Once We Know that a Polynomial Mapping Is Rectifiable, We Can Algorithmically Find a Rectification

Julio Urenda^{1,2}, David Finston¹, and Vladik Kreinovich³

¹Department of Mathematical Sciences

New Mexico State University, Las Cruces, NM 88003, USA

jcurenda@utep.edu, dfinston@nmsu.edu

²Department of Mathematical Sciences

³Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA, vladik@utep.edu

Problem. It is known that some polynomial mappings $\varphi : \mathbb{C}^k \to \mathbb{C}^n$ are rectifiable in the sense that there exists a polynomial mapping $\alpha : \mathbb{C}^n \to \mathbb{C}^n$ whose inverse is also polynomial and for which $\alpha(\varphi(z_1,\ldots,z_k))=(z_1,\ldots,z_k,0,\ldots,0)$ for all z_1,\ldots,z_k . In many cases, the existence of such a rectification is proven indirectly, without an explicit construction of the mapping α .

Our first result. In this talk, we use Tarski-Seidenberg algorithm (for deciding the first order theory of real numbers) to design an algorithm that:

- given a polynomial mapping $\varphi: \mathbb{C}^k \to \mathbb{C}^n$ which is known to be rectifiable,
- returns a polynomial mapping $\alpha: \mathbb{C}^n \to \mathbb{C}^n$ that rectifies φ .

Our second result. The above general algorithm is not practical for large n, since its computation time grows faster than 2^{2^n} . To make computations more practically useful, for several important case, we have also designed a much faster alternative algorithm.