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Abstract

One of the main problems of interval computation is computing the
range of a given function f(x1, . . . , xn) on a given box [x1, x1] × . . . ×
[xn, xn]. In general, computing the exact range is computationally diffi-
cult (NP-hard) problem, but there are important cases when a feasible
algorithm for computing such a function is possible. One of such cases is
the case of singe-use expressions (SUE), when each variable occurs only
once. Because of this, practitioners often try to come up with an equiv-
alent SUE expression for computing a given function. It is therefore im-
portant to know when an expression can be transformed into a SUE form.
In this paper, we consider the case of functions that can be computed by
using only arithmetic operations (+, −, multiplication, and division). We
show that when such a function is equivalent to a SUE, then it is equal to
a ratio of two multi-linear functions (although, of course, not every such
ratio can be transformed into a SUE expression). Thus, if a function can-
not be represented as such a ratio, then we should not waste our efforts
on finding an equivalent SUE form.

1 Introduction

Importance of SUE expressions. One of the main problems of interval
computations is computing the range of a given function f(x1, . . . , xn) when
we know the range [xi, xi] of possible values of each variable xi. In general,
computing such a range is NP-hard [1, 2, 5], but there is a case when this range
can be feasibly computed: the case of single use expressions (SUE), when each
variable occurs only once [3, 4, 6].
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In this case, the straightforward interval computation technique works per-
fectly: if we represent the computation of f as a sequence of elementary arith-
metic operations and replace each operation by the corresponding interval op-
eration, we get the exact range.

Often, the original expression of a function is not SUE, but this function
can be represented in an equivalent SUE form: for example, the expression

f(x1, x2) =
x1

x1 + x2
is not SUE, but (at least for x1 ̸= 0) it is equivalent to a

SUE expression f(x1, x2) =
1

1 +
x2

x1

.

Since transformation into an equivalent SUE form helps compute the range
of a function, it is important to analyze which functions can be transformed
into an equivalent SUE form.

What we do in this paper. In this paper, we consider functions which can be
computed by a finite sequence of arithmetic operations (+, −, multiplication,
and division). We prove that if a function of this type can be transformed
into an equivalent SUE form, then this function is a ratio of two multi-linear
functions (although not all such ratios can be transformed into an equivalent
SUE form).

2 Definitions and Results

Definition 1. Let n be an integer; we will call this integer a number of inputs.

• By an arithmetic expression, we mean a sequence of formulas of the type
s1 := u1 ⊙1 v1, s2 := u2 ⊙2 v2, . . . , sN := uN ⊙N vN , where:

– each ui or vi is either a rational number, or one of the inputs xj, or
one of the previous values sk, k < i;

– each ⊙i is either addition +, or subtraction −, or multiplication ·,
or division /.

• By the value of the expression for given inputs x1, . . . , xn, we mean the
value sN that we get after we perform all N arithmetic operations si :=
ui ⊙i vi.

Definition 2. An arithmetic expression is called a single use expression (or
SUE, for short), if each variable xj and each term sk appear at most once in
the right-hand side of the rules si := ui ⊙i vi.

Example. An expression 1/(1 + x2/x1) corresponds to the following sequence
of rules:

s1 := x2/x1; s2 := 1 + s1; s3 = 1/s2.

One can see that in this case, each xj and each sk appears at most once in the
right-hand side of the rules.
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Definition 3. We say that a function f(x1, . . . , xn) can be computed by an
arithmetic SUE expression if there exists an arithmetic SUE expression whose
value, for each tuple (x1, . . . , xn), is equal to f(x1, . . . , xn).

Example. The function f(x1, x2) =
x1

x1 + x2
is not itself SUE, but it can be

computed by the above SUE expression 1/(1 + x2/x1).

Definition 4. A function f(x1, . . . , xn) is called multi-linear if it is a linear
function of each variable.

Comment. For n = 2, a general bilinear function has the form

f(x1, x2) = a0 + a1 · x1 + a2 · x2 + a12 · x1 · x2.

A general multi-linear function has the form f(x1, . . . , xn) =
∑

I⊆{1,...,n}
aI ·

∏
i∈I

xi.

Main Result. If a function can be computed by an arithmetic SUE expression,
then this function is equal to a ratio of two multi-linear functions.

Auxiliary Result. Not every multi-linear function can be computed by an
arithmetic SUE expression.

Comment. As we will see from the proof, this auxiliary result remains valid
if, in our definition of a SUE expression, in addition to elementary arithmetic
operations, we also allow additional differential unary and binary operations
(e.g., computing values of special functions of one or two variables).

3 Proofs

Proof of the Main Result. The main result means, in effect, that for each
arithmetic SUE expression, the corresponding function f(x1, . . . , xn) is equal to
a ratio of two multi-linear functions. We will prove this result by induction: we
will start with n = 1, and then we will use induction to prove this result for a
general n.

1◦. Let us start with the case n = 1. Let us prove that for arithmetic SUE
expressions of one variable, in each rule si := ui ⊙i vi, at least one of ui and vi
is a constant.

Indeed, it is known that an expression for si can be naturally represented as
a tree: we start with si as a root, and add two branches leading to ui and vi. If
ui or vi is an input, we stop branching, so the input will be a leaf of the tree. If
ui or vi is an auxiliary quantity sk, quantity that come from the corresponding
rule sk := uk ⊙k vk, then we add two branches leading to uk and vk, etc. Since
each xj or si can occur only once in the right-hand side, this means that all
nodes of this tree are different. In particular, this means that there is only one
node xj . This node is either in the branch ui or in the branch vi. In both case,
one of the terms ui and vi does not depend on xj and is, thus, a constant.
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Let us show, by (secondary) induction, that all arithmetic SUE expressions

with one input are fractionally linear, i.e., have the form f(x1) =
a · x1 + b

c · x1 + d
,

with rational values a, b, c, and d. Indeed:

• the variable x1 and a constant are of this form, and

• one can easily show that as a result of an arithmetic operation between a
fractional-linear function f(x1) and a constant r, we also get an expression
of this form, i.e., f(x1) + r, f(x1) − r, r − f(x1), r · f(x1), r/f(x1), and
f(x1)/r are also fractionally linear.

Comment. It is worth mentioning that, vice versa, each fractionally linear func-

tion f(x1) =
a · x1 + b

c · x1 + d
can be computed by an arithmetic SUE expression.

Indeed, if c = 0, then f(x1) is a linear function f(x1) =
a

d
·x1 +

b

d
, and is, thus,

clearly SUE.
When c ̸= 0, then this function can be represented in the following equivalent

SUE form: f(x1) =
a

c
+

b− a · d
c

c · x1 + d
.

2◦. Let us now assume that we already proved his result for n = k, and we
want to prove it for functions of n = k + 1 variables. Since this function can
be computed by an arithmetic SUE expression, we can find the first stage on
which the intermediate result depends on all n variables. This means that this
result comes from applying an arithmetic operation to two previous results both
of which depended on fewer than n variables. Each of the two previous results
thus depends on < k+1 variables, i.e., on ≤ k variables. Hence, we can conclude
that each of these two previous results is a ratio of two multi-linear functions.

Since this is SUE, there two previous results depend on non-intersecting sets
of variables. Without losing generality, let x1, . . . , xf be the variables used in
the first of these previous result, and xf+1, . . . , xn are the variables used in the
second of these two previous results. Then the two previous results have the form
N1(x1 . . . , xf )

D1(x1, . . . , xf )
and

N2(xf+1 . . . , xn)

D2(xf+1, . . . , xn)
, where Ni and Di are bilinear functions.

For all four arithmetic operations, we can see that the result of applying this
operation is also a ratio of two multi-linear functions:

N1(x1 . . . , xf )

D1(x1, . . . , xf )
+

N2(xf+1 . . . , xn)

D2(xf+1, . . . , xn)
=

N1(x1 . . . , xf ) ·D2(xf+1, . . . , xn) +D1(x1 . . . , xf ) ·N2(xf+1, . . . , xn)

D1(x1 . . . , xf ) ·D2(xf+1, . . . , xn)
;

N1(x1 . . . , xf )

D1(x1, . . . , xf )
− N2(xf+1 . . . , xn)

D2(xf+1, . . . , xn)
=
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N1(x1 . . . , xf ) ·D2(xf+1, . . . , xn)−D1(x1 . . . , xf ) ·N2(xf+1, . . . , xn)

D1(x1 . . . , xf ) ·D2(xf+1, . . . , xn)
;

N1(x1 . . . , xf )

D1(x1, . . . , xf )
· N2(xf+1 . . . , xn)

D2(xf+1, . . . , xn)
=

N1(x1 . . . , xf ) ·N2(xf+1, . . . , xn)

D1(x1 . . . , xf ) ·D2(xf+1, . . . , xn)
;(

N1(x1 . . . , xf )

D1(x1, . . . , xf )

)
:

(
N2(xf+1 . . . , xn)

D2(xf+1, . . . , xn)

)
=

N1(x1 . . . , xf ) ·D2(xf+1, . . . , xn)

D1(x1 . . . , xf ) ·N2(xf+1, . . . , xn)
.

After that, we perform arithmetic operations between a previous result and a
constant – since neither of the n variables can be used again.

Similar to Part 1 of this proof, we can show that the result of an arithmetic
operation between a ratio f(x1, x2, . . . , xn) of two multi-linear functions and a
constant r, we also get a similar ratio.

The proposition is proven.

Proof of the auxiliary result. Let us prove, by contradiction, that a bilinear
function f(x1, x2, x3) = x1 · x2 + x2 · x3 + x2 · x3 cannot be computed by a SUE
expression. Indeed, suppose that there is a SUE expression that computes this
function. By definition of SUE, this means that first, we combine the values of
two of these variables, and then we combine the result of this combination with
the third of the variables. Without losing generality, we can assume that first we
combine x1 and x2, and then add x3 to this combination, i.e., that our function
has the form f(x1, x2, x3) = F (a(x1, x2), x3) for some functions a(x1, x2) and
F (a, x3).

The function obtained on each intermediate step is a composition of elemen-
tary (arithmetic) operations. These elementary operations are differentiable,
and thus, their compositions a(x1, x2) and F (a, x3) are also differentiable. Dif-
ferentiating the above expression for f in terms of F and a by x1 and x2, we
conclude that

∂f

∂x1
=

∂F

∂a
(a(x1, x2), x3) ·

∂a

∂x1
(x1, x2)

and
∂f

∂x2
=

∂F

∂a
(a(x1, x2), x3) ·

∂a

∂x2
(x1, x2).

Dividing the first of these equalities by the second one, we see that the terms
∂F

∂a
cancel each other. Thus, the ratio of the two derivatives of f is equal to

the ratio of two derivatives of a and therefore, depends only on x1 and x2:

∂f

∂x1

∂f

∂x2

=

∂a

∂x1
(x1, x2)

∂a

∂x1
(x1, x2)

.

However, for the above function f(x1, x2, x3), we have
∂f

∂x1
= x2 + x3 and

∂f

∂x2
= x1 + x3. The ratio

x2 + x3

x1 + x3
of these derivatives clearly depends on x3 as
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well – and we showed that in the SUE case, this ratio should only depend on
x1 and x2. The contradiction proves that this function cannot be computed by
a SUE expression. The proposition is proven.
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