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Abstract

Applications of interval computations usually assume that while we
only know an interval containing the actual (unknown) value of a physical
quantity, there is the exact value of this quantity, and that in principle, we
can get more and more accurate estimates of this value. Physicists know,
however, that, due to uncertainty principle, there are limitations on how
accurately we can measure the values of physical quantities. One of the
important principles of modern physics is operationalism – that a physical
theory should only use observable properties. This principle is behind
most successes of the 20th century physics, starting with relativity theory
(vs. un-observable aether) and quantum mechanics. From this viewpoint,
it is desirable to avoid using un-measurable exact values and to modify the
mathematical formalisms behind physical theories so that they explicitly
only take objective uncertainty into account. In this paper, we describe
how this can be done for objective interval uncertainty.

1 Formulation of the Problem

Is interval uncertainty subjective? Applications of interval computations
usually assume that while we only know an interval [x, x] containing the actual
(unknown) value of a physical quantity x, there is the exact value x of this
quantity, and that in principle, we can get more and more accurate estimates
of this value.

This assumption is in line with the usual formulations of physical theories –
as partial differential equations relating exact values of different physical quan-
tities, fields, etc., at different space-time locations and moments of time; see,
e.g., [2].

Physicists know, however, that, due to uncertainty principle, there are limi-
tations on how accurately we can measure the values of physical quantities [2, 8].

It is desirable to take objective uncertainty into account. One of the
important principles of modern physics is operationalism – that a physical theory

1



should only use observable properties. This principle is behind most successes
of the 20th century physics, starting with relativity theory (vs. un-observable
aether) and quantum mechanics. From this viewpoint, it is desirable to avoid
using un-measurable exact values and to modify the mathematical formalisms
behind physical theories so that they explicitly only take objective uncertainty
into account.

Objective uncertainty is about probabilities. According to quantum
physics, we can only predict probabilities of different events. Thus, uncertainty
means that instead of exact values of these probabilities, we can only determine
intervals; see, e.g., [3, 4].

Formulation of the problem. So, what is the observational meaning of
interval-valued probabilities?

2 Analysis of the Problem

What is the observational meaning of probability? Probability refers
to repeated events: we repeat the same experiment (or perform many similar
observations) and record the results as a binary sequence ω1ω2 . . . For example,
when we talk about the probability of a coin falling heads, we means that we
repeatedly flip the coin and record the resulting sequence: for example, we can
take ωi = 1 if the coin falls heads in the i-th experiment, and ωi = 0 if this coin
falls tails.

In there terms, the fact that the probability of heads is 1/2 means that in
the limit, when n → ∞, the ratio of 1s in a sequence ω1 . . . ωn tends to 1/2.
However, this is only the part of this meaning: for example, for a sequence
0101. . . , the ratio tends to 1/2, but we would not call it a random sequence
corresponding to probability 1/2.

From the practical viewpoint, when we say that a sequence ω1ω2 . . . is ran-
dom, we assume that this sequence satisfies all the probability laws (such as the
law of large numbers or the Central Limit Theorem); these probability laws is
what practitioners use to check whether the sequence is random.

From this viewpoint, if a sequence satisfies all probability laws, then for all
practical purposes we can consider it random. Thus, we can formally define
a sequence to be random if it satisfies all probability laws. In precise terms,
a probability law is a property ℓ which is true with probability 1: P (ℓ) = 1.
So, a sequence is random if it satisfies all the properties which are true with
probability 1.

Properties are in 1-1 correspondence with sets – to each property, we can
assign the set of all the sequences that satisfy this property and, vice versa,
to every set, we can assign a property of belonging to this set. When we talk
about probability laws, we mean only properties which can be described by
finitely many symbols from a certain formal language; the corresponding sets
are known as definable sets. Thus, we can say that a sequence is random if it
belongs to all decidable sets of probability measure 1.
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A sequence belongs to a set of measure 1 if and only if it does not belong
to its complement C = −S with P (C) = 0. So, we can equivalently say that a
sequence is random if it does not belong to any definable set of measure 0. This
is, in effect, Kolmogorov-Martin-Löf’s (KML) definition of a random sequence;
see, e.g., [7].

Each definable set is determined by a finite sequence of symbols. There
are no more than countably many finite sequences of symbols, thus, there are
countably many definable sets. So, the union of all such sets has measure 0.
Therefore, almost all sequences are KML-random.

Probability interval: what is its observational meaning? We have re-
called what is an observational meaning of an exact probability p. What is
the observational meaning of a probability interval, when instead of a single
probability measure we have several possible probability measures?

This is not an easy question: in [1, 6], we have shown that in seemingly
reasonable formalizations, every random sequence is actually random relative to
one of the possible probability measures. In such a formalization, every random
sequence corresponds – including the sequence of observations – corresponds to
one specific probability measure. In other words, there is a probability, we just
do not know it – this is exactly the subjective interval uncertainty that we are
trying to avoid.

How to avoid subjective uncertainty? Idea. Probabilities have direct
observational meaning only for repeating events. In mathematical terms, inde-
pendent repeating events correspond to a product measure, when the probability
of two events A and B happening in two consequent tests is equal to the product
of the corresponding probabilities: P (A&B) = P (A) · P (B).

Traditional case is when we know the exact probability p. Then, observable
sequences ω1ω2 . . . are KLM-random relative to a product of p-measures.

If p ∈ [p, p], then, of course, each p-random sequence is also [p, p]-random. In
this case, the interval uncertainty is subjective. We want to avoid this situation
by requiring that the sequence is not random with respect to any narrower
sequence. Thus, we arrive at the following.

3 Objective Interval Uncertainty: Definitions
and the First Result

Definition 1. We say that a sequence is [p, p]-random if it is random for some
product measure with pi ∈ [p, p].

Definition 2. We say that a sequence ω1ω2 . . . is objectively [p, p]-random if
sequence is [p, p]-random, and this sequence is not [q, q]-random for any proper
subinterval [q, q] ⊂ [p, p].

Proposition 1. For every interval [p, p], there exist objectively [p, p]-random
sequences.
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Proof. We will show that any sequence ω1ω2 . . . corresponding to pi for which
lim inf pi = p and lim sup pi = p is objectively [p, p]-random.

Since pi ∈ [p, p], this sequence is [p, p]-random. Let us prove that this se-
quence ω1ω2 . . . is not [q, q]-random for any proper subinterval [q, q] ⊂ [p, p], i.e.,
that it is not random w.r.t. any sequence qi ∈ [q, q].

It is known that if two measures are mutually singular, then no sequence is
random w.r.t. both measures. For product measures, singularity is equivalent
to the following equality (see, e.g., [7, 8]):

∞∑
i=1

[
(
√
pi −

√
qi)

2
+
(√

1− pi −
√
1− qi

)2
]
= +∞.

For a proper subinterval, either p < q or q < p. Without loss of generality, let
us consider the case when p < q.

When lim inf pi = p then, for every ε > 0, there are infinitely many i for
which

√
pi ≤ √

p + ε. For these i, we have qi ≥ q, so
√
qi ≥ √

q. Thus,
√
qi −

√
pi ≥ √

q −
(√

p+ ε
)
=

(√
q −√

p
)
− ε. For ε = (

√
q −√

p)/2, we have
√
qi −

√
pi > ε > 0 and therefore, the above sum is infinite. So, a {pi}-random

sequence ω1ω2 . . . cannot be {qi}-random. The proposition is proven.

4 Objective Interval Uncertainty: A Stronger
Definition and the Second Result

Discussion. We want to describe the idea that all we know is an interval [p, p].
The above definition means, in effect, that all the values pi from the sequence

pi are in between p and p and that, even if we dismiss finitely many probabilities,
no narrower interval contains all the remaining values of pi.

In general, however, such sequences may satisfy additional laws, in addition
to pi ∈ [p, p]. For example, if we have p2i = p and p2i+1 = p, then we satisfy
the above condition – but we also satisfy the additional condition, that all even-
placed probabilities are equal to p and all odd-placed probabilities are equal
to p.

Is it possible to have a sequence of probabilities pi whose only meaningful
property is that all these values are from the interval [p, p]? In other words, is
it possible to find a sequence pi which does not satisfy any other meaningful
property?

What is a “meaningful property”. In order to answer the above question,
we need to formalize what is meant by a meaningful property.

In foundation of mathematics, the main object is a set. Properties naturally
correspond to sets: namely, to each property, we can put into correspondence
the set of all the sequences that satisfy this property. In these terms, describing
what we mean by a property is equivalent to describing the corresponding sets.

First, a meaningful property must be described by a finite sequence of sym-
bols in an appropriate mathematical language. Corresponding sets are known
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as definable sets. It is important to realize that while every example of a set
that we can give is definable, not all sets are definable: for example, there are
more than countably many subsets of the set of all natural numbers, but since
there are only countably many finite sequences, there are only countably many
definable sets.

Second, it is reasonable to only consider observable properties, i.e., prop-
erties whose validity can be determined based on observations. Let us show
that, because of this requirement, the corresponding set should be closed: if

for all k, the sequences p(k) = {p(k)i } satisfy the corresponding property for all

k, and these sequences tend to a limit p = {pi}, with pi
def
= lim

k
p
(k)
i , then this

limit should also belong to the corresponding set. Indeed, we never observe the
probabilities exactly: based on experiments, we can only determine frequencies,
which are approximations to probabilities. If we perform many observations,
the frequency will be a very accurate approximation to the actual probability,
but still an approximation. Thus, if the actual sequence of probabilities is the
limit sequence pi, we will never be able to conclude that the corresponding
observations do not satisfy the desired property: no matter how many observa-
tions we make, the resulting estimates p̃1, . . . , p̃n of probabilities – finitely many
of them – are approximate, with some accuracy ε. Due to the limit character
of the sequence p, within this accuracy, all sequences p(k) for sufficient large
k are consistent with the measurements. Since each sequence p(k) satisfies the
property, this means that any observations corresponding to the sequence p are
consistent with the assumption that the corresponding probabilities satisfy the
property.

The third property of the corresponding sets comes from the need to dis-
tinguish trivial unavoidable “properties” like p1 = p – properties that do not
really restrict any values beyond a few first ones – from non-trivial properties
that we are trying to avoid. In other words, we need to formulate the idea that
if we only know approximate values of the first n probabilities, then we cannot
guarantee that the corresponding property will be satisfied.

This requirement can be described in precise terms, if on the set of all the
sequences p we introduce a topology in which the basis is formed by “boxes”
(p

1
, p1) × . . . × (p

n
, pn) corresponding to different n and different bounds p

i
and pi. (Convergence in this topology corresponds to the above point-wise
convergence.) In terms of this topology, the above requirement means that
within every element from the basis – and thus, within every open set – there
should be a sequence that does not belong to the corresponding set S. For
closed sets, this requirement means that the set S is nowhere dense.

Summarizing, we can formalize our requirements by saying that by a mean-
ingful property, we mean a closed nowhere dense definable set, and that the
actual sequence of probabilities p should not belong to any of such sets.

Definition 3. Let S be a set of all sequences pi ∈ [p, p], with topology whose
basis is formed by the boxes (p

1
, p1)× . . .× (p

n
, pn).

• By a meaningful property, we mean a definable closed nowhere dense set
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S ⊆ S.

• We say that a sequence p satisfies a meaningful property S if p ∈ S.

• We say that a sequence p ∈ S has no other properties if p does satisfy any
meaningful property S.

Proposition 2. For every two definable values p < p, there exists a sequence
pi for which pi ∈ [p, p] for all i and which has no other properties.

Comment. Not only there exist such sequences, but there are many such se-
quences: as we can see from the proof, “almost all” sequences p ∈ S (almost all
in some reasonable sense) have no other properties.

Proof. By definition, a sequence p has no other properties if its does belong to
any property-related set S (in the sense of Definition 3), i.e., equivalently, if it
does not belong to the union U of all such sets S.

Each property-related set S is, by definition, a definable closed nowhere
dense set. As we have mentioned, there are no more than countably many
definable objects, so U is a union of countably many closed nowhere dense sets.
Such unions are known as meager sets, or sets of first Baire category. It is
known that the set of all sequences is not meager; this is the main gist of the
corresponding Baire’s theorem; see, e.g., [9]. Thus, there are sequences p which
do not belong to U , i.e., which have no other properties. Moreover, “almost
all” sequences p – in the sense of all sequences except for a meager set – do not
belong to U , i.e., have no other properties. The proposition is proven.

5 Why This Is Interesting: Objective Interval
Uncertainty Can Help Solve NP-Hard Prob-
lems Faster

What we do in this section. Objective interval uncertainty means that
the corresponding series of repeated experiments, the sequence of observations
ω1ω2 . . . is random with respect to some sequence of probabilities pi for which
pi ∈ [p, p] and which has no other property.

In this section, we prove that by using such sequences ω, it is possible to
drastically speed up the solution of NP-complete problems.

Comment. From the mathematical viewpoint, this result is a modification of a
similar result from [5].

What is an NP problem? Brief reminder. In practice, we often need to
find a solution that satisfies a given set of constraints or at least check that such
a solution is possible. Once we have a candidate for the solution, we can feasibly
check whether this candidate indeed satisfies all the constraints. In theoretical
computer science, “feasibly” is usually interpreted as computable in polynomial
time, i.e., in time bounded by a polynomial of the length of the input.
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A problem of checking whether a given set of constraints has solution is
called a problem of the class NP if we can check, in polynomial time, whether a
given candidate is a solution; see, e.g., [10]. Examples of such problem includes
checking whether a given graph can be colored in 3 colors, checking whether a
given propositional formula – i.e., formula of the type (v1∨¬v2∨v3)& (v4∨¬v2∨
¬v5)& . . . is satisfiable, i.e., whether this formula is true by some combination
of the propositional variables vi.

Each problem from the class NP can be algorithmically solved by trying all
possible candidates. For example, we can check whether a graph can be colored
by trying all possible assignments of colors to different vertices of a graph, and
we can check whether a given propositional formula is satisfiable by trying all 2n

possible combinations of true-or-false values v1, . . . , vn. Such exhaustive search
algorithms require computation time like 2n, time that grows exponentially with
n. For medium-size inputs, e.g., for n ≈ 300, the resulting time is larger than
the lifetime of the Universe. So, these exhaustive search algorithms are not
practically feasible.

It is not known whether problems from the class NP can be solved feasibly

(i.e., in polynomial time): this is a famous open problem P
?
=NP. It is known,

however, there are problems in the class NP which are NP-complete in the
sense that every problem from the class NP can be reduced to this problem.
Reduction means, in particular, that if we can find a way to efficiently solve one
NP-complete problem, then, by reducing other problems from the class NP to
this problem, we can thus efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-complete
problem. (By the way, both above example of NP problems – checking whether
a graph can be colored in 3 colors and whether coloring a propositional formula
is satisfiable – are NP-complete.)

How to represent instances of an NP-complete problem. For each NP-
complete problem P, its instances are sequences of symbols. In the computer,
each such sequence is represented as a sequence of 0s and 1s. Thus, we can
append 1 in front of this sequence and interpret the resulting sequence as a
binary code of a natural number i (we need to add 1 in front, so that, different
sequences transform into different numbers, else 0 and 00 will lead to the same
number).

In principle, not all natural numbers i correspond to instances of a problem
P; we will denote the set of all natural numbers which correspond to such
instances by SP . For each i ∈ SP , the correct answer (true or false) to the i-th
instance of the problem P will be denoted by sP,i.

Easier-to-solve and harder-to-solve NP-complete problems. For some
easier-to-solve problems, there are feasible algorithms which solve “almost all”
instances, in the sense that for each n, the proportional of instance i ≤ n for
which the problem is solved by this algorithm tends to 1. In this case, while the
worst-case complexity is still exponential, in practice, almost all problems can
be feasibly solved.

7



A more challenging case are harder-to-solve NP-complete problems, for
which no feasible algorithm is known that would solve almost all instances.
In this section, we show that our method works on all NP-complete problems,
both easier-to-solve and harder-to-solve ones.

What we mean by using physical observations in computations. We
assume that the sequence ωi comes from observations. In addition to performing
computations, our computational device can, given a natural number i, use the
result ωi of the corresponding i-th observation in its computations. In other
words, given an integer i, we can produce ωi.

In precise theory-of-computation terms, this means computations that use
the sequence ω as an oracle; see, e.g., [10].

Comment. Since we are interested in feasible (= polynomial time) computations,
the code should be set up in such a way that the overall time of an experiment
does not exceed a polynomial of the length of the number i. This can be done,
e.g., if we explicitly add maximum waiting time into the description of the
experiment, by adding as many 0s as the time that we plan to wait.

Definition 4. By a [p, p]-algorithm A, we mean an algorithm which uses, as
an oracle, a sequence ωi which is random with respect to a probability measure
determined by a sequence pi for which pi ∈ [p, p] for all i and which has no other
properties.

Notation. The result of applying an algorithm A using ωi to an input i will
be denoted by A(ω, i).

Definition 5. Let P be an NP-complete problem. We say that a feasible [p, p]-
algorithm A solves almost all instances of P if for every ε > 0 and δ > 0 and
for every integer n, there exists an integer N ≥ n for which, with probability
≥ 1 − δ, the proportion of the instances i ≤ N of the problem P which are
correctly solved by A is greater than 1− ε:

Prob

(
#i{i ≤ N : i ∈ SP &A(ω, i) = sP,i}

#i{i ≤ N : i ∈ SP}
> 1− ε

)
≥ 1− δ.

Comment. The restriction to sufficiently long inputs N ≥ nmakes perfect sense:
for short inputs, NP-completeness is not an issue: we can perform exhaustive
search of all possible bit sequences of length 10, 20, and even 30. The challenge
starts when the length of the input is high.

Proposition 3. For every NP-complete problem P, there exists a feasible [p, p]-
algorithm A that solves almost all instances of P.

Comment. In other words, we show that if there is objective interval uncertainty,
then the use of the corresponding physical observations makes all NP-complete
problems easier-to-solve (in the above-described sense).

Proof. We know that for every i, the probability pi that ωi = 1 is in between
p and p. Thus, for every two numbers N ≫ N ′, the proportion of values ωi
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(i = N,N + 1, . . . , N ′ − 1) which are equal to 1, should be either within the
interval [p, p] or at least close to this interval. Let us use this property to design
the desired algorithm A.

A value p from the interval [p, p] is:

• closer to p if it is larger than the midpoint p̃
def
=

p+ p

2
and

• closer to p if p is smaller than the midpoint.

The midpoint itself is equidistant from both endpoints p and p.
Let us therefore select an increasing sequence N1 < N2 < . . ., and take:

• A(ω, i) = 1 if the proportion of values ωi = 1 between Ni and Ni+1 is
greater than or equal to the midpoint p̃, and

• A(ω, i) = 0 if this proportion is smaller than p̃.

Let us prove that, for an appropriate sequence Ni, this algorithm indeed solves
almost all instances of the given problem P.

The proposition states that for very ε > 0, δ > 0, and n, there exists an
integer N ≥ n for which the above inequality holds. To prove the existence of
such an N , let us consider the set T of all sequences p for which, for all N ≥ n,
this inequality does not hold. We will show that this set T is definable, closed,
and nowhere dense. By definition of a sequence that has no other properties
(Definition 3), this would imply that the actual sequence p does not belong to
this set T – and thus, there exists the desired value N , which is exactly what
the proposition claims.

Definability is easy: we just had defined this set. Closeness is also rather
easy to prove; it can be proven similarly to a similar closeness proof in [5].

The non-trivial part is nowhere density. To prove that the set T is nowhere
dense, it is sufficient, for each finite starting sequence p1, . . . , pn, to produce an
infinite extension p for which the desired integer N ≥ n exists (and which, thus,
does not belong to the set T ).

We will take a sequence pi all whose elements are either equal to the lower
endpoint p or to the upper endpoint p. Specifically, for all the values between
Ni and Ni+1, we will take:

• pi = p if sP,i = 1,

• pi = p if sP,i = 0, and

• any of these two values if i ̸∈ SP .

Let us show that for an appropriate choice of the sequence Ni, with proba-

bility ≥ 1− δ, for all the values i from n to N =
n

ε
, we will have A(ω, i) = sP,i.

This will imply that the proportion of such i is indeed greater than 1− ε with
probability ≥ 1− δ.
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For each i, we consider the arithmetic average of ki
def
= (Ni+1 − 1) − Ni

independent 0-1 random values each of which is equal to 1 with some probability
p (namely, either with probability p or with probability p). It is known that this
arithmetic average is, in the limit ki → ∞, normally distributed – this fact is a
particular case of the Central Limit Theorem. The mean value of this average is
equal to the corresponding probability p, and the standard deviation decreases,

with ki, as
1√
ki
. Let us use these facts to estimate the probability that with

p = 0 we will have A(ω, i) = 1 or vice versa. In other words, we are interested in
the probability that the average differs from its expected values by at least the

half-width w
def
=

p− p

2
. For a normal distribution with mean µ and standard

deviation σ, asymptotically, this probability is proportional to exp

(
− w2

2σ2

)
,

i.e., to exp(−const ·ki). If we select ki in such a way that exp(−const ·ki) ≤
1

i2
,

i.e., ki = const · ln(i), then the probability that this happens for one of the
values i cannot exceed the sum of the probabilities corresponding to different

i, and is, thus, smaller than the sum
∞∑
i=n

1

i2
. Thus sum tends to 0 and is, thus,

smaller that δ for all sufficiently large n.
So, we get the desired property if we find Ni for which ki ≈ Ni+1 − Ni ∼

const · ln(i). This approximate equality is true if we take Ni = i · ln(i).
For this choice of Ni, computing A(ω, i) requires Ni+1 −Ni ∼ ln(i) calls to

the oracle – a number which is a linear function of the bit length of an integer
i. Thus, this algorithm is indeed feasible. The proposition is proven.
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