
When Can We Reduce Multi-Variable Range

Estimation Problem to Two Fewer-Variable

Problems?∗

Joe Lorkowski, Olga Kosheleva, Luc Longpré, and Vladik Kreinovich
University of Texas at El Paso, 500 W. University,
El Paso, TX 79968, USA

lorkowski@computer.org,olgak@utep.edu,longpre@utep.edu.vladik@utep.edu

Abstract

Sometimes, a function f of n variables can be represented as a com-
position of two functions of fewer variables. In this case, the problem of
computing the range of f on given intervals can be reduced to two range-
computation problems with fewer variables. In this paper, we describe a
feasible algorithm that checks whether such a reduction is possible – and,
if it is possible, produces the desired reduction.

Keywords: interval computations, range estimation, reduction to simpler prob-
lems, directed graphs

AMS subject classifications: 65G20, 65G40, 05C20

1 Formulation of the Problem

Practical need for range estimation. In many practical situations, we are in-
terested in the value of a physical quantity y that is difficult (or even impossible)
to measure directly. Examples of such quantities are the distance to a faraway
star, the amount of oil in an oil field, etc. To estimate this quantity y, we find
easier-to-measure quantities x1, . . . , xn which are related to y by a known depen-
dence y = f(x1, . . . , xn). Then, we measure xi, and use the measurement results
x̃i to estimate y as ỹ = f(x̃1, . . . , x̃n). Measurements are never absolutely accurate:
the measurement result x̃i is, in general, different from the actual (unknown) value
xi. In many practical situations, the only information about the measurement error

∆xi
def
= x̃i−xi is the upper bound ∆i on its absolute value: |∆xi| ≤ ∆i; see, e.g., [11].

In this case, the only information that we have about the actual (unknown) value xi

is that this value belongs to the interval [xi, xi]
def
= [x̃i −∆i, x̃i +∆i]. Thus, the set of

possible values of y = f(x1, . . . , xn) is equal to

{f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

∗Submitted: November 6, 2014; Revised: June 24, 2015; Accepted: ?.

1

2 Lorkowski et al., Reducing Multi-Variable Range Estimation

This set is known as the range of the function f(x1, . . . , xn) over intervals [xi, xi]. For
a continuous function f(x1, . . . , xn), this range is an interval; this interval is usually
denoted by [y, y]. Computing such a range is one of the main problems of interval
computations; see, e.g., [7, 10].

Range estimation is difficult. It is known [2, 3, 8] that, in general, the prob-
lem of estimating the range is NP-hard. Crudely speaking, this means that, unless
P=NP (which most computer scientists believe to be not possible), every algorithm for
computing the exact range requires, in some cases, computational time which grows
exponentially with the bit length of the formulation of the problem – and for problem
of medium size n ≈ 300, the value of the exponential function such as 2n becomes
larger than the lifetime of the Universe and thus, unfeasible.

When the dependence is rational (or algebraic) and the number of variables is fixed,
the problem becomes feasible (solvable in polynomial time); see, e.g., [8]. However, as
the number of variables increases, the problem is NP-hard.

Sometimes, the range estimation problem can be reduced to two simpler
problems. In some cases, the function f(x1, . . . , xn) can be represented as a compo-
sition of two functions of fewer variables, i.e., has a form

f(x1, . . . , xn) = F (a(x1, . . . , xk), xk+1, . . . , xn) (1)

for some k ≥ 2. In this case, the original problem of computing the range of a
function of n variables can be reduced to two (simpler) problems of computing ranges
of functions with fewer variables:

• first, we compute the range [a, a] = {a(x1, . . . , xk) : xi ∈ [xi, xi]} of a function
of k < n variables;

• then, we compute the range

[y, y] = {F (a, xk+1, . . . , xn) : a ∈ [a, a], xj ∈ [xj , xj]}

of a function of n− k + 1 < n variables.

Comment. It is worth mentioning that in terms of the computation graph, such a
possibility corresponds, in effect, to a partitioning of this graph. We will explicitly
utilize this graph reformulation of our problem in Section 3.

Example. Such a representation is possible, e.g., for single-use expressions, i.e.,
expressions in which each variable occurs only once [5, 7, 9, 10]. The simplest
examples are the sum and product of multiple variables. For example, the sum
f(x1, . . . , xn) = x1 + . . . + xn can be represented as (x1 + x2) + x3 + . . . + xn,
i.e., as F (a(x1, x2), x3, . . . , xn), where a(x1, x2) = x1 + x2 and F (a, x3, . . . , xn) =
a+ x3 + . . .+ xn. For n ≥ 4, the function F (a, x3, . . . , xn) can also be represented in
the same form, as (a+ x3) + x4 + . . .+ xn, etc.

Similarly, the product f(x1, . . . , xn) = x1 · . . . · xn can be represented as

(x1 · x2) · x3 · . . . · xn,

i.e., as F (a(x1, x2), x3, . . . , xn), where a(x1, x2) = x1 ·x2 and F (a, x3, . . . , xn) = a ·x3 ·
. . . · xn. For n ≥ 4, the function F (a, x3, . . . , xn) can also be represented in the same
form, as (a · x3) · x4 · . . . · xn, etc.

Another example of a single-use expression is f(x1, x2, x3) = (x1 +x2) ·x3. In this
case, k = 2, a(x1, x2) = x1 + x2, and F (a, x3) = a · x3.

Reliable Computing XX, 20XX 3

When is such a reduction possible? In some cases, we have an explicit expression
of the above type (1). Sometimes, the expression is different, but the function can
be expressed in this form. For example, the function f(x1, x2, x3) = x1 · x3 + x2 · x3

does not explicitly have the desired form, but it can be transformed into an equivalent
expression f(x1, x2, x3) = (x1 + x2) · x3, for which such a transformation is possible.

It is therefore desirable, given a function f(x1, . . . , xn), to be able to check when
such a simplifying representation is possible – and if it is possible, produce such a
representation. In this paper, we describe a feasible algorithm for such checking.

Comment. In particular, this algorithm can help in estimating the ranges of expression
with duplicated variables, such as f(x1, x2, x3) = x1 ·x3+x2 ·x3, if they can be reduced
to a form that allows a reduction to fewer-variables problems.

2 Case When We Know Which Variables
x1, . . . , xk Enter Only Via Some Combination
a(x1, . . . , xk)

Description of the case. Let us start with a simple case, when we know which vari-
ables x1, . . . , xk affect the value f(x1, . . . , xn) only via some combination a(x1, . . . , xk).

Main assumptions. Our first assumption is that all three functions f(x1, . . . , xn),
a(x1, . . . , xk) and F (a, xk+1, . . . , xn) are differentiable, and that for each algorithmi-
cally given function, we can compute all its partial derivatives in feasible time. This
assumption is in line with the existence of many feasible algorithms for automatic
differentiation; see, e.g., [4].

Our second assumption is that, given two algorithmic functions f(x1, . . . , xn) and
g(x1, . . . , xn), we can feasibly check whether the corresponding functions always pro-
duce the same results, i.e., whether it is true that

∀x1 . . . ∀xn (f(x1, . . . , xn) = g(x1, . . . , xn)).

This assumption is not true in the most general case, since, in general, the problem
of checking whether the two functions always produce the same results is equivalent
to the non-decidable “Is this expression always equal to zero” problem; see, e.g., [8].

In many cases, however, this assumption is, for all practical purposes, satisfied.
For example, for analytical functions, we can simply check whether their values are
equal to a randomly generated tuple (ξ1, . . . , ξn). If f(ξ1, . . . , ξn) ̸= g(ξ1, . . . , ξn), then,
of course, the functions f(x1, . . . , xn) and g(x1, . . . , xn) are different.

Vice versa, if the functions are different, then the set of all the tuples (x1, . . . , xn)
for which the difference is equal to 0 (i.e., for which f(x1, . . . , xn)− g(x1, . . . , xn) = 0)
is small – it is of lower dimension than n. Thus, the probability that a random tuple
will land in this set is 0 – or, if we take into account that we perform computations
with finite accuracy, very small. Moreover, this probability can be made as small
as possible by repeatedly generating random tuples and checking whether the two
given functions attain the same value on all these tuples. Thus, if f(ξ1, . . . , ξn) =
g(ξ1, . . . , ξn), then with probability close to 1, we can conclude that the values of the
functions f(x1, . . . , xn) and g(x1, . . . , xn) are equal for all the tuples (x1, . . . , xn).

In our algorithm, we will count each call to one of these auxiliary algorithms – of
differentiation or of checking function equality – as one step.

4 Lorkowski et al., Reducing Multi-Variable Range Estimation

Analysis of the problem. Let us first show how, based only on the knowledge that
the function f(x1, . . . , xn) can be represented in the form (1), we can actually extract
the corresponding functions a(x1, . . . , xk) and F (a, xk+1, . . . , xn).

The selection of a and F is not unique: instead of the original function
a(x1, . . . , xk), we can use a function a′ = g(a(x1, . . . , xk)) for some invertible g(x);
then,

f(x1, . . . , xn) = F ′(a′(x1, . . . , xk), xk+1, . . . , xn),

where
F ′(a, xk+1, . . . , xn)

def
= F (g−1(a), xk+1, . . . , xn)

and g−1(y) denotes an inverse function, for which x = g−1(y) if and only if y = g(x).
Let us therefore fix a combination of values vk+1, . . . , vn. Then, the

value f(x1, . . . , xk, vk+1, . . . , vn) depends only on a(x1, . . . , xk) and can therefore
serve as an alternative function a′(x1, . . . , xk). To find the appropriate func-
tion F ′(a, xk+1, . . . , xn), we pick some values v2, . . . , vk, then find x′

1 for which
a′(x′

1, v2, . . . , vk) = a′(x1, x2, . . . , xk), i.e., for which

f(x′
1, v2, . . . , vk, vk+1, . . . , vn) = a′ = f(x1, . . . , xk, vk+1, . . . , vn).

Since the dependence of f on x1, . . . , xk is only through the combination

a′(x1, . . . , xk) = f(x1, . . . , xk, vk+1, . . . , vn),

and we have
a′(x′

1, v2, . . . , vk) = a′(x1, x2, . . . , xk),

we can therefore conclude that

f(x1, . . . , xk, xk+1, . . . , xn) = f(x′
1, v2, . . . , vk, xk+1, . . . , xn).

In other words, here

F (a, xk+1, . . . , xn) = f(x′
1(a

′), v2, . . . , vk, xk+1, . . . , xn),

where x′
1(a) is the value for which f(x′

1, v2, . . . , vk, vk+1, . . . , vn) = a′.
Due to this possibility, it is sufficient to be able to check whether such a represen-

tation is possible – since if it is possible, the above text describes the corresponding
functions F and a.

To check whether such a representation is possible, let us differentiate the function
f . Due to the chain rule, for each i from 1 to k, the i-th partial derivative of the
function f(x1, . . . , xn) has the form

∂f

∂xi
=

∂F

∂a
(a, xk+1, . . . , xn) ·

∂a

∂xi
(x1, . . . , xk).

Thus, for i0 = 1 and for every index i ≤ k, the ratio

ri
def
=

∂f

∂xi

∂f

∂xi0

(2)

is equal to

ri =

∂f

∂xi

∂f

∂xi0

=

∂a

∂xi
(x1, . . . , xk)

∂a

∂xi0

(x1, . . . , xk)
.

Reliable Computing XX, 20XX 5

Therefore, the ratio ri depends only on the variables x1, . . . , xk: ri = ri(x1, . . . , xk).
Hence, for every j > k, we have d(i, i0, j) = 0, where

d(i, i0, j)
def
=

∂

∂xj


∂f

∂xi

∂f

∂xi0

 . (3)

Let us show that, vice versa, if the condition d(i, i0, j) = 0 is satisfied for all i ≤ k
and all j > k, then the function f(x1, . . . , xn) can be represented (at least locally) in
the desired form (1). Indeed, let us assume that d(i, i0, j) = 0 for all i ≤ k and for all
j > k. Let us show that then, the value of f(x1, . . . , xk, xk+1, . . . , xn) depends only on

a(x1, . . . , xk) = f(x1, . . . , xk, vk+1, . . . , vn),

i.e., that if

f(x1, . . . , xk, vk+1, . . . , vn) = f(x′
1, . . . , x

′
k, vk+1, . . . , vn),

then
f(x1, . . . , xk, xk+1, . . . , xn) = f(x′

1, . . . , x
′
k, xk+1, . . . , xn).

Indeed, locally, all pairs of tuples (x1, . . . , xk) and (x′
1, . . . , x

′
k) with the same value of

a(x1, . . . , xk) can be connected by a smooth path (x1(t), . . . , xk(t)) of such tuples, i.e.,
tuples for which

a(x1(t), . . . , xk(t)) = f(x1(t), . . . , xk(t), vk+1, . . . , vn) = const. (4)

Differentiating the formula (4) by t, we conclude that

k∑
i=1

∂f

∂xi
(x1(t), . . . , xk(t), vk+1, . . . , vn) ·

dxi

dt
= 0. (5)

Due to the condition d(i, i0, j) = 0, where d(i, i0, j) is defined by the formula (3),
the ratio (2) does not depend on any of the variables, thus, this ratio only depends on
the variables x1, . . . , xk: ri = ri(x1, . . . , xk). So, for every i from 1 to k, we have

∂f

∂xi
(x1(t), . . . , xk(t), xk+1, . . . , xn) =

∂f

∂x1
(x1(t), . . . , xk(t), xk+1, . . . , xn) · ri(x1, . . . , xk).

Substituting this expression for partial derivative into the formula (5), we conclude
that

k∑
i=1

∂f

∂x1
(x1(t), . . . , xk(t), vk+1, . . . , vn) · ai(x1 . . . , xk) ·

dxi

dt
= 0.

Dividing both sides of this equality by
∂f

∂x1
(x1(t), . . . , xk(t), vk+1, . . . , vn) and multi-

plying both sides by
∂f

∂x1
(x1(t), . . . , xk(t), xk+1, . . . , xn), we conclude that

k∑
i=1

∂f

∂x1
(x1(t), . . . , xk(t), xk+1, . . . , xn) · ai(x1 . . . , xk) ·

dxi

dt
= 0,

6 Lorkowski et al., Reducing Multi-Variable Range Estimation

hence
k∑

i=1

∂f

∂xi
(x1(t), . . . , xk(t), xk+1, . . . , xn) ·

dxi

dt
= 0.

The left-hand side of this formula is the derivative of the expression
f(x1(t), . . . , xk(t), xk+1, . . . , xn) with respect to the parameter t. Since the deriva-
tive of this expression with respect to t is equal to 0, this expression does not depend
on t, and thus, we have

f(x1, . . . , xk, xk+1, . . . , xn) = f(x′
1, . . . , x

′
k, xk+1, . . . , xn).

So, if a(x1, . . . , xk) = a(x′
1, . . . , x

′
k), then

f(x1, . . . , xk, xk+1, . . . , xn) = f(x′
1, . . . , x

′
k, xk+1, . . . , xn),

i.e., the value of f depends only on the combination a(x1, . . . , xk). The statement is
proven.

Resulting algorithm. We consider the situation when we know which variables
x1, . . . , xk should be joined together, we are just checking whether the representation
(1) is possible – and if it is possible, generating the corresponding functions a and F .

For that, we check, for i0 = 1, whether d(i, i0, j) = 0 for all 1 < i ≤ k and all
j > k, where d(i, i0, j) is determined by the formula (2). If this equality holds for all
such i and j, then the representation (1) is possible, otherwise such a representation
is not possible.

If the representation is possible, then we find the corresponding functions
a(x1, . . . , xk) and F (a, xk+1, . . . , xn) as follows:

• we fix some values v2, . . . , vn;

• we take a(x1, . . . , xk)
def
= f(x1, . . . , xk, vk+1, . . . , vn), and

• we take F (a, xk+1, . . . , xn)
def
= f(x1(a), v2, . . . , vk, xk+1, . . . , xn), where x1(a) is

the value for which f(x1, v2, . . . , vk, vk+1, . . . , vn) = a.

Computational complexity of this algorithm. Checking each condition
d(i, i0, j) = 0 requires three differentiations, one division, and one call to an auxil-
iary algorithm for checking the equality of two functions – overall, a constant number
of steps. We need to check this condition for all pairs (i, j). The total number of such
pairs does not exceed O(n2). For each pair, we need a constant number of steps, so
the overall complexity of this algorithm is O(n2).

Example. Let us illustrate this algorithm on the above example of the function
f(x1, x2, x3) = x1 · x3 + x2 · x3, for which we know that the variables x1 and x2 go

together (i.e., k = 2). In this example,
∂f

∂x1
= x3 and

∂f

∂x2
= x3, so the ratio (2) is

equal to 1. Thus, the derivative d(1, 2, 3) of this ratio with respect to x3 is equal to 0.
The equality condition is satisfied, which means that the desired representation is

possible. The above algorithm explains how to generate the corresponding functions
a(x1, x2) and F (a, x3). for example, if we take v2 = v3 = 1, then we get a(x1, x2) =
f(x1, x2, 1) = x1 · 1 + x2 · 1 = x1 + x2.

Here, F (a, x3) = f(x1(a), 1, x3), where a(x1) is the value for which f(x1, 1, 1) =
x1 + 1 = a, i.e., x1(a) = a− 1. Thus,

F (a, x3) = f(a− 1, 1, x3) = (a− 1) · x3 + 1 · x3.

Reliable Computing XX, 20XX 7

One can check that this expression is indeed equal to a · x3.

Comment. If we select different values vi, we get different expressions for a(x1, x1) and
F (a, x3). For example, for v2 = v3 = 2, we get a(x1, x2) = 2x1 + 2x2 and F (a, x3) =
1

2
· a · x3.

3 General Case

Analysis of the problem. In the previous section, we considered the case when we
know which variables should be jointly considered, we just want to confirm our guess
and to generate the corresponding functions a(x1, . . . , xk) and F (a, xk+1, . . . , xn). In
practice, we do not know which of n variables can be combined. In principle, it is
possible to try all possible subsets of the set of all n variables, but there are 2n such
subsets, and testing them all would requires unfeasible exponential time. It is therefore
necessary to come up with a feasible algorithm for finding such variables.

Such a feasible algorithm is presented in this section.

Let us assume that there are some variables xi1 , . . . , xik for which the function
f(x1, . . . , xn) depends only on some combination a(xi1 , . . . , xik). In other words, we
assume that if a(x′

i1 , . . . , x
′
ik
) = a(xi1 , . . . , xik) and x′

j = xj for all other indices j,
then f(x1, . . . , xn) = f(x′

1, . . . , x
′
n).

If we pick one of the indices i0 from the list, then what we need is to find a subset
I = {i1, . . . , ik} such that d(i, i0, j) = 0 for all i ∈ I − {i0} and for all j ̸∈ I. To check
the existence of such a set, let us build a directed graph G in which vertices are indices
1, . . . , n except for i0, and there is an edge from i to j if d(i, i0, j) ̸= 0.

To formulate our result, we need to recall some notions related to directed graphs;
see, e.g., [1]. By a path from a vertex a to a vertex b, we mean a sequence a vertices
a = a0, a1, . . . , ap = b for which, for every i, there is an edge from ai to ai+1.
We say that two vertices a and b in a directed graph are called strongly connected
if there is a path from a to b and there is also a path from b to a. One can easily
check that strong connectedness is an equivalence relation, so it divides the graph into
equivalence classes. These classes are known as strongly connected components. There
exist algorithms that find the strongly connected components in linear time O(n) [1].

Our auxiliary result is that the desired set I exists if and only if there is more than
one strongly connected component.

Indeed, if a set I exists, then there is no edge going from I to its complement J .
So, if a path starts in the set I, this path cannot reach into J , and thus, vertices from
I cannot belong to the same strongly connected component as vertices from the set J .

Vice versa, if there is more than one component, then the relation “there is a path
from a vertex in C to a vertex in C′” provides a partial order on the set of these
components. There is thus at least one component C which is maximal in this order,
i.e., from which no edge is going out. Let us show that this component C satisfies
the property of the desired set I. Indeed, since no edge is going from i ∈ C to other
elements j ̸∈ C, we have d(i, i0, j) = 0 for all i ∈ C and j ̸∈ C, which is exactly what
we wanted.

Resulting algorithm. First, we compute the values d(i, i0, j) for all i, i0, and j.
Then, for each of n possible indices i0 = 1, . . . , n:

• we form a graph G whose vertices are indices 1, . . . , n, and in which there is an
edge from i to j if d(i, i0, j) ̸= 0;

8 Lorkowski et al., Reducing Multi-Variable Range Estimation

• then, we apply the known algorithm to find strongly connected components of
this graph.

We stop either when when we exhaust all n indices and all the graphs are strongly
connected – in this case, a representation (1) is not possible, or when we find an index i0
for which the corresponding graph has more than one strongly connected components.
Once we find such i0, then out of the corresponding components we select one which
does not have any edges going out. We then take the union of this component and the
index i0 as the set I = {i1, . . . , ik}.

Let j1, . . . , jn−k describe all the indices which do not belong to the set I. Then, we
find the corresponding functions a(xi1 , . . . , xik) and F (a, xj1 , . . . , xjn−k) as follows:

• we select some values v1, . . . , vn;

• we take a(xi1 , . . . , xik)
def
= f(xi1 , . . . , xik , vj1 , . . . , vjn−k), and

• we take F (a, xj1 , . . . , xjn−k)
def
= f(xi1(a), vi2 , . . . , vik , xj1 , . . . , xjn−k), where

xi1(a) is the value for which f(xi1 , vi1 , . . . , vik , vj1 , . . . , vjn−k) = a.

Comment. Our use of graphs to describe dependencies is similar to the use of graph
coloring to help compute sparse Jacobian and Hessian matrices by using finite differ-
ences or automatic differentiation; see, e.g., [6].

Computational complexity of this algorithm. Checking each condition
d(i, i0, j) = 0 requires a constant number of steps. We need to check this condi-
tion for all triples (i, i0, j). The total number of such pairs does not exceed O(n3).
For each triple, we need a constant number of steps, so the overall complexity of this
part of the algorithm is O(n3).

After that, we need n times to apply a linear time (O(n)) algorithm for computing
strongly connected components. The overall complexity of this part is n·O(n) = O(n2).
Thus, the overall complexity of our algorithm is O(n3) +O(n2) = O(n3).

Comment. By definition, an algorithm is called feasible if its computation time on
all inputs is bounded by some polynomial of the length of the input. According to
this definition, any O(n3)-time algorithm is feasible. Thus, we indeed have a feasi-
ble algorithm for finding appropriate variables, and for generating the corresponding
functions a(x1, . . . , xk) and F (a, xk+1, . . . , xn). In other words, we have a feasible al-
gorithm for deciding when we can reduce a multi-variable range estimation problem
to two fewer-variable problems.

Example. Let us consider the example similar to the one we had before, with

f(x1, x2, x3) = x1 · x2 + x1 · x3. In this example,
∂f

∂x1
= x2 + x3,

∂f

∂x2
= x1, and

∂f

∂x3
= x1.

We start with i0 = 1. In this case, we have d(2, 1, 3) ̸= 0 and d(3, 1, 2) ̸= 0, so we
have a graph with vertices 2 and 3 for which there is an edge from 2 to 3 and an edge
from 3 to 2. This graphs is clearly strongly connected.

Next, we take i0 = 2. In this case, we have d(1, 2, 3) ̸= 0 and d(3, 2, 1) = 0. Thus,
we have a graph with vertices 1 and 3, there is an edge from 1 to 3, but there is no
edge from 3 to 1. This graph has two strongly connected components: {1} and {3}.
Out of these components, the component {1}, has an edge going out. The component
C = {3} has no edge going out, so we take I = C ∪ {2} = {2, 3}.

What follows is similar to the example from the previous section: by selecting
vi = 1, we find a(x2, x3) = x2 + x3, and F (a, x1) = a · x1.

Reliable Computing XX, 20XX 9

4 Future Work

Towards a software implementation of the above algorithm. At present, we
only have an algorithm. Our examples indicate that it is desirable to incorporate this
algorithm – or, if possible, its improved version – into interval computations software.
As a start, it may be desirable to first produce a separate implementation of this
algorithm, as a pre-processing tool for transforming a multi-variable range estimation
problem to two or more fewer-variables problems (whenever such a transformation is
possible).

Once such a software implementation is in place, it is necessary to test it (and thus,
to test our algorithm) on problems which are more sophisticated (and more realistic)
than our simple examples.

Towards more efficient algorithms. In this paper, we gauge every node in the
corresponding computational graph only from the viewpoint of how many input vari-
able it takes. It is desirable to also take into account what function is computed on
each of these nodes. For some practical problems, many nodes of the computational
graph represent monotonic or convex functions, which admit tight bounds with modest
effort. It is desirable to take this information into account, to make the corresponding
reduction to fewer-variables problems more efficient.

This information will hopefully be useful, since experience has shown that often,
even modest effort at tightening bounds of sub-expression yields impactful improve-
ments in bounds higher in the expression tree1.
Acknowledgments. This work was supported in part by the National Science Foun-
dation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence)
and DUE-0926721.

The authors are greatly thankful to the anonymous referees for valuable sugges-
tions.

References

[1] Cormen, Th.H., Leiserson, C.E., Rivest, R.L., and Stein, C.: Introduction to
Algorithms, MIT Press, Cambridge, MA, 2009.

[2] Gaganov, A.A.: Computational complexity of the range of the polynomial in sev-
eral variables, Leningrad University, Math. Department, M.S. Thesis, 1981 (in
Russian).

[3] Gaganov, A.A.: Computational complexity of the range of the polynomial in sev-
eral variables, Cybernetics, pp. 418–421, 1985.

[4] Griewank, A., and Walther, A.: Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, SIMA, Philadelphia, Pennsylvania, 2008.

[5] Hansen, E.: Sharpness in interval computations, Reliable Computing 3, pp. 7–29,
1997.

[6] Gebremedhin, A.H., Manne, F., and Pothen, A.: What color is your Jacobian?
Graph coloring for computing derivatives, SIAM Review 47(4), pp. 629–705, 2005.

[7] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis,
Springer Verlag, London, 2001.

1We are thankful to the anonymous referee for these useful suggestions.

10 Lorkowski et al., Reducing Multi-Variable Range Estimation

[8] Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P.: Computational Complexity
and Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht,
1998.

[9] Lorkowski, J.: From single to double use expressions, with applications to para-
metric interval linear systems: on computational complexity of fuzzy and interval
computations, Proceedings of the 30th Annual Conference of the North Ameri-
can Fuzzy Information Processing Society NAFIPS’2011, El Paso, Texas, March
18–20, 2011.

[10] Moore, R.E., Kearfott, R.B., and Cloud, M.J.: Introduction to Interval Analy-
sis. SIAM Press, Philadelphia, Pennsylviania, 2009.

[11] Rabinovich, S.G.: Measurement Errors and Uncertainty: Theory and Practice,
Springer Verlag, Berlin, 2005.

