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1. Fuzzy Techniques as an Easier-to-Compute
Continuous Approximation for
Difficult-to-Compute Discrete Objects and
Processes

Discrete objects and processes are ubiquitous. Many
real-life objects are processes are discrete. On the
macro level, there is an abrupt transition in space be-
tween physical bodies, there is an abrupt transition in
time when, e.g., a glass breaks or a person changes
his/her opinion. On the micro level, matter consists of
discrete atoms and molecules, with abrupt transitions
between different states of an atom.

Continuous problems are easier to compute. While
discrete objects and processes are ubiquitous in nature,
from the computational viewpoint, it is often much
easier to handle continuous problems. This may sound
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counter-intuitive, since intuitively, if we restrict our
search or optimization to only integer values, the prob-
lem would become easier – but it is not.

For example, in the continuous case, it is relatively
easy to find a solution x1, . . . , xn to a system of linear

equations
n∑

j=1

aij · xj = bi, 1 ≤ i ≤ m (there are

many known feasible algorithms for that), the problem
becomes NP-hard (computationally intractable) if we
only allow discrete values of xi; see, e.g., [9,28].

Similarly, in the continuous case, it is relatively
easy to find the values x1, . . . , xn that minimize a
given quadratic function f(x1, . . . , xn): it is sufficient
to solve the corresponding system of linear equations
∂f

∂xi
= 0. However, optimization of quadratic func-

tions for discrete inputs, e.g., for xi ∈ {0, 1}, is NP-
hard [9,28].
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Continuous approximations of discrete objects and
processes are ubiquitous in physics. Because dealing
with discrete objects and processes is often computa-
tionally complicated, physicists often approximate dis-
crete objects with continuous ones.

For example, it is not feasible to describe the
changes in atmosphere by tracing all 1023 molecules,
but approximate equations that describe the atmo-
sphere as a continuous field leads to many useful
weather predictions. Similar, a solid body – in effect,
a collection of atoms – is well described by a contin-
uous density field, and an atomic nucleus – a collec-
tion of protons and neutrons – is well described by a
continuous (liquid) model; see, e.g., [8].

Such approximations are also useful in analyzing
social phenomena. For example, in analyzing how epi-
demics spread, is it not feasible to trace the interactions
of all the people, but it is possible to make good predic-
tions by using a few parameters to describe the current
state of the epidemics: e.g., the number of people who
are sick and the number of people who are infected but
not yet sick.

Fuzzy techniques as a continuous approximation of
discrete objects and processes. Many applications of
fuzzy techniques [12,25,40] can be viewed as a similar
continuous approximation of discrete objects and pro-
cesses. For example, when a person changes his mind
about a voting issue, then, instead of describing this
change as a discrete transition, we can view it as con-
tinuous change, in which the person’s confidence in the
previous candidate gradually decreases.

What we do in this paper. In this paper, we show that
this approximation interpretation can explain many
features of fuzzy techniques, and that we can use this
interpretation to predict which possible modifications
of fuzzy techniques are the most promising.

The structure of this paper is as follows. In Sec-
tion 2, we consider fuzziness as a way to overcome
discreteness in time; some of its results first appeared
in [19]. Section 3 – expanding [16] – deals with spatial
discreteness. In Section 4 (expanding [34]) we show
how these interpretation can help understand differ-
ent fuzzy operations. The following sections describe
the future of fuzzy: Section 5 explains how spatial
discreteness naturally leads to interval values. Sec-
tion 6 (expanding [15]) explains how the hierarchi-
cal character of discrete data leads to computing with
words. Section 7 (expanding [14]) shows that an ap-
proximate character of fuzzy values leads to complex-
valued fuzzy sets. Finally, Section 8 (expanding [17])

speculates on how fuzzy techniques can properly take
into account the dynamic character of objects and pro-
cesses.

2. Fuzzy Techniques as an Approximation to
Discreteness in Time

Qualitative idea. Let us consider a simple transition
from small to medium to large. When the value of
the quantity q is small, we are sure that this value
is small and not medium or large. As we increase q,
what was originally small starts slowly transforming
into medium, then what was originally medium starts
slowly transforming into large, etc. On the qualitative
level, this can be described by the following transi-
tions: s → m, m → ℓ.

How to describe this idea in numerical terms? There
are many physical situations when we have a similar
transition. Historically the first such transitions were
observed in chemistry; as a result, the corresponding
equations were first designed in chemistry and are thus
known as equations of chemical kinetics. Let us use
these equations to provide a numerical description of
the transitions (1).

Equations of chemical kinetics: brief reminder. Chem-
ical kinetics describes how the concentration of dif-
ferent chemical substances change when the chemical
reactions occur. It is usually assumed that the rate of
a chemical reaction is proportional to the production
of the concentrations of all the substances which are
needed for the reaction to take place. For example, for
a reaction A + B → C, the reaction rate is propor-
tional to the product a · b of the concentrations of the
substances A and B. Due to this reaction rate k · a · b:

– the amounts a and b of substances A and B de-
crease with this rate, while

– the amount c of the substance C increases with
this rate,

i.e., we have

da

dt
= −k · a · b, db

dt
= −k · a · b, dc

dt
= k · a · b.

If we have several different chemical reactions, then,
to describe the resulting rate of change of each con-
centration, we add the rates corresponding to different
reactions.
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Resulting equations. If we assume that both reac-
tions s → m and m → ℓ have the same rate k, then
we conclude that for this system of reactions, the cor-
responding system of equations has the form

ds

dq
= −k · s; dm

dq
= k · s− k ·m;

dℓ

dq
= k ·m.

(Note that since we increase q, not time, the deriva-
tives are with respect to q.) Instead of three conse-
quent membership functions corresponding to “small”,
“medium”, and “large”, we can consider an arbitrary
number n of such functions µ1(q), . . . , µn(q). In this
case, the chemical reactions have the form

µ1 → µ2, µ2 → µ3, . . . , µn−1 → µn.

If we assume that all these reactions have the same rate
λ, then the corresponding chemical kinetic equations
have the form:

dµ1(q)

dq
= −λ ·µ1(q),

dµ2(q)

dq
= λ·µ1(q)−λ·µ2(q),

. . .
dµi(q)

dq
= λ · µi−1(q)− λ · µi(q), . . .

dµn−1(q)

dq
= λ · µn−2(q)− λ · µn−1(q),

dµn(q)

dq
= λ · µn−1(q).

Initially, the value is small, so µ1(0) = 1 and µ2(0) =
. . . = µn(0) = 0. This system of reactions is well-
studied in chemical kinetics [38,39]. Its solution has
the form

µi(q) =
λi−1

(i− 1)!
· qi−1 · exp(−λ · q).

Comment. It should be noticed that the correspond-
ing functions are not normalized, in the sense that the
maximum of each such function is not equal to 1. If we
want normalized membership functions, we must mul-
tiply each such function by a corresponding normaliz-
ing factor.

Why these membership functions? The above for-
mula provides possible membership functions, but
why necessarily these ones? Let us show that exactly
these functions emerge if we take into account an im-
portant physical property of symmetry.

Shift-invariant quantities: a brief reminder. In many
physical theories, there is no fixed starting point for
measuring the corresponding physical quantities; see,
e.g., [8]. For example, we can measure time based on
the current calendar or – as the French Revolution sug-
gested – starting with the year 1789. If instead of the
original starting point, we select a new one which is
q0 units smaller, then the original numerical value q
changes into q′ = q + q0. For such quantities, all the
properties do not change if we simply change this start-
ing point, i.e., if we replace each value q by a shifted
value q + q0.

Comment. Strictly speaking, according to cosmol-
ogy, there is the absolute starting point for measuring
time: namely, the time of the Big Bang. However, for
most practical applications, the physical equations re-
mains the same if we simply change a starting point
for time.

Ideally, membership functions should reflect this sym-
metry. For shift-invariant quantities, it is desirable
that our selection of the corresponding membership
functions µ(q) reflect the corresponding shift-invariance.

How to formalize this idea. A seemingly natural idea
is to require that each membership function is shift-
invariant, i.e., that µ(q) = µ(q + q0) for all q and q0.
However, the only membership functions µ(q) which
satisfies this condition are constant functions – and
such functions do not carry any knowledge about the
quantity q.

Since we cannot require that a single membership
function is shift-invariant, it is reasonable to require
that a collection of several membership functions is
shift-invariant.

The idea of multiple membership functions is nat-
ural in applications of fuzzy techniques: we usually
have several rules containing different membership
functions µi(q) [12,25]. If we want to predict the val-
ues of a quantity q, then, in some versions of fuzzy
system modeling and fuzzy control, we first generate
an appropriate linear combination

∑
ci ·µi(q) of these

membership functions.
Thus, since we cannot require that each membership

function µi(q) is shift-invariant, we can require that the
set of all such linear combinations is shift-invariant.
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From the mathematical viewpoint, this set of all lin-
ear combinations is closed under linear combination
and thus, forms a linear space of functions. Thus, we
arrive at the following definition.

Definition 2.1.

– By a finite-dimensional linear space of functions
(or simply linear space, for short), we mean the

class of all functions of the type
n∑

i=1

ci · µi(q),

where:

• n ≥ 1,
• differentiable functions µ1(q), . . . , µn(x) are

fixed (and assumed to be linearly independent),
and

• the coefficients c1, . . . , cn can take any real
values.

– We say that a linear space L is shift-invariant if
for every function f(q) from the space L and for
every real number q0, the function f(q+ q0) also
belongs to the class L.

The main objective of this paper is to describe all
fuzzy-related shift-invariant linear spaces of functions.
This description can be simplified if we take into ac-
count that if we have two disjoint linear spaces L1 and
L2 each of which is shift-invariant, then the set L of
linear combinations of all functions from L1 and L2 is
also shift-invariant. Thus, to describe all shift-invariant
families, it is sufficient to describe all basic families,
i.e., all linear spaces which cannot be decomposed into
smaller spaces L1 and L2.

Definition 2.2.

– If L1 and L2 are two linear spaces, then their lin-
ear envelope is a space of all functions of the type
f1(q)+f2(q), where f1(q) ∈ L1 and f2(q) ∈ L2.

– We say that a shift-invariant linear space L is ba-
sic if it cannot be represented as a linear envelope
of two shift-invariant linear spaces L1 and L2.

We are not just interested in general functions, we
are interested in membership functions, i.e., in func-
tions whose values are from the interval [0, 1]. Let us
therefore make the following additional requirement
that these values are from the interval [0, 1] – at least
when q is non-negative.

We also want to exclude the trivial membership
function µ(q) ≡ 1 for all q.

Definition 2.3. We say that a linear space of func-
tions L is fuzzy-related if the following two conditions
hold:

– L is the set of all linear combinations of functions
µ1(q), . . . , µn(q) for each of which µi(q) ∈ [0, 1]
for all q ≥ 0.

– L does not include the constant functions f(q) ≡
1 for all q.

Proposition 2.1. [19,23] Each basic shift-invariant
fuzzy-related linear space L is a linear combination of
functions µi(q) = qi−1 · exp(−λ · q), i = 1, . . . , n, for
some λ > 0.

Comment. For reader’s convenience, all the proofs
are placed in the special Appendix.

Discussion. These are exactly the functions that we
obtained by using the equations of chemical kinetics!

3. Fuzzy Techniques as an Approximation to
Spatial Discreteness

Discrete data. How can we find the meaning of im-
precise (“fuzzy”) words like “small", “medium”, and
“large” – e.g., with respect to size? One way is to ask
the experts’ opinion about known objects of different
size. Even when each expert classifies each object ex-
actly into one of the three categories, we get a list
of values marked by experts as “small”, list of values
corresponding to “medium”, and list of values corre-
sponding to “large”.

Need for a continuous approximation. The more la-
belled values we collect, the more accurate is our de-
scription of the experts’ opinions. On the other hand,
the more values we collect, the more time-consuming
is to process all these values. To speed up the corre-
sponding computations, it is therefore reasonable to
develop a simpler-to-process continuous approxima-
tion to this discrete data.

A natural continuous description of discrete data. If
we had an expert opinion about each value q, we would
then have several objects of size q (maybe none) clas-
sified as small, several as medium, and several as large.
It would then make sense to take the proportion of the
objects classified as small as a degree to which q is
small.

In practice, we only have expert’s opinions about
finitely many objects. In such a situation, to estimate
the degree to which a given value q is small, we cannot
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simply use objects of size exactly q, we also need to
use objects of close size. Thus, we can fix ε > 0, and,
as the degree µ(q) that q is small, we can take the ratio
m

n
, where n is the total number of labelled values q′

within an ε-vicinity [q − ε, q + ε] of q, and m is the
total number of those values from this vicinity that are
labelled as small.

Instead of treating all values within the vicinity
equally, we can, alternatively, set up weights w(d) de-
pending on the distance d = |q′−q|, and estimate µ(q)

as the ratio

∑
small

w(|q′ − q|)∑
w(|q′ − q|)

, where in the denomina-

tor, we take all the labelled values q′, while in the nu-
merator, we only take values classified as small.

Comment. The more labelled values we collect, the
more accurate our description of the expert opinion.
Thus, the “true” description of the expert opinion can
be viewed as a limit, when the overall number of values
tends to infinity, both overall and in each subinterval,
and, correspondingly, the size ε of the neighborhood
tends to 0. From this viewpoint, we can view fuzzy sets
as limits of crisp sets [16] – as opposed to a usual view
of fuzzy sets as generalizations of crisp sets.

4. How This Interpretation Helps to Understand
Fuzzy Operations

Need for fuzzy operations. One of the main motiva-
tions behind fuzzy and other non-probabilistic uncer-
tainty is that the traditional probability theory is some-
times not very adequate for describing uncertainty.
Traditional probabilistic description of uncertainty is
based on additive probability measures. To describe
non-probabilistic uncertainty, it is therefore reasonable
to consider non-additive measures.

For an additive measure, if two sets A and B do not
have common elements, we have µ(A∪B) = µ(A)+
µ(B). Thus, if we know µ(A) and µ(B), then we can
determine µ(A ∪ B). In logical terms, this means that
if know the probability of A and the probability of B,
then we can estimate the probability of disjunction A∨
B.

For general non-additive measures, we can no
longer use addition to estimate the value µ(A ∪ B).
So, how can we estimate this value? We need an oper-
ation that, given our degrees of belief µ(A) and µ(B)
in statements A and B, returns a good estimate for our
degree of belief in A∨B. In fuzzy logic, such an oper-

ation is known as an “or”-operation, or, alternatively
as a t-conorm.

Often, the max operation is used. Often, the max t-
conorm is used, in which we estimate our degree of
belief in A ∨B as max(µ(A), µ(B)).

Sometimes, these estimates are exact. Non-additive
measures for which this estimate is always exact are
known as possibility measures [7,10,22,41]. For such
measures, we have µ(A∪B) = max(µ(A), µ(B)) for
all sets A and B.

Why max operations? In many other situations,
however, we have non-additive measures which are
different from possibility ones. So why are possibility
measures so successful?

In this section, we use the approximation interpre-
tation of fuzzy techniques to answer this question.
Specifically, we show that possibility measures are,
in some reasonable sense, universal approximators:
for every ε > 0, every non-additive measure which
satisfies a certain reasonable boundedness property is
equivalent to a measure which is ε-close to a possibil-
ity measure.

To formulate this result, we need to describe what
is a general measure, which are the reasonable proper-
ties, what we mean by equivalence, and what we mean
by an “almost” possibility measure. Let us define these
notions one by one.

Definition 4.1. Let X be a set called a universal set.
By an algebra of sets (or algebra, for short) A, we
mean a non-empty class of subsets A ⊆ X which is
closed under complement and union and intersection,
i.e.:

– if A ∈ A, then its complement −A also belongs
to A;

– if A ∈ A and B ∈ A, then A ∪B ∈ A;
– if A ∈ A and B ∈ A, then A ∩B ∈ A.

Definition 4.2. By a non-additive measure on the set
X , we mean a function µ which assigns, to some sub-
sets A ⊆ X from a certain algebra A, a real number
µ(A) ≥ 0.

Motivations for the definition of reasonable (r-) bound-
edness. In general, a measure µ(A) describes how
important is the set A: the larger the measure, the more
important is the set A.

From this viewpoint, if we take the union A ∪ B of
two sets of bounded size, then the size of the union
cannot be arbitrarily large, it should be limited by some
bound depending on the bound on µ(A) and µ(B).
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Similarly, if the sizes of A and B are sufficiently
small, then the size of the union is also small – i.e., for
sufficiently small bounds on µ(A) and µ(B) it should
be smaller than any given size.

In precise terms, we arrive at the following defini-
tion.

Definition 4.3. We say that a non-additive measure µ
is r-bounded if it satisfies the following two properties:

– for every Γ > 0, there exists a ∆ > 0 such that if
µ(A) ≤ Γ and µ(B) ≤ Γ, then µ(A ∪B) ≤ ∆;

– for every η > 0, there exists a ν > 0 such that if
µ(A) ≤ ν and µ(B) ≤ ν then µ(A ∪B) ≤ η.

Comment. One can easily see that every additive
measure is r-bounded. Indeed, it is known all additive
measures have the property µ(A∪B) ≤ µ(A)+µ(B).
Thus, we can take ∆ = 2 · Γ and ν =

η

2
.

Motivation for the definition of equivalence. The nu-
merical values of probabilities have observable sense
– the probability of an event E can be defined as the
limit of the frequency with which the event E occurs.
This is how, e.g., we can define the probability of a rain
at a certain location: by dividing the number of days
when it rained by the total number of days for which
we had observations.

In contrast, e.g., possibility values do not have di-
rect meaning, the only important thing is which values
are larger and which are smaller – this describes which
events are more possible and which are less possible.
From this viewpoint, if two measures can be obtained
from each other by a transformation that preserves the
order, such measures can be considered to be equiva-
lent.

Definition 4.4. Two non-additive measures µ(A)
and µ′(A) are called equivalent if there exists a 1-1
monotonic function f(x) such that for every set A, we
have µ′(A) = f(µ(A)).

Definition 4.5. Let ε > 0 be a real number. We
will call a non-additive measure µ(A) an ε-possibility
measure if for every two sets A and B, we have
µ(A ∪B) ≤ (1 + ε) ·max(µ(A), µ(B)).

Comment. It is reasonable to consider monotonic
measures, for which A ⊆ B implies µ(A) ≤ µ(B)
[2,37]. For monotonic measures, due to A ⊆ A∪B and
B ⊆ A ∪ B, we have µ(A) ≤ µ(A ∪ B) and µ(B) ≤
µ(A ∪ B), thus, max(µ(A), µ(B)) ≤ µ(A ∪ B). So,
if µ is a monotonic ε-probabilistic measure, we have

max(µ(A), µ(B)) ≤ µ(A ∪B) ≤

(1 + ε) ·max(µ(A), µ(B)).

Thus, the value µ(A ∪ B) is almost equal – with rela-
tive accuracy ε > 0 – to the value max(µ(A), µ(B))
corresponding to the possibility measure.

Proposition 4.1. For every ε > 0, every r-bounded
non-additive measure is equivalent to an ε-possibility
measure.

Discussion. Sometimes, we have several measures.
A natural question is: can we re-scale all of them by
using the same re-scaling function f(x) so that all of
them become ε-possibility measures?

Proposition 4.2. For every ε > 0, and for every fi-
nite set of r-bounded non-additive measures µ1(A),
. . . , µn(A), there exists a 1-1 function f(x) for which

all n measures µ′
i(A)

def
= f(µi(A)) are ε-possibility

measure.

5. First Promising Future Direction:
Interval-Valued Fuzzy Sets

Let us start the analysis of future directions. Let us
analyze how the approximation interpretation of fuzzy
techniques can help us predict promising future direc-
tions of fuzzy research and applications. Let us start
with the idea of fuzzy as approximating spatial dis-
creteness, as described by Section 3.

Fuzzy as an approximation of spatial discreteness: re-
minder. In this interpretation, for each value q, the
actual (final) fuzzy value µ(q) is a limit of the corre-
sponding ratios when the number N of labelled data
points tends to ∞ and ε → 0.

Measuring fuzzy degrees and measuring physical
quantities: similarities and differences. At first glance,
the situation is similar to measuring a physical quan-
tity: the more measurements we perform and the more
accurate the corresponding measurements, the closer
we are to the actual value of the corresponding physi-
cal quantity. In the measurement case, we thus always
have convergence.

However, in the fuzzy case, there is a big differ-
ence: in contrast to measurement of physical quanti-
ties, when there is such a thing as “actual value”, there
is no such thing as the “actual membership degree”. As
a result, there is no guarantees that the sequence of ra-
tios will converge to a single limit value. Instead, this
sequence of ratios may have several limit points.
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Describing the set of limit points. A natural way to
describe µ(x) is to first tend N to infinity, and then
tend ε to 0. In this case, the next ratio is different from
the previous one when we add a new labelled value; in
this case, we move from the previous ratio

m

n
to either

m

n
or

m+ 1

n+ 1
. In both cases, the difference between

the new and the old ratios does not exceed
1

n
. In our

description of the limit process, we assumed that the
number of labelled values n in the interval [q−ε, q+ε]
tends to ∞, so this difference between the two sequen-
tial elements of the sequence tends to 0.

One can prove that if we have a sequence rn ∈ [0, 1]
for which |rn − rn+1| → 0, then the set of limit points
of this sequence forms a subinterval of the interval
[0, 1]. Thus, we arrive at the following conclusion.

Need to consider interval-valued fuzzy sets. It is rea-
sonable to consider fuzzy sets in which, for each value
q, the expert’s degree of confidence µ(q) is not a num-
ber, but an interval – a subinterval of the interval [0, 1].

Interval-valued fuzzy sets have indeed been efficiently
used. This is the least controversial of our predic-
tions, since interval-valued fuzzy sets have been in-
deed successfully used in many practical applications;
see, e.g., [20,21].

6. Second Promising Future Direction:
Computing with Words

Need for computing with words. The main idea be-
hind fuzzy techniques is that to describe a quantity
such as temperature, height, etc., we use words such as
“small”, “medium”, “high”, etc. However, if we only
use the selected words, we get a rather crude descrip-
tion of the quantity.

To get a more accurate description, we can say, e.g.,
that someone is rather short, but closer to medium
height. In this case, to a large extent, this person is
short, but to some degree, this person is of medium
height.

In general, an accurate description of the quantity
may include not just one word, but several words, with
degrees associated with different words. A similar de-
scription can be used to describe situations when we
are uncertain: e.g., if we do not know whether a per-
son is short, medium, or tall, we assign, e.g., the same
degree 1 to the possible degree to which this person is
short, medium, and tall.

Once we fix the words w1, . . . , wn, each quantity is
then represented by the corresponding tuple of degrees
d = (d1, . . . , dn).

Need for data processing. In many practical situa-
tions, we are interested in the value of a real-valued
quantity y which is difficult (or even impossible) to
measure or estimate directly. For example, we are often
interested in the future value y of some quantity (e.g.,
tomorrow’s weather), and it is not possible to directly
measure a future value of a quantity.

In such situations, a usual approach is:

– to estimate easier-to-estimate auxiliary real-valued
quantities x1, . . . , xm which are related to y by a
known dependence y = f(x1, . . . , xm), and

– to use the estimates of xi to compute the estimate
for y.

This computation of y based on x1, . . . , xm (or, to be
more precise, computation of an estimate for y from
the estimates for xi) is known as data processing.

When the estimates for xi are given in the form of
tuples d, we face the following problem:

– we know the tuples d(j) =
(
d
(j)
1 , . . . , d

(j)
n

)
which describes our knowledge about each input
xj , 1 ≤ j ≤ m;

– we want to describe the resulting knowledge
about y in a similar tuple form.

In particular, in the simplest case when we have
only two inputs x1 and x2, and data processing con-
sists of applying a simple arithmetic operation, e.g.,
f(x1, x2) = x1 + x2, f(x1, x2) = x1 − x2, or
f(x1, x2) = x1 · x2, we face the following problem:

– if we have one quantity x1 which is characterized
by the tuple d(1) and

– we have another quantity x2 which is character-
ized by the tuple d(2),

– then we should be able to produce a tuple char-
acterizing the sum x1 + x2 of these quantities, a
tuple characterizing their difference x1−x2, their
product x1 · x2, etc.

In general, instead of computing with numbers, we
should be able to compute with words. The need for
such computing with words was first emphasized by L.
Zadeh; see, e.g., [42].

How to represent the original words. Usually, the
membership functions are triangular, i.e., first linearly
increase from 0 to 1, then linearly decrease from 1 to
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0 at the same rate. Different functions µi(x) usually
differ by a shift, so for some some starting point s and
step h, we have

µi(x) = max

(
0, 1− |x− (s+ i · h)|

h

)
. (6.1)

µi(x)

x
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Comment. For example, these membership functions
can describe the usual terms “negligible”, “small”,
“medium”, etc.

From a words-related tuple representation to a mem-
bership function. A tuple d = (d1, . . . , dn) repre-
sents a value x if one of the following conditions hold:

– the corresponding quantity q is characterized by
the first word w1, and x satisfies the property de-
scribed by this word;

– the corresponding quantity q is characterized by
the second word w2, and x satisfies the property
described by this word;

– . . .
– the corresponding quantity q is characterized by

the n-th word wn, and x satisfies the property de-
scribed by this word.

Here:

– the degree to which q is characterized by the first
word is d1, and

d1

x
-

6

– the degree to which x satisfies the property de-
scribed by this word is µ1(x).

µ1(x)

x
-
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From the computational viewpoint, the simplest way
to describe “and” in fuzzy logic is to use minimum: out
of all t-norms, only a · b and min can be implemented
by a single arithmetic operation, and computing min
requires fewer bit operations and is, thus, faster. So, the
degree to which q is characterized by the first word w1

and x satisfies the property described by this word can
be described as min(d1, µ1(x)).

d1, µ1(x))

x
-
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min(d1, µ1(x))

x
-
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Similarly:

– the degree to which q is characterized by the
second word w2 and x satisfies the property
described by this word can be described as
min(d2, µ2(x));

d2, µ2(x))

x
-
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min(d2, µ2(x))

x
-
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– . . .
– the degree to which q is characterized by the n-th

word wn and x satisfies the property described by
this word can be described as min(dn, µn(x)).

The simplest way to describe “or” in fuzzy logic is to
use maximum, so the degree to which one of these con-
ditions is satisfied is equal to

µd(x) =

max(min(d1, µ1(x)), . . . ,min(dn, µn(x))). (6.2)
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min(d1, µ1(x)), min(d2, µ2(x))

x
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µd(x) = max
i

min(di, µi(x))

x
-

6

�
�
�� @@

@
@

Resulting fuzzy-based formalization of computing with
words: a natural idea. We know the tuples d(1) and
d(2) describing the two quantities x1 and x2, and we
want to find a tuple d corresponding to the value y =
f(x1, x2) for some known function f(x1, x2). A natu-
ral idea to do it is as follows:

– first, we use the formula (1) to generate member-
ship functions µ(1)(x1) and µ(2)(x2) correspond-
ing to the tuples d(1) and d(2);

– then, by applying Zadeh’s extension principle
to these membership functions, we compute the
membership function µ(x) corresponding to y =
f(x1, x2);

– finally, we need to generate the tuple d corre-
sponding to the resulting membership function
µ(x).

What is necessary to implement the above idea. To
implement the above idea, we need to be able to gener-
ate a tuple corresponding to a given membership func-
tion.

How to transform a membership function into a tuple:
a seemingly natural idea. At first glance, we have a
natural way of computing the degree di to which it is
possible that a quantity described by the new mem-
bership function µ(x) satisfies the property described
by the word wi. There are several possible value x, so
the quantity corresponds to wi if one of the following
statements hold:

– for one possible value x, this value is in agree-
ment with the new membership function and with
the word wi;

– for another possible value x, this value is in agree-
ment with the new membership function and with
the word wi;

– . . .

For each number x:

– the degree to which this number is in agreement
with the new membership function is equal to
µ(x),

µ(x)

x
-

6
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– the degree to which this number is consistent with
the word wi is equal to µi(x).

µi(x)

x
-
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Thus, the degree to which this number x is in agree-
ment with the new membership function and in agree-
ment with the word wi is equal to min(µ(x), µi(x)):

µi(x), µ(x)

x
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min(µ(x), µi(x))

x
-

6
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The degree to which one of the conditions corre-
sponding to different value x hold is equal to the max-
imum of all such values, i.e., to

Ai
def
= max

x
(min(µ(x), µi(x))). (6.3)

Comment. In deriving the formula (6.3), we used
max for “or” and min for “and”. If we use sum for
“or” and product for “and”, we get F-transform instead
of the formula (2); see, e.g., [11,26,27,29,30].
How to transform a membership function into a tu-
ple: a reasonable requirement. It is reasonable to re-
quire that:

– if we start with the word wi itself, i.e., with the
tuple d = (0, . . . , 0, 1, 0, . . . , 0) in which di = 1
and dj = 0 for all j ̸= i, and
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– we perform no operations at all, i.e., use the func-
tion f(x) = x,

– then we would like to get back the same tuple

d = (0, . . . , 0, 1, 0, . . . , 0).

How to transform a membership function into a tu-
ple: limitations of a seemingly natural idea. Unfortu-
nately, the above seemingly reasonable approach does
not satisfy this requirement. Specifically, when we ap-
ply this approach to the word wi, then:

– for this index i, we do get Ai = 1 = di;
– however, instead of the desired di−1 = di+1 = 0,

we get Ai−1 = Ai+1 = 0.5.
µi(x), µi+1(x)

x
-
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min(µi(x), µi+1(x))

x
-

6

@
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��
Ai+1 = 0.5

Thus, we do not get the original tuple back.

What is needed. We therefore need to modify the
above seemingly natural procedure, to make sure that it
returns the original tuple if no operation is performed.

How can we do this? The main problem with the
above idea is that the neighboring membership func-
tions overlap. This leads us to the following natural
idea.

Since intersection is a problem, let us remove the in-
tersecting parts from the membership function before
applying a formula of the above type. We still want
to compute the i-th coefficient di corresponding to the
membership function µ(x) by comparing this mem-
bership function with the membership function µi(x)
representing the i-th word wi. However, instead of di-
rectly comparing these functions, let us first cut off,
from both of them, parts intersecting with the neigh-
boring membership functions. In other words, we first
compute “reduced” functions

µ′
i(x) =

max(0, µi(x)−max(µi−1(x), µi+1(x))) (6.4)

µ′
i(x)

x
-
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and

µ′(x) =

max(0, µ(x)−max(µi−1(x), µi+1(x))), (6.5)

and then compute the degrees based on these reduced
functions, as

Ai = max
x

(min(µ′(x), µ′
i(x))). (6.6)

Here, the reduced functions µ′
i(x) no longer over-

lap:

µ′
1(x), µ

′
2(x), . . .

x
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Thus, we arrive at the following definitions.

Definition 6.1.

– Let µi(x) be a sequence of membership functions
described by the formula (1), and

– let µ(x) be a membership function.

By a tuple d = (d1, . . . , dn) corresponding to the
membership function µ(x), means a sequence of val-
ues obtained by using formulas (6.4)–(6.6).

The following easy-to-prove result shows that this
modification of the original formula (6.3) indeed en-
ables us to reconstruct the original degrees di:

Proposition 6.1.

– Let µi(x) be a sequence of triangular func-
tions (6.1),

– let d = (d1, . . . , dn) be a tuple of a numbers
di ∈ [0, 1],

– and let µd(x) be described by the formula (6.2).

For this function µd(x), formulas (6.4)–(6.6) lead to
Ai = di for all i.
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Comment. As we can see from the proof, Proposi-
tion 6.1 is valid not only for the triangular functions,
but also for any set of membership functions µi(x) for
which, for some sequence of values ti:

– µi(ti) = 1, and
– µi(x) is only different from 0 for x ∈ [ti−1, ti+1].

Resulting definition of an operation with tuples. Now
that we know that our idea enables us to recover the
original degrees, we can formalize what it means to
perform computations with words.

Definition 6.2.

– Let µi(x) be a family of membership functions de-
scribed by the formula (1),

– let y = f(x1, . . . , xm) be a function of n real
numbers,

– and let d(j) = (d
(j)
1 , . . . , d

(j)
n ), j = 1, . . . ,m, be

tuples.

By the result f
(
d(1), . . . , d(m)

)
of applying the func-

tion f(x1, . . . , xm) to the tuples d(1), . . . , d(m), we
mean the tuple obtained by using the following three-
stage procedure:

– first, we use the formula (6.2) to compute the
membership functions µ(j)(xj) corresponding to
the given tuples

d(1), . . . , d(m);

– then, we apply Zadeh’s extension principle to the
membership functions µ(j)(xj), producing a new
membership function µ(y) defined as

sup
xi:f(x1,...,xm)=y

min
(
µ(1)(x1), . . . , µ

(m)(xm)
)
;

– finally, we use the formulas (6.4)–(6.6) to trans-
form the resulting membership function µ(y) into
a tuple d.

Examples. Let us consider triangular membership
functions starting with s = 0. Each original word wi is
described by a tuple d = (d1, . . . , dn) in which di = 1
and dj = 0 for all j ̸= i.

Example 6.1. Let us first consider the case when we
add two words wi′ and wi′′ corresponding to tuples
(0, . . . , 0, 1, 0, . . . , 0) (with 1 on the i-th place) and
(0, . . . , 0, 1, 0, . . . , 0) (with 1 on the i′-th place). In this
case, we will show that we get a tuple with di′+i′′ = 1,

d(i′+i′′)−1 = d(i′+i′′)+1 = 0.5, and dj = 0 for all
other j, i.e., a tuple (0, . . . , 0, 0.5, 1, 0.5, 0, . . . , 0).

Indeed, here, Zadeh’s extension principle leads to
the following membership function:

µ(x)

x
-

6
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For i = i′ + i′′, the reduced function has the form
µ′(x)

x
-
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The reduced function µ′
i(x) has the form:

µ′
i(x)
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µ′(x), µ′
i(x)

x
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Here, min(µ′(x), µ′
i(x)) = µ′

i(x):
min(µ′(x)µ′

i(x))

x
-
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Thus, the maximum di = max
x

min(µ′(x), µ′
i(x)) is

equal to 1.
Similarly, for i = i′+i′′+1 and for for i = i′+i′′−1,

we get di = max
x

min(µ′(x), µ′
i(x)) = 0.5, and we

get di = 0 for all other i.

Example 6.2. For subtracting two words wi′ (corre-
sponding to the tuple (0, . . . , 0, 1, 0, . . . , 0)) and wi′′

(corresponding to the tuple (0, . . . , 0, 1, 0, . . . , 0)), we
similarly get a tuple with di′−i′′ = 1 and d(i′−i′′)−1 =
d(i′−i′′)+1 = 0.5, i.e., a tuple

(0, . . . , 0, 0.5, 1, 0.5, 0, . . . , 0).
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Example 6.3. A shift of a word wi as described by the
tuple (0, . . . , 0, 1, . . . , 0), i.e., the result of applying a
function f(x) = x+ a · h with 0 < a < 1 to the word
wi, leads to di = 1− a and di+1 = a, i.e., to the tuple
(0, . . . , 0, 1− a, a, 0, . . . , 0).

Need for extending these results. In all three ex-
amples, we get reasonable results. The fact that we
get reasonable results for simple examples shows that
this approach is worth pursuing. To make this ap-
proach useful, we need to come up with similar ex-
plicit formulas for the result of applying other func-
tions f(x1, . . . , xm) to tuples.

7. Third Promising Future Direction:
Complex-Valued Fuzzy Sets

Ideal case. In the ideal case, we know the expert’s
degrees of belief d1, . . . , dn in the basic statements
S1, . . . , Sn, and we use “and”- and “or”-operations to
estimate the expert’s degree of confidence in different
propositional combinations of the basic statements.

In practice, the situation may be somewhat more com-
plicated. Sometimes, instead of knowing the expert’s
degree of belief in the basic statements, we only know
the expert’s degree of belief in some propositional
combinations of the basic statements. In this case:

– first, we need to recover the degrees d1, . . . , dn
from the available information;

– then, we use the recovered values d1, . . . , dn to
estimate the expert’s degree of belief in other
propositional combinations.

If “and”- and “or”-operations were exact, this proce-
dure would always succeed. In the ideal case, when
the expert’s degree of belief in A&B is exactly equal
to f&(d(A), d(B)) and the expert’s degree of belief in
A ∨ B is exactly equal to f∨(d(A), d(B)), we can in-
deed recover the desired degrees by solving the corre-
sponding system of equations.

Example. Suppose that we use the algebraic product
f&(a, b) = a · b as an “and”-operation and

f∨(a, b) = a+ b− a · b

as an “or”-operation. Suppose that instead of the actual
values d1 = d(S1) and d2 = d(S2) we only know the
degrees

d(S1 &S2) = f&(d1, d2) = d1 · d2

and

d(S1 ∨ S2) = f∨(d1, d2) = d1 + d2 − d1 · d2.

In particular, if we actual (unknown) values of d1
and d2 are d1 = 0.4 and d2 = 0.6, then

d(S1 &S2) = 0.4 · 0.6 = 0.24

and

d(S1 ∨ S2) = 0.6 + 0.4− 0.6 · 0.4 = 0.76.

These two numbers

d(S1 &S2) = 0.24 and d(S1 ∨ S2) = 0.76

are the only information that we have about the ex-
pert’s degrees d1 and d2. Based on these numbers, we
want to recover the values d1 and d2.

Since we assumed that the t-norm a · b and the t-
conorm a + b − a · b describe the expert’s belief in
composite statements, we form two equations for the
two unknowns d1 and d2: d1 · d2 = 0.24 and d1 +
d2 − d1 · d2 = 0.76. After adding these two equations,
we get d1 + d2 = 1, hence d2 = 1 − d1. Substituting
d2 = 1− d1 into the first equation, we get

d1 · (1− d1) = 0.24.

After opening parentheses and moving all the terms to
the right-hand side, we get the equation

d21 − d1 + 0.24 = 0.

By using the known formula for solving quadratic
equations, we get

d1 =
1

2
±

√(
1

2

)2

− 0.24 =

0.5±
√
0.25− 0.24 = 0.5±

√
0.01 = 0.5± 0.1.

Thus, d1 = 0.4 or d1 = 0.6, i.e., (almost) exactly the
expert’s original estimates.

In this case, due to symmetry, we cannot distinguish
between d1 and d2, but we can make this distinction if
we have additional information.
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What happens in practical cases, when the “and”-
and “or”-operations are only approximate? Let us
now analyze what will happen if we take into ac-
count that in reality, “and”- and “or”-operations pro-
vide only an approximate description of the expert’s
degrees of belief. As an example, let us assume that
in general, the expert’s reasoning is best described by
the same “and”- and “or”-operations f&(a, b) = a · b
and f∨(a, b) = a + b − a · b. The fact that these op-
erations are the best “on average” does not necessarily
mean that these operations always exactly describe the
expert’s degree of belief in composite statements.

For example, as we have mentioned earlier, if the
statements S1 and S2 coincide, then

d(S1 &S2) = d(S1 ∨ S2) = d(S1).

For such two statements with d(S1) = d(S2) = 0.5,
we will get d(S1 &S2) = 0.5 and d(S1 ∨ S2) = 0.5.

Let us see what happens if we try to apply, to these
two values d(A&B) = 0.5 and d(A ∨ B) = 0.5, the
above procedure of reconstructing d1 and d2. Specifi-
cally, we form two equations: d1 · d2 = 0.5 and

d1 + d2 − d1 · d2 = 0.5,

and we try to find d1 and d2 by solving this system
of two equations. After adding the two equations, we
get d1 + d2 = 1 and thus, d2 = 1 − d1. Substituting
d2 = 1− d1 into the first equation, we get

d1 · (1− d1) = 0.5.

After opening parentheses and moving all the terms to
the right-hand side, we get the equation

d21 − d1 + 0.5 = 0.

The determinant of this equation is negative

(−1)2 − 4 · 1 · 0.5 = 1− 2 = −1 < 0

and thus, this equation does not have any real solution
– and hence, no solutions with d1 ∈ [0, 1].

Natural idea leads to complex-valued degrees. Since
we cannot get the degrees from the interval [0, 1], a
natural idea is to extend real numbers so that the cor-
responding equation (or system of equations) has a so-
lution. In principle, we could get any solutions, so it
is desirable to make sure that all (or at least almost

all) equations (and systems of equations) have a so-
lution. The need to consider quadratic equations im-
mediately leads to the appearance of the imaginary
unit i =

√
−1, which is a solution of the equation

x2 + 1 = 0, and to the appearance of general complex
numbers as solutions of generic quadratic equations.

Good news is that nothing else needs to be added
to take care of cubic and higher order equations: a so-
called main theorem of algebra states that every poly-
nomial equation has a complex-valued solution (unless
this equation has the form c = 0 with a constant c
which is different from 0).

Thus, we arrive at the need to use complex-valued
degrees.

How good are complex-valued degrees in practice?
Complex-valued fuzzy sets have been indeed success-
fully used in practical applications; see, e.g., [1,4,6,13,
24] – and our analysis explains why. Let us show, on
several examples, that they indeed help to reconstruct
the membership values di.

Example 7.1. Let us check which complex numbers
appear in the above example. By using the known for-
mula for solving quadratic equations, we get

d1 =
1

2
±

√(
1

2

)2

− 0.5 =

0.5±
√
0.25− 0.5 = 0.5±

√
−0.25 = 0.5± 0.5 · i.

Of course, it is difficult to interpret complex-valued de-
grees (or, for that purpose, any degrees outside the in-
terval [0, 1]). So, it is natural, for each such complex-
valued degree, to take the closest value from the inter-
val [0, 1].

For complex numbers, the natural distance is Eu-
clidean distance

d(a1+a2 · i, b1+ b2 · i) =
√
(a1 − b1)2 + (a2 − b2)2.

It is easy to see that for a complex number a1 + a2 · i,
the closest point on the real line is its real part a1, and
the closest point on [0, 1] is:

– the same value a1 is a1 ∈ [0, 1];
– the value 0 is a1 < 0, and
– the value 1 if a1 > 1.

Thus, for the complex numbers 0.5 + 0.5 · i and
0.5−0.5 · i, the closest numbers from the interval [0, 1]
are 0.5 and 0.5 – exactly the values that the expert as-
signed!
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Example 7.2. Let us consider a slightly more general
example, with the same “and”- and “or”-operations
and with S1 = S2, but this time, with an arbitrary value
d ∈ [0, 1] for which d(S1) = d(S2) = d. In this case,
we get d(S1 &S2) = d and d(S1 ∨ S2) = d. These
two values d(S1 &S2) = d and d(S1 ∨S2) = d are all
we get from the expert. Based on these two values, we
want to reconstruct d1 and d2.

In this example, we get a system of equations

d1 · d2 = d and d1 + d2 − d1 · d2 = d.

After adding these two equations, we get d1+d2 = 2d,
hence d2 = 2d−d1. Substituting d2 = 2d−d1 into the
first equation, we get d1 · (2d−d1) = d. After opening
parentheses and moving all the terms to the right-hand
side, we get the equation d21−2d ·d1+d = 0. By using
the known formula for solving quadratic equations, we
get d1 = d±

√
d2 − d. Here, d2−d = (d−1) ·d ≤ 0,

so d1 = d ±
√
d− d2 · i. For both complex values

d+
√
d− d2 · i and d−

√
d− d2 · i, the closest number

from the interval [0, 1] is the value d – also exactly
what the experts assigned.

Example 7.3: complex numbers are not a panacea.
To avoid a false impression that complex numbers also
lead to perfect results, let us consider another exam-
ple in which general “and”- and “or”-operations may
not be applicable: an example when S2 implies S1.
In this case, S1 &S2 is simply equivalent to S2, and
S1 ∨ S2 is equivalent to S1. So, for example, for
d1 = 0.6 and d2 = 0.4, we get d(S1 &S2) = 0.4 and
d(S1∨S2) = 0.6. These two values d(S1 &S2) = 0.4
and d(S1 ∨ S2) = 0.6 are all we get from the expert.
Based on these two values, we want to reconstruct d1
and d2.

In this example, we get a system of equations

d1 · d2 = 0.4 and d1 + d2 − d1 · d2 = 0.6.

After adding these two equations, we get d1 + d2 = 1,
hence d2 = 1 − d1. Substituting d2 = 1 − d1 into the
first equation, we get d1 ·(1−d1) = 0.4. After opening
parentheses and moving all the terms to the right-hand
side, we get the equation d21 − d1 + 0.4 = 0. By using
the known formula for solving quadratic equations, we
get

d1 = 0.5±
√
0.25− 0.4 = 0.5±

√
−0.15 =

0.5±
√
0.15 · i.

For both complex values 0.5 +
√
0.15 · i and 0.5 −√

0.15 · i, the closest number from the interval [0, 1]
is the value 0.5, which is somewhat different from the
original expert values 0.4 and 0.6 (but still rather close
to these values).

8. Fourth Promising Future Direction: Dynamic
Fuzzy Sets

Variety of t-norms and t-conorms. In fuzzy logic,
there are numerous t-norms and t-conorms. Which one
to apply depends on the relation between the state-
ments A and B. This dependence can be illustrated in
the probabilistic approaches, when degree a represents
the probability that A is true (or the probability that a
randomly selected expert considers A to be true).

If A and B are independent, then the probability
f&(a, b) of A&B is equal to the product

a · b = P (A) · P (B)

of the corresponding probabilities. In this case, the
most adequate t-norm is a product f&(a, b) = a · b.

Of the other hand, if we know that A and B
are strongly correlated, then a t-norm f&(a, b) =
min(a, b) which leads to P (A&B) = P (A) = P (B)
if A = B is more adequate.

The problem is that in many cases, we do not know
whether A and B are correlated or not. In such cases,
we select some t-norm. The selected t-norm may not
necessarily coincide with the ideal one; hence, the re-
sulting recommendations may not be always adequate.
This “truth-functionality”, the fact that the degree of
confidence in A&B depends only on the degrees of
confidence in A and B – without fully adequately tak-
ing into account the possibility of different correlations
– if often cited as one of the main limitations of fuzzy
techniques.

Towards dynamic fuzzy logic. As we have men-
tioned, one of the origins of fuzzy logic is a description
of processes that changes with time. However, the tra-
ditional fuzzy logic assumes that the expert’s degrees
of confidence do not change. In reality, the expert’s
opinions often change with time. Thus, to get a more
adequate description of the expert opinions and rules,
it is necessary to take these changes into account, i.e.,
to take into account that the expert’s degree of confi-
dence in each statement A changes with time. In other
words, to describe the expert’s opinion about a state-
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ment A, instead of a single value a ∈ [0, 1], we need
to use a function a(t) that describes how this degree
changes with time t. Such dynamic fuzzy logic was
proposed in [5,31,32,33].

What we do in this section. In this section, we show
that, if we take this dynamics into consideration, then
we can get a more adequate description of “and” and
“or” operations, a description in which it is possible to
distinguish between the cases when the statements are
independent and when they are strongly dependent.

This possibility will be illustrated on the example
when the fuzzy degrees have a probabilistic meaning.

Relation between correlation and the probabilities
P (A&B) and P (A∨B): reminder. In statistics, the
most frequent way to describe correlation between two
random variables x and y is to use the correlation co-
efficient

ρ =
E[x · y]− E[x] · E[y]√

V [x] · V [y]
,

where E[x] denote the mean (expected value) of the
variable x and the variance V [x] is defined as

V [x]
def
= E[(x− E[x])2] = E[x2]− (E[x])2;

see, e.g., [35].
A statement A which is true with probability a and

false with the remaining probability 1 − a can be
viewed as a random variable that takes the value 1 (=
“true”) with probability a and 0 (= “false”) with prob-
ability 1− a. For this variable,

E[A] = 1 · a+ 0 · (1− a) = a

and similarly, E[B] = b. Similarly, E[A&B] =
P (A&B).

Here, A = 0 or A = 1, hence A2 = A, E[A2] =
E[A] and thus, V [A] = E[A2]− (E[A])2 = a− a2 =
a · (1 − a). Similarly, we can conclude that V [B] =
b · (1− b).

For true and false statements, “and” is simply a
product, so A&B = A · B and thus, E[A&B] =
P (A&B) = E[A · B]. Thus, the above formula for
the correlation takes the following form:

ρ =
P (A&B)− a · b√
a · (1− a) · b · (1− b)

.

Once we know the probabilities P (A) = a and
P (B) = b and the correlation coefficient, we can
uniquely reconstruct the probabilities P (A&B) and
P (A∨B). From the above formula, we can conclude
that

P (A&B) =

a · b+ ρ ·
√
a · (1− a) · b · (1− b). (8.1)

The expression for P (A ∨ B) can be found if we take
into account the known property

P (A&B) + P (A ∨B) = P (A) + P (B),

from which we conclude that

P (A ∨B) = P (A) + P (B)− P (A&B) =

a+ b− P (A&B),

i.e.,

P (A ∨B) =

a+ b− a · b− ρ ·
√
a · (1− a) · b · (1− b). (8.2)

How do we find the correlation coefficient? In the dy-
namic case, we not only know the current expert’s de-
grees of confidence a and b in statements A and B, we
also know the past degrees a(t) and b(t) which were,
in general, different from a and b.

When the statements A and B are strongly corre-
lated, then it is reasonable to expect that the corre-
sponding changes a(t) and b(t) are also correlated. If
the statements A and B are independent, then it is rea-
sonable to expect that the changes a(t) and b(t) are
also independent. In general, to find the correlation co-
efficient between A and B, we can use, as random
variables, the values a(t) and b(t) corresponding to T
known moments of time. Under this idea,

E[A] =
1

T
·
∑
t

a(t), E[B] =
1

T
·
∑
t

b(t),

V [A] =
1

T
·
∑
t

a2(t)−

(
1

T
·
∑
t

a(t)

)2

,
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V [B] =
1

T
·
∑
t

b2(t)−

(
1

T
·
∑
t

b(t)

)2

,

E[A ·B] =
1

T
·
∑
t

a(t) · b(t),

and thus,

ρ =
E[A ·B]− E[A] · E[B]√

V [A] · V [B]
.

Substituting this value ρ into (8.1) and (8.2), we get the
desired estimates for P (A&B) and P (A ∨B).

Mathematical comment. In producing these esti-
mates, we implicitly assumed that for the desired sta-
tistical characteristic (in our case, correlation), aver-
aging over time leads to the same result as averaging
over a sample. This property is called ergodicity; it is
often assumed and/or proved in statistical physics and
in statistical data analysis; see, e.g., [3,36].

Computational comment. In the above formulas, we
implicitly assumed that the correlation between differ-
ent expert estimates does not change in time. In real-
ity, just like the expert degrees change with time, the
correlation between these degrees may also change. It
is therefore necessary to take this change into account
when estimating correlation. One way to do that is to
consider the recent values with higher weights, and the
past values with lower weights. In other words, to each
of T moments of time, we assign a weight w(t) ≥ 0
such that

∑
t
w(t) = 1, and then consider the modified

formulas

E[A] =
∑
t

w(t) · a(t), E[B] =
∑
t

w(t) · b(t),

V [A] =
∑
t

w(t) · a2(t)−

(∑
t

w(t) · a(t)

)2

,

V [B] =
∑
t

w(t) · b2(t)−

(∑
t

w(t) · b(t)

)2

,

E[A ·B] =
∑
t

w(t) · a(t) · b(t).

The above case corresponds to w(t) =
1

T
. A usual

selection of “discount” weights is w(t) = C · qt for
some q < 1. In this case, the sum

∑
w(t) =

∑
C · qt

is the sum of a geometric progression:

T∑
t=1

C · qt = C ·
T∑

t=1

qt = C · 1− qT+1

1− q
.

Thus, once q is selected, the value C is determined
from the condition that

∑
t
w(t) = 1, as

C =
1− q

1− qT+1
.

Computational complexity: description. What are
the limitations of this approach? An obvious limitation
is that to find the degree of confidence in A&B or
in A ∨ B, we now need to perform a large number of
computations – instead of simply applying a t-norm or
a t-conorm to two numbers.

Computational complexity is unavoidable. This lim-
itation is unavoidable: in the dynamic fuzzy logic, we
have more values for representing the expert’s degree
of confidence in each statement, so processing these
degrees takes more computation time.

Non-associativity: description. Another limitation is
that, in contrast to the usual (static) fuzzy logic, dy-
namic logic operations are not necessarily associative,
i.e., the estimates for (A∨B)∨C and for A∨ (B∨C)
are, in general, different.

Non-associativity is unavoidable. Let us show that
this non-associativity is also a limitation not of a spe-
cific method of extending “and”- and “or”-operations
to dynamic fuzzy logic, but a limitation of the very dy-
namic character of these logics.

Let us show that non-associativity occurs even if
we restrict ourselves to linear operations. This possi-
bility comes from the fact that one of the most fre-
quently used probability-related fuzzy “or”-operations
f∨(a, b) = a+b−a·b is approximately linear for small
a and b, and that it is isomorphic to a+ b if we appro-
priately re-scale the values from the interval [0, 1] to
the set IR+

0 of all non-negative numbers.

Definition 8.1.

– For every integer t, by a dynamical fuzzy value
corresponding to time t, we mean a sequence of
values a = {as}s≤t, where each value as belongs
to the set IR+

0 .
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– For every integer t0 and for each dynamic fuzzy
value a, by a shift St0(a), we mean a sequence
a′ = {a′s}s≤t+t0 for which a′s = as−t0 .

– By a aggregation operation, we mean an op-
eration f that transforms two sequences a =
{as}s≤t and b = {bs}s≤t into a value ct ∈ IR+

0 .
– An operation f is called shift-invariant if for every
a, b, and t, whenever it transforms a and b into a
value ct, it transforms shifted values St0(a) and
St0(b) into the same value ct+t0 .

– We say that an aggregation operation f is linear
if it is a linear function of all its variables as and
bs, i.e.,

ct = Zt +
∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs.

– For any aggregation operation f , by the result
c = {cs}s≤t = f(a, b) of applying this opera-
tion to sequences a = {as}s≤t and b = {bs}s≤t

we mean a sequence for which, for every s ≤ t,
cs = f({au}u≤s, {bu}u≤s).

– We say that an operation is commutative if
f(a, b) = f(b, a) for all a and b, and associative
if f(f(a, b), c) = f(a, f(b, c)).

Proposition 8.1. If c = f(a, b) is a shift-invariant
linear commutative and associative operation, then the
value ct depends only on at and bt and does not de-
pend on the values as and bs for s < t.

Discussion. In other words, any commutative linear
operation that takes into account previous fuzzy esti-
mates is not associative.

Comment. The fact that not all algebraic properties
can be satisfied in the dynamical case is known in other
similar situations: e.g., in [18], it is proven that if we
formulate natural requirements for a reasonable next
step in a bargaining process, then every function satis-
fying these requirements does not depend on the bar-
gaining pre-history.
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Appendix

A. Proof of Proposition 2.1.

1◦. Let L = {
∑

ci · µi(q)} be a shift-invariant linear
space. By definition of shift-invariance, this mean that
for each function f(q) from this space (in particular,
for each function f(q) = µi(q)), the shifted function
f(q+q0) also belongs to this space. For f(q) = µi(q),
this means that the function µi(q+ q0) also belongs to
the space L. By definition of the space L, this means
that the shifted function µi(q + q0) is a linear combi-
nation of the original functions µ1(q), . . . , µn(q), i.e.,
that

µi(q + q0) =
n∑

j=1

cij(q0) · µj(q), (A1.1)

for some real numbers values cij(q0).
The equality (A1.1) holds for all i = 1, . . . , n, so

we arrive at the following system of equalities:

µi(q + q0) =

n∑
j=1

cij(q0) · µj(q), (A1.2)

2◦. By Definition 1, each function µi(q) is differen-
tiable. Let us use the formula (A1.1) to prove that
the functions cij(q0) are also differentiable. Indeed, let
us select n different values q1, . . . , qk, . . . , qn of the
quantity q, and let us repeat the formula (A1.1) for
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each of these values. We then get the following system
of equalities:

µi(qk + q0) =

n∑
j=1

cij(q0) · µj(qk), (A1.3)

The system (A1.3) is a linear system of equations with
n unknowns ci1(q0), . . . , cin(q0). It is known that in
general, each element of the solution to a system of
linear equations can be described – via the so-called
Cramer rule – as a ratio of two determinants, i.e.,
as a smooth function of the coefficients and the free
terms. In our case, the coefficients µj(qk) are con-
stants (hence, are differentiable), and the free terms
µi(qk + q0) are also differentiable functions of q0.
Thus, each element cij(q0) is a result of applying a
smooth function to smooth functions and is, therefore,
a differentiable function of q0.

3◦. Now that we know that both the functions µi(q)
and the functions cij(q) are differentiable, we can dif-
ferentiate both sides of the equations (A1.2) and set q0
to 0. As a result, we get the following system of differ-
ential equations:

µ′
i(q) =

n∑
j=1

Cij · µj(q), (A1.4)

where we denoted Cij
def
= c′ij(0). Thus, for the func-

tions µ1(q), . . . , µn(q), we have a system of linear
differential equations with constant coefficients. Solu-
tions to such systems are well-known: they have the
form xk · exp(−λ · q), where −λ is an eigenvalue of
the matrix Cij , and k is an integer corresponding to
degenerate eigenvalues, i.e., eigenvalues for which the
linear space of the corresponding eigenvectors is more
than 1-dimensional:

– if we have only one linear independent eigenvec-
tor corresponding to the eigenvalue λ, we only get
the term corresponding to k = 0;

– if we have two linear independent eigenvectors
corresponding to the eigenvalue λ, we get terms
corresponding to k = 0 and k = 1;

– . . .

4◦. Terms corresponding to the same eigenvalue λ
form a shift-invariant linear subspace; thus, from the
fact that the linear space L is basic, it follows that all

the functions from this space correspond to the same
eigenvalue λ.

5◦. In general, for a linear system of differential equa-
tions with constant coefficients, we can have positive,
zero, and complex eigenvalues, corresponding to neg-
ative, zero, or complex values λ.

5.1◦. In our cases, negative values λ are not possible,
since then we will have µi(q) = qi−1 · exp(−λ · q)
tend to infinity for q → ∞, which contradicts to our
assumption that the linear space is fuzzy-related, i.e.,
that we can select a basis of functions whose values
are, for all q ≥ 0, bounded to the interval [0, 1].

5.2◦. Zero values λ are also not possible:

– for i = 1, µi(q) = qi−1 · exp(−λ · q) with λ =
0 will be a constant function, which contradicts
Definition 3, and

– for i > 1, this expression tend to infinity for
q → ∞, which contradicts to our assumption that
the linear space is fuzzy-related, i.e., that we can
select a basis of functions whose values are, for
all q ≥ 0, bounded to the interval [0, 1].

5.3◦. Similarly, complex values λ = a + i · b are im-
possible, since then terms µi(q) are then proportional
to qi−1 · exp(−a · q) · sin(b · q + φ) for some φ, and
thus, cannot be non-negative for all q ≥ 0.

5.4◦. Since negative, zero, or complex values λ are not
possible, we conclude that the value λ must be posi-
tive. The proposition is proven.

B. Proof of Proposition 4.1

1◦. Let us first define a doubly infinite sequence . . . <
c−(k+1) < ck < . . . < c−1 < c0 < c1 < . . . < ck <
ck+1 < . . . as follows.

We take c0 = 1.
Once we have defined the value ck for some k ≥

0, we define ck+1 as follows. By definition of an r-
bounded measure, there exists a value ∆k > 0 such
that if µ(A) ≤ ck and µ(B) ≤ ck, then µ(A ∪ B) ≤
∆k. We then take ck+1

def
= (1 + ε) ·max(ck,∆k).

Here, c0 = 1 and ck+1 ≥ (1 + ε) · ck. By induction
over k, we can prove that ck ≥ (1 + ε)k and thus,
ck → ∞ when k increases.
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Similarly, once we have defined the value c−k for
some k ≥ 0, we define c−(k+1) as follows. By def-
inition of an r-bounded measure, there exists a value
νk > 0 such that if µ(A) ≤ νk and µ(B) ≤ νk, then
µ(A ∪B) ≤ c−k. We then take

c−(k+1)
def
= (1− ε) ·min(c−k, νk).

Here, c0 = 1 and 0 < c−(k+1) ≤ (1 − ε) · c−k. By
induction over k, we can prove that 0 < c−k ≤ (1−ε)k

and thus, c−k → 0 when k → ∞.

2◦. Let us now define the desired function f(x). Since
the sequence ck is strictly increasing, ck → ∞ when
k → +∞, and ck → 0 when k → −∞, for every
positive number x > 0, there exists an integer k for
which ck−1 < x ≤ ck. We can then define f(x) as
follows:

– for each integer k, we take f(ck) = (1 + ε)k/2

and
– for each value x between ck−1 and ck, we define
f(x) by linear interpolation: if ck−1 < x ≤ ck,
then

f(x) = f(ck−1)+
x− ck−1

ck − ck−1
·(f(ck)−f(ck−1)).

Since the sequence ck is strictly increasing, the result-
ing function f(x) is also strictly increasing.

3◦. Let us now prove that for for the new measure
µ′(A)

def
= f(µ(A)) (which is equivalent to µ(A)), for

every two sets A and B, we have

µ′(A ∪B) ≤ (1 + ε) ·max(µ′(A), µ′(B)).

Without losing generality, let us assume that µ(A) ≥
µ(B). As we have mentioned in Part 2 of this proof,
there exist integers k and ℓ for which ck−1 < µ(A) ≤
ck+1 and cℓ−1 < µ(B) ≤ cℓ. Since µ(A) ≥ µ(B) and
ck is an increasing sequence, we cannot have k < ℓ, so
k ≥ ℓ and thus, cℓ ≤ ck.

Hence, we have µ(A) ≤ ck and µ(B) ≤ ck. By
definition of ∆k, we therefore have µ(A ∪ B) ≤ ∆k.
By definition of ck+1, this value is always great than
∆k, thence we have µ(A ∪B) ≤ ck+1.

Since the function f(x) is increasing, we get

µ′(A∪B) = f(µ(A∪B)) ≤ f(ck+1) = (1+ε)(k+1)/2.

On the other hand, here, max(µ(A), µ(B)) = µ(A) >
ck−1. Due to monotonicity, we have

max(µ′(A), µ′(B)) = µ′(A) = f(µ(A)) >

f(ck−1) = (1 + ε)(k−1)/2.

In other words, we have

(1 + ε)(k−1)/2 < max(µ′(A), µ′(B)).

Multiplying both sides of this inequality by 1 + ε, we
get

(1 + ε)(k+1)/2 < (1 + ε) ·max(µ′(A), µ′(B)).

We already know that µ′(A ∪ B) ≤ (1 + ε)(k+1)/2.
Thus, we conclude that

µ′(A ∪B) ≤ (1 + ε) ·max(µ′(A), µ′(B)).

The proposition is proven.

C. Proof of Proposition 4.2

This proposition can be proven in a way which is
similar to the proof of Proposition 4.1, the only differ-
ence is how the sequence ck is built.

We still take c0 = 1.
Once we have defined the value ck for some k ≥

0, we define ck+1 as follows. By definition of an r-
bounded measure, for each i from 1 to n, there exists
a value ∆ki > 0 such that if µi(A) ≤ ck and µi(B) ≤
ck, then µi(A ∪B) ≤ ∆ki. We then take

ck+1 = (1 + ε) ·max(ck,∆k1, . . . ,∆kn).

Similarly, once we have defined the value c−k for
some k ≥ 0, we define c−(k+1) as follows. By defini-
tion of an r-bounded measure, for each i from 1 to n,
there exists a value νki > 0 such that if µi(A) ≤ νki
and µi(B) ≤ νki, then µi(A ∪ B) ≤ c−k. We then
take

c−(k+1) = (1− ε) ·min(c−k, νk1, . . . , νkn).

The rest of the proof is the same as for Proposition 4.1.
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D. Proof of Proposition 6.1

1◦. We are interested in the maximum of the function
min(µ′

d(x), µ
′
i(x)). Let us first show that this max-

imum is always attained on the interval [ti−1, ti+1],
where we denoted ti

def
= s+ i · h, because outside this

interval, the above function is equal to 0.

Indeed, the minimum function is always non-negative.
The function µi(x) (as defined by the formula (6.1))
is only different from 0 on the interval [ti−1, ti+1].
By definition of a reduced function (formula (6.4)),
µ′
i(x) ≤ µi(x) and thus, the reduced function µ′

i(x)
can only be different from 0 on the interval [ti−1, ti+1].
By definition (6.4) of the reduced function, we have
µ′
i(x) ≤ µi(x), hence min(µ′

d(x), µ
′
i(x)) ≤ µ′

i(x) ≤
µi(x).

Since outside the interval [ti−1, ti+1], we have
µi(x) = 0, the minimum min(µ′

d(x), µ
′
i(x)) is also

equal to 0 for x ̸∈ [ti−1, ti+1].

2◦. We want to prove that the largest value of

min(µ′
d(x), µ

′
i(x))

is equal to di. To prove this, we will prove two auxil-
iary statements:

– that min(µ′
d(ti), µ

′
i(ti)) = di, and

– that min(µ′
d(x), µ

′
i(x)) ≤ di for all other values

x ∈ [ti−1, ti+1].

2.1◦. Let us first prove that min(µ′
d(ti), µ

′
i(ti)) = di.

To prove this equality, we will:

– first compute µ′
d(ti),

– then compute µ′
i(ti),

– and finally compute the minimum of these two
values.

2.1.1◦. Let us first compute µ′
i(ti).

From the formula (1), we can conclude that for x = ti,
we have µi(ti) = 1 and µj(ti) = 0 for all j ̸= i.
Thus, by definition (4) of the reduced function µ′

i(x),
we have

µ′
i(ti) = max(0, µi(ti)−max(µi−1(ti), µi+1(ti))) =

max(0, 1−max(0, 0)) = max(0, 1) = 1.

2.1.2◦. Let us now compute µ′
d(ti).

From the fact that µi(ti) = 1 and µj(ti) = 0
for all j ̸= i, we conclude that min(di, µi(ti)) =
min(di, 1) = di and min(dj , µj(ti)) = min(dj , 0) =
0 for all j ̸= i. Thus, the value µd(ti) (as de-
fined by the formula (6.2)) is equal to µd(ti) =
max(di, 0, . . . , 0) = di. Hence,

µ′
d(ti) = max(0, µd(ti)−max(µi−1(ti), µi+1(ti))) =

max(0, di −max(0, 0)) = max(0, di) = di.

2.1.3◦. We have computed µ′
i(ti) = 1 and µ′

d(ti) =
di; thus, min(µ′

d(ti), µ
′
i(ti)) = min(di, 1) = di.

The first auxiliary statement is proven.

2.2◦. Let us now prove that min(µ′
d(x), µ

′
i(x)) ≤ di

for all x ∈ [ti−1, ti+1].

On this interval, only the function µi(x) and two
neighboring membership functions µi−1(x) and µi+1(x)
are different from 0, all the other are equal to 0. Thus,
for these x, the value µd(x) (as defined by the for-
mula (6.2)) is equal to the largest of the three values:

– the value min(µi−1(x), di−1),
– the value min(µi(x), di), and
– the value min(µi+1(x), di+1)).

The maximum of the three numbers is equal to
one of them. Let us consider these three cases one
by one and show that in all three cases, we have
min(µ′

d(x), µ
′
i(x)) ≤ di.

2.2.1◦. When µd(x) = min(µi−1(x), di−1), then
µd(x) ≤ µi−1(x) and thus,

µd(x) ≤ max(µi−1(x), µi+1(x)).

Hence, µ′
d(x) is equal to

max(0, µd(x)−maxµi−1(x), µi+1(x))) = 0,
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and so, min(µ′
d(x), µ

′
i(x)) = 0 ≤ di.

2.2.2◦. When µd(x) = min(µi(x), di), then µd(x) ≤
di and thus,

µ′
d(x) = max(0, µd(x)−maxµi−1(x), µi+1(x))) ≤

µd(x) ≤ di.

Hence, min(µ′
d(x), µ

′
i(x)) ≤ µ′

d(x) ≤ di.

2.2.3◦. When µd(x) = min(µi+1(x), di+1), then
µd(x) ≤ µi+1(x) and thus,

µd(x) ≤ max(µi−1(x), µi+1(x).

Hence, µ′
d(x) is equal to

max(0, µd(x)−maxµi−1(x), µi+1(x))) = 0,

and so, min(µ′
d(x), µ

′
i(x)) = 0 ≤ di.

2.2.4◦. In all three cases, we have the desired inequal-
ity. Thus, the inequality always holds, and the proposi-
tion is proven.

E. Proof of Proposition 8.1

1◦. Let us first use the fact that our linear aggregation
operation is shift-invariance.

By definition, shift-invariance means that for every two
sequences a and b, if

ct = Zt +
∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs,

and we combine the shifted sequences a′ = St0(a) and
b′ = St0(b):

c′t+t0 = Zt+t0 +
∑

s≤t+t0

At+t0,s · a′s+
∑
s≤t

Bt+t0,s · b′s,

then we should get the same result: ct = c′t+t0 . Substi-
tuting a′s = as−t0 and b′s = bs−t0 into the formula for
c′t+t0 , we conclude that

c′t+t0 = Zt+t0 +
∑

s≤t+t0

At+t0,s · as−t0+

∑
s≤t

Bt+t0,s · bs−t0 .

Introducing a new variable s′
def
= s− t0 for which s =

s′ + t0, we get

c′t+t0 = Zt+t0 +
∑
s′≤t

At+t0,s′+t0 · as′+

∑
s≤t

Bt+t0,s′+t0 · bs′ .

For the following arguments, it is convenient to rename
s′ into s, as a result, we conclude that

c′t+t0 = Zt+t0+
∑
s≤t

At+t0,s+t0 ·as+
∑
s≤t

Bt+t0,s+t0 ·bs.

The fact that ct and c′t+t0 are equal means that the
following equality holds for all possible sequences a
and b:

Zt +
∑
s≤t

At,s · as +
∑
s≤t

Bt,s · bs =

Zt+t0 +
∑
s≤t

At+t0,s+t0 · as +
∑
s≤t

Bt+t0,s+t0 · bs.

Two linear functions coincide if and only if all their
coefficients coincide. Thus, for every t and t0, we
have Zt = Zt+t0 , At,s = At+t0,s+t0 , and Bt,s =
Bt+t0,s+t0 .

1.1◦. Let us first use the first equality Zt = Zt+t0 .

For every two values t and t′, we can take t0 = t′ − t,
then t + t0 = t′ hence Zt = Zt′ . Thus, every two
values Zt coincide, so the value Zt does not depend on
t. We will denote this common value by Z.

1.2◦. From At,s = At+t0,s+t0 , by taking t0 = −s, we

conclude that At,s = At−s,0. By denoting At
def
= At,0,

we can describe this as At,s = At−s.

1.3◦. Similarly, we conclude that Bt,s = Bt−s.

Thus, a shift-invariant linear operation has the form

ct = Z +
∑
s≤t

At−s · as +
∑
s≤t

Bt−s · bs.
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2◦. Let us now use commutativity.

Commutativity means that the result of applying this
operation to a and b is the same as the result of apply-
ing it to b and a, i.e., that

Z +
∑
s≤t

At−s · as +
∑
s≤t

Bt−s · bs =

Z +
∑
s≤t

At−s · bs +
∑
s≤t

Bt−s · as.

Here again, the fact that the two linear functions co-
incide means that all their coefficients must coincide,
i.e., that At = Bt for all t. Thus, the above formula for
ct takes the form

ct = Z +
∑
s≤t

At−s · (as + bs).

3◦. Let us now use associativity f(f(a, b), c) =
f(a, f(b, c)).

Associativity means that the two aggregation expres-
sions f(f(a, b), c) and f(a, f(b, c)) coincide.

3.1◦. In the expression f(f(a, b), c), we first combine
sequences a and b into a new sequence d = f(a, b),
and then combine d and c into a new sequence e =
f(d, c). For the t-th component of these two new se-
quences d and e, if we keep track only of the depen-
dence on at, bt, and ct, we get dt = A0 · (at+bt)+ . . .
and thus,

et = A0 · (dt+ct)+ . . . = A2
0 · (at+bt)+A0 ·ct+ . . .

A similar expression for f(a, f(b, c)) takes the form

A2
0 · (bt + ct) +A0 · at + . . .

The fact that the two expression coincide means that
for all possible values at, bt, and ct, we have

A2
0 · (at + bt) +A0 · ct = A2

0 · (bt + ct) +A0 · at.

Since the two linear functions coincide, their coeffi-
cients must coincide, i.e., we must have A0 = A2

0.
Thus, we have A0 = 0 or A0 = 1.

3.2◦. Let us show that in both cases A0 = 0 and A0 =
1, we have A1 = A2 = . . . = 0, i.e., the value ct
depends only on at and bt and does not depend on the
previous values as and bs.

In both cases, we will prove it by contradiction. In-
deed, let us assume that Aj ̸= 0 for some j ≥ 1; let k
denote the smallest index k ≥ 0 for which Ak ̸= 0.

3.2.1◦. When A0 = 0, this means that the aggregation
operation f(a, b) leads to

dt = Z +Ak · (at−k + bt−k) + . . .

and

et = Z +Ak · (dt−k + ct−k) + . . .

Here,

dt−k = Z +Ak · (at−2k + bt−2k) + . . .

Thus, we have

et = Z+Ak ·Z+A2
k ·(at−2k+bt−2k)+Ak ·ct−k+. . .

Similarly, the second expression f(a, f(b, c)) leads to

et = Z+Ak ·Z+A2
k ·(bt−2k+ct−2k)+Ak ·at−k+. . . ,

thus

Z+Ak ·Z+A2
k · (at−2k+ bt−2k)+Ak · ct−k+ . . . =

Z +Ak · Z +A2
k · (bt−2k + ct−2k) +Ak · at−k + . . .

The left-hand side of this equality does not depend on
the value at−k, it only depends on the previous values,
while the right-hand side explicitly depends on at−k:
this term enters with a coefficient Ak ̸= 0.

Thus, the equality is indeed impossible.

3.2.2◦. When A0 = 1, the aggregation operation
f(a, b) leads to

dt = Z + at + bt +Ak · (at−k + bt−k) + . . .

and

et = Z + dt + ck +Ak · (dt−k + ct−k) + . . .
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Here,

dt−k = Z + at−k + bt−k + . . .

Thus, we have

et = Z+(Z+at+bt+Ak ·(at−k+bt−k)+. . .)+ct+

Ak · ((Z + at−k + bt−k + . . .) + ct−k) + . . . =

2Z+at+ bt+ ct+Ak · (2at−k +2bt−k + ct−k)+ . . .

Similarly, the second expression f(a, f(b, c)) leads to

et = 2Z+at+bt+ct+Ak·(2bt−k+2ct−k+at−k)+. . . ,

thus

2Z+at+bt+ct+Ak ·(2at−k+2bt−k+ct−k)+ . . . =

2Z+at+ bt+ ct+Ak · (2bt−k +2ct−k +at−k)+ . . .

Since the two linear functions coincide, all correspond-
ing coefficients must coincide. The left-hand side of
this equality contains at−k with a coefficient 2Ak,
while the right-hand side has this variable with a dif-
ferent coefficient Ak ̸= 2Ak.

Thus, the equality is impossible in this case as well.
The proposition is proven.


