithm

y = x1+ . . .+xn, with ∆xi ∈ [−∆,∆]. In this case, ∆y = ∆x1+ . . .+∆xn.

The worst case is when ∆i = ∆ for all i, then ∆y = n ·∆.

What will MaxEnt return here? If all ∆xi are uniformly distributed,

then for large n, due to the Central Limit Theorem, ∆y is approximately

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 4

4

normal, with σ = ∆ ·
√
n√
3
.

With confidence 99.9%, we can thus conclude that |∆y| ≤ 3σ; so, we

get ∆ ∼
√
n, but, as we mentioned. it is possible that ∆ = n ·∆ ∼ n which,

for large n, is much larger than
√
n.

The conclusion from this example is that using a single distribution

can be very misleading, especially if we want guaranteed results – and we

do want guaranteed results in high-risk application areas such as space

exploration or nuclear engineering.

3. Possibility of Linearization

Linearization is usually possible. Each interval has the form

[x̃i −∆i, x̃i −∆i], where x̃i is a midpoint and ∆i is half-width. Possi-

ble values xi are xi = x̃i + ∆xi, with |∆xi| ≤ ∆i, so f(x1, . . . , xn) =

f(x̃1 + ∆x1, . . . , x̃n + ∆xn). The values ∆i are usually reasonable small,

hence the values ∆xi are also small. Thus, we can expand f into Taylor

series and keep only linear terms in this expansion:

f(x̃1 +∆x1, . . .) = ỹ +

n∑
i=1

ci ·∆xi, where ỹ
def
= f(x̃1, . . .) and ci

def
=

∂f

∂xi
.

Here, max(ci · ∆xi) = |ci| · ∆i, so the range of f is [ỹ −∆, ỹ +∆], where

∆ =
n∑

i=1

|ci| ·∆i.

Towards an algorithm. To compute ∆ =
n∑

i=1

|ci| ·∆i, we need to find ci.

If we replace one of x̃i with x̃i +∆i, then, due to linearization, we get

yi
def
= f(x̃1, . . . , x̃i−1, x̃i +∆i, x̃i+1, . . . , x̃n) = ỹ + ci ·∆i.

Thus, |ci| ·∆i = |yi − ỹ| and hence ∆ =
n∑

i=1

|yi − ỹ|.

Resulting algorithm. Compute ỹ = f(x̃1, . . . , x̃n), compute n values

yi = Pf (x̃1, . . . , x̃i−1, x̃i +∆i, x̃i+1, . . . , x̃n), then compute ∆ =
n∑

i=1

|yi − ỹ|

and
[
P̃ −∆, P̃ +∆

]
.

This algorithm requires n+ 1 calls to f : to compute ỹ and n values yi.

Towards a faster algorithm. When the number of inputs n is large, n+1

calls may be too long. To speed up computations, we can use the following

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 5

5

property of Cauchy distribution, with density $ρδ(x) =
δ

π
· 1

1 +
x2

δ2

: if ηi are

independently Cauchy-distributed with parameters ∆i, then η
def
=

n∑
i=1

ci · ηi

is Cauchy-distributed with parameter ∆ =
c∑

i=1

|ci| ·∆i.

Once we get simulated Cauchy-distributed values η, we can estimate

∆ by the Maximum Likelihood method. We also need to scale ηi to the

interval [−∆i,∆i] on which the linear approximation is applicable.

Resulting faster algorithm.7 First, we compute ỹ = f(x̃1, . . . , x̃n). For

some N (e.g., 200), for k = 1, . . . , N , we repeatedly:

• use the random number generator to compute r
(k)
i , i = 1, 2, . . . , n,

uniformly distributed on [0, 1];

• compute Cauchy distributed values as c
(k)
i = tan(π · (r(k)i − 0.5));

• compute the largest value K of the values
∣∣∣c(k)i

∣∣∣;
• compute simulated “actual values” x

(k)
i = x̃i +

∆i · c(k)i

K
;

• apply f and compute ∆y(k) = K ·
(
f
(
x
(k)
1 , . . . , x

(k)
n

)
− ỹ

)
.

Then, we compute ∆ ∈
[
0,max

k

∣∣∆y(k)
∣∣] by applying the bisection method

to the equation
1

1 +

(
∆y(1)

∆

)2 + . . .+
1

1 +

(
∆y(N)

∆

)2 =
N

2
. We stop when

we get ∆ with accuracy ≈ 20% (accuracy 1% and 1.2% is approximately

the same).

The Cauchy-variate algorithm requires N ≈ 200 calls to f . So, when

n ≫ 200, it is much faster than the above linearization-based algorithm.

4. Beyond Linearization, Towards Interval Computations

Linearizaion is sometimes not sufficient. In many application areas, it

is sufficient to have an approximate estimate of y. However, sometimes, we

need to guarantee that y does not exceed a certain threshold y0: in nuclear

engineering, the temperatures and the neutron flows should not exceed the

critical values; a spaceship should land on the planet and does not fly past

it, etc.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 6

6

The only way to guarantee this is to have an interval Y =
[
Y , Y

]
for

which y ⊆ Y and Y ≤ y0. Such an interval is called an enclosure. Com-

puting such an enclosure is one of the main tasks of interval computations.

Interval computations: a brief history. The origins of interval compu-

tations can be traced to the work of Archimedes from Ancient Greece who

used intervals to bound values like π; see, e.g.,1. Its modern revival was

boosted by three pioneers: Mieczyslaw Warmus (Poland), Teruo Sunaga

(Japan), and Ramon Moore (USA) in 1956–59. The first successful appli-

cation was taking interval uncertainty into account when planning space-

flights to the Moon. Since then, there were many successful applications: to

design of elementary particle colliders (Martin Berz, Kyoko Makino, USA),

to checking whether an asteroid will hit the Earth (M. Berz, R. Moore,

USA), to robotics (L. Jaulin, France; A. Neumaier, Austria), to chemical

engineering (Marc Stadtherr, USA), etc.4,9.

Interval arithmetic: foundations of interval techniques. The prob-

lem is to compute the range

[y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

For arithmetic operations f(x1, x2) (and for elementary functions), we have

explicit formulas for the range. For example, when x1 ∈ x1 = [x1, x1] and

x2 ∈ x2 = [x2, x2], then:

• The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

• The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].

• The range x1 · x2 for x1 · x2 is

[min(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2),max(x1 ·x2, x1 ·x2, x1 ·x2, x1 ·x2)].

The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 ̸∈ x1).

Straightforward interval computations. In general, we can parse an

algorithm (i.e., represent it as a sequence of elementary operations) and

then perform the same operations, but with intervals instead of numbers.

For example, to compute f(x) = (x − 2) · (x + 2), the computer first

computes r1 := x− 2, then r2 := x+2, and r3 := r1 · r2. So, for estimating

the range of f(x) for x ∈ [1, 2], we compute r1 := [1, 2] − [2, 2] = [−1, 0],

r2 := [1, 2] + [2, 2] = [3, 4], and r3 := [−1, 0] · [3, 4] = [−4, 0].

Here, the actual range is f(x) = [−3, 0]. This example shows that we

need more efficient ways of computing an enclosure Y ⊇ y.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 7

7

First idea: use of monotonicity. For arithmetic, we had exact ranges,

because +, −, · are monotonic in each variable, and monotonicity

helps: if f(x1, . . . , xn) is (non-strictly) increasing (f ↑) in each xi, then

f(x1, . . . ,xn) = [f(x1, . . . , xn), f(x1, . . . , xn)]. Similarly, if f ↑ for some xi

and f ↓ for other xj .

It is known that f ↑ in xi if
∂f

∂xi
≥ 0. So, to check monotonicity, we can

check that the range [ri, ri] of
∂f

∂xi
on xi has ri ≥ 0. Here, differentiation

can be performed by available Automatic Differentiation (AD) tools, an

estimating ranges of
∂f

∂xi
can be done by using straightforward interval

computations.

For example, for f(x) = (x − 2) · (x + 2), the derivatives is 2x, so its

range on x = [1, 2] is [2, 4], with 2 ≥ 0. Thus, we get the exact range

f([1, 2]) = [f(1), f(2)] = [−3, 0].

Second idea: centered form. In the general non-monotonic case, we can

use the general version of linearization – the Intermediate Value Theorem,

according to which

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(χ) · (xi − x̃i)

for some χi ∈ xi. Because of this theorem, we can conclude that

f(x1, . . . , xn) ∈ Y, where

Y = ỹ +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i,∆i].

Here also, differentiation can be done by Automatic Differentiation (AD)

tools, and estimating the ranges of derivatives can be done, if appropri-

ate, by monotonicity, or else by straightforward interval computations, or

also by centered form (this will take more time but lead to more accurate

results).

Third idea: bisection. It is known that the inaccuracy of the first order

approximation (like the ones we used) is O(∆2
i). So, when ∆i is too large

and the accuracy is low, we can split the corresponding interval in half

(reducing the inaccuracy from ∆2
i to ∆2

i /4), and then take the union of the

resulting ranges.

For example, the function f(x) = x · (1 − x) is not monotonic for x ∈

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 8

8

x = [0, 1]. So, we take x′ = [0, 0.5] and x′′ = [0.5, 1]; on the 1st subinterval,

the range of the derivative is 1 − 2 · x = 1 − 2 · [0, 0.5] = [0, 1], so f ↑
and f(x′) = [f(0), f(0.5)] = [0, 0.25]. On the 2nd subinterval, we have

1−2·x = 1−2·[0.5, 1] = [−1, 0], so f ↓ and f(x′′) = [f(1), f(0.5)] = [0, 0.25].

The resulting estimate is f(x′)∪f(x′′) = [0, 0.25], which is the exact range.

These ideas underlie efficient interval computations algorithms and soft-

ware packages3,4,6,9.

5. Partial Information about Probabilities

Formulation of the problem. In the ideal case, we know the probability

distributions. In this case, in principle, we can find the distribution for

y = f(x1, . . . , xn) by using Monte-Carlo simulations.

In the previous section, we considered situations when we only know

an interval of possible values. In practice, in addition to the intervals, we

sometimes also have partial information about the probabilities. How can

we take this information into account?

How to represent partial information about probabilities. In gen-

eral, there are many ways to represent a probability distribution; it is de-

sirable to select a representation which is the most appropriate for the

corresponding practical problem. In most practical problems, the ultimate

objective is to make decisions. According to decision theory, a decision

maker should look for an alternative a that maximizes the expected utility

Ex[u(x, a)] → max
a

.

When the utility function u(x) is smooth, we can expand it in Taylor

series u(x) = u(x0) + (x − x0) · u′(x0) + . . .; this shows that, to estimate

E[u], we must know moments. In this case, partial information means that

we only have interval bounds on moments. There are known algorithms for

processing such bounds; see, e.g.,10.

Another case is when we have a threshold-type utility function u(x):

e.g., for a chemical plant, drastic penalties start if the pollution level exceeds

a certain threshold x0. In this case, to find the expected utility, we need

the know the values of the cdf F (x) = P (ξ ≤ x). Partial information means

that, for every x, we only have interval bounds [F (x), F (x)] on the actual

(unknown) cdf; such bounds are known as a p-box. There are also known

algorithms for processing such boxes; see, e.g.,2,10.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 9

9

Example of processing p-boxes. Suppose that we know p-boxes

[F 1(x1), F 1(x1)] and [F 2(x2), F 2(x2)] for quantities x1 and x2, we do not

have any information about the relation between x1 and x2, and we want

to find the p-box corresponding F (y), F (y)] corresponding to y = x1 + x2.

It is known that for every two events A and B,

P (A ∨B) = P (A) + P (B)− P (A&B) ≤ P (A) + P (B).

In particular, P (¬A ∨ ¬B) ≤ P (¬A) + P (¬B). Here, P (¬A) = 1− P (A),

P (¬B) = 1−P (B), and P (¬A∨¬B) = 1−P (A&B), thus, 1−P (A&B) ≤
(1 − P (A)) + (1 − P (B)) and so, P (A&B) ≥ P (A) + P (B) − 1. We also

know that P (A&B) ≥ 0, hence P (A&B) ≥ max(P (A)+P (B)−1, 0). Let

us use this inequality to get the desired bounds for F (y).

If ξ1 ≤ x1 and ξ2 ≤ x2, then ξ
def
= ξ1 + ξ2 ≤ x1 + x2. Thus, if x1 + x2 =

y, then F (y) = P (ξ ≤ y) ≥ P (ξ1 ≤ x1 & ξ2 ≤ x2). Due to the above

inequality, P (ξ1 ≤ x1 & ξ2 ≤ x2) ≥ P (ξ ≤ x1) + P (ξ2 ≤ x2) − 1. Here,

P (ξi ≤ xi ≥ F i(xi), so F (y) ≥ F 1(x1) + F 2(x2) − 1. Thus, as the desired

lower bound F (y), we can take the largest of the corresponding right-hand

sides: F (y) = max

(
max

x1,x2:x1+x2=y
(F 1(x1) + F 2(x2)− 1), 0

)
, i.e.,

F (y) = max

(
max
x1

(F 1(x1) + F 2(y − x1)− 1), 0

)
.

To find the upper bound for F (y), let us find a similar lower bound

for 1 − F (y) = P (ξ > y). If x1 + x2 = y, ξ1 > x1, and ξ2 > x2, then

ξ = ξ1 + ξ2 > y. Here, P (ξi > xi) = 1− P (ξi ≤ xi) = 1− Fi(xi). Thus,

1−F (y) = P (ξ > y) ≥ P (ξ1 > x1 & ξ2 > x2) ≥ P (ξ1 > x1)+P (ξ2 > x2)−1

= (1− F1(x1)) + (1− F2(x2))− 1 = 1− F1(x1)− F2(x2),

hence F (y) ≤ F1(x1) + F2(x2). Since Fi(xi) ≤ F i(xi), we have F (y) ≤
F 1(x1) + F 2(x2). Thus, as the desired upper bound F (y), we can take the

smallest of the corresponding right-hand sides:

F (y) = min

(
min

x1,x2:x1+x2=y
(F 1(x1) + F 2(x2)), 1

)
, i.e.,

F (y) = min

(
min
x1

(F 1(x1) + F 2(y − x1)), 1

)
.

Similar formulas can be derived for other elementary operations.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 10

10

How to represent p-boxes. Representing a p-box means representing

two cdfs F (x) and F (x). For each cdf F (x), to represent all its values

with accuracy
1

n
, it is sufficient to store n − 1 quantiles x1 < . . . < xn−1,

i.e., values xi for which F (xi) =
i

n
. These values divide the real line into

segments [xi, xi+1], where x0
def
= −∞ and xn+1

def
= +∞.

Each real value x belongs to one of these segments [xi, xi+1], in which

case, due to monotonicity of F (x), we have F (xi) =
i

n
≤ F (x) ≤ i+ 1

n
=

F (xi+1), hence

∣∣∣∣F (x)− i

n

∣∣∣∣ ≤ 1

n
.

Need to go beyond p-boxes. In many practical situations, we need to

maintain the value within a certain interval: e.g., the air conditioning must

maintain the temperature within certain bounds, a spaceship must land

within a certain region, etc. In such cases, the utility drastically drops if

we are outside the interval; thus, the expected utility is proportional to the

probability F (a, b) = P (ξ ∈ (a, b]) to be within the corresponding interval

(a, b]. In such situations, partial information about probabilities means

that for a and b, we only know the interval [F (a, b), F (a, b)] containing the

actual (unknown) values F (a, b).

When we know the exact cdf F (x), then we can compute F (a, b) as

F (a) − F (b). However, in case of partial information, it is not sufficient

to only know the p-box. For example, let us assume that x is uniformly

distributed on some interval of known width ε > 0, but we do not know

on which. In this case, as one can easily see, for every x, F (x) = 0 and

F (x) = 1 – irrespective on ε. On the other hand, for any interval [a, b], we

have F (a, b) = min

(
b− a

ε
, 1

)
. This bound clearly depends on ε and thus,

cannot be uniquely determined by the p-box values.

How to process this more general information. Good news is that we

process this more general information similarly to how we process p-boxes.

Specifically, when ξ1 ∈ x1 = (x1, x1] and ξ2 ∈ x2 = (x2, x2], then

ξ = ξ1 + ξ2 ∈ x1 + x2 = (x1 + x2, x1 + x2]. Thus, if x1 + x2 ⊆ y = [y, y],

we have

F (y, y) ≥ P (ξ1 ∈ x1 & ξ2 ∈ x2) ≥ P (ξ1 ∈ x1) + P (ξ2 ∈ x2)− 1 ≥

F 1(x1) + F 2(x2) = 1.

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 11

11

So, as the desired lower bound F (y, y), we can take the largest of the

corresponding right-hand sides:

F (y, y) = max

(
max

x1,x2:x1+x2⊆y
(F 1(x1) + F 2(x2)− 1), 0

)
.

This formula is very similar to the formula for p-boxes. The formula for

the upper bound comes from the fact that F (y, y) = F (y)−F (y), and thus,

F (y, y) ≤ F (y)− F (y). We already know the values F (y)− F (y), thus we

can take their difference as the desired upper bound F (y, y):

F (y, y) = min

(
min
x1

(F 1(x1) + F 2(y − x1)), 1

)
−

max

(
max
x1

(F 1(x1) + F 2(y − x1)− 1), 0

)
.

Similar formulas can be obtained for other elementary operations.

How to represent this more general information. Not so good news

is that representing such a more general information is much more difficult

than representing p-boxes.

Indeed, similarly to p-boxes, we would like to represent all the values

F (a, b) and F (a, b) with a given accuracy
1

n
, i.e., we would like to find the

values x1 < . . . < xN for which xi ≤ a ≤ xi+1 and xj ≤ b ≤ xj+1 implies

|F (a, b)− F (xi, xj) ≤
1

n
and |F (a, b)− F (xi, xj) ≤

1

n
.

For p-boxes, we could use N = n values xi. Let us show that for

the bounds on P (a, b), there is no upper bound on the number of values

needed. Namely, we will show that in the above example, when ε → 0, the

corresponding number of points N grows indefinitely: N → ∞. Indeed,

when j = i, a = xi, and b = xi+1, then, due to F (xi, xi) = 0, the above

condition means F (xi, xi+1) ≤
1

n
. Thus, we must have

xi+1 − xi

ε
≤ 1

n
, i.e.,

xi+1 − xi ≤
ε

n
. The next point xi+1 is this close to the previous one, so,

e.g., on the unit interval [0, 1], we need at least N ≥ n

ε
such points. When

ε → 0, the number of such points indeed tends to infinity.

It is worth mentioning that we can have an upper bound on N if we

know an upper bound d on the probability density ρ(x): in this case,

F (a, b) ≤ (b − a) · d and thus, to get the desired accuracy
1

n
, it is suffi-

cient to have xi+1 − xi =
1

n · d
. On an interval of width W , we thus need

December 20, 2014 16:37 WSPC Proceedings - 9in x 6in tr14-74 page 12

12

N = Wxi+1 − xi = W · n · d points.

Acknowledgments

This work was supported in part by the National Science Foundation grants

HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and

DUE-0926721. The author is greatly thankful to Scott Ferson, to Franco

Pavese, and to all the participants of the International Conference on Ad-

vanced Mathematical and Computational Tools in Metrology and Testing

AMTCM’2014 (St. Petersburg, Russia, September 9–12, 2014) for valuable

discussions.

References

1. Archimedes, On the measurement of the circle, In: T. L. Heath (ed.),

The Works of Archimedes (Dover, New York, 1953).

2. S. Ferson et al., Constructing Probability Boxes and Dempster-Shafer

Structures (Sandia Nat’l Labs, Report SAND2002-4015, 2003).

3. Interval computations website http://www.cs.utep.edu/interval-comp

4. L. Jaulin et al., Applied Interval Analysis (Springer, London, 2001).

5. E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of

Science (Cambridge University Press, Cambridge, UK, 2003).

6. V. Kreinovich, Interval computations and interval-related statistical

techniques, In: F. Pavese and A. B. Forbes (eds.), Data Modeling for

Metrology and Testing in Measurement Science (Birkhauser-Springer,

Boston, 2009), pp. 117–145.

7. V. Kreinovich and S. Ferson, A new Cauchy-Based black-box technique

for uncertainty in risk analysis, Reliability Engineering and Systems

Safety 85(1–3), 267–279 (2004).

8. V. Kreinovich et al., Computational Complexity and Feasibility of Data

Processing and Interval Computations (Kluwer, Dordrecht, 1997).

9. R. E. Moore, R. B. Kreinovich, and M. J. Cloud, Introduction to In-

terval Analysis (SIAM Press, Philadelphia, Pennsylvania, 2009).

10. H. T. Nguyen et al., Computing Statistics under Interval and Fuzzy

Uncertainty (Springer, Berlin, Heidelberg, 2012).

11. S. G. Rabinovich, Measurement Errors and Uncertainty:Theory and

Practice (Springer, Berlin, 2005).

