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Abstract

The more skills a student acquires, the more suc-
cessful this student is with the corresponding tasks.
Empirical data shows that the success in a task
grows as a logistic function of skills; this depen-
dence is known as the Rasch model. In this paper,
we provide two uncertainty-based justifications for
this model: the first justification provides a sim-
ple fuzzy-based intuitive explanation for this model,
while the second — more complex one — explains the
exact quantitative behavior of the corresponding de-
pendence.
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1. Formulation of the Problem: An
Empirically Successful Rasch Model
Needs a Justification

Need to understand how success in a task
depends on the skills level. The more skills a
student acquires, the more successful this student is
with the corresponding tasks. This is how we gauge
the level of the knowledge and skills acquired by a
student: by checking how well the student performs
on the corresponding tasks.

For each level of student skills, the student is usu-
ally:

e very successful in solving simple problems,

e not yet successful in solving problems which are
— to this student — too complex, and

e reasonably successful in solving problems which
are of the right complexity.

To design adequate tests — and to adequately use
the results of these tests to gauge the student’s skills
level — it is desirable to have a good understand of
how the success in a task depends on the student’s
skill level and on the problem’s complexity.

How do we gauge success. In order to under-
stand the desired dependence, we need to clarify
how the success is measured. This depends on the
type of the tasks.

For simple tasks, a student can either succeed in
a task or not. In this case, a good measure of suc-
cess is the proportion of tasks in which the student

succeeded. In terms of different uncertainty tech-
niques, the resulting grade is simply the probability
of success.

In more complex tasks, a student may succeed
in some subtasks and fail in others. The simplest
— and probably most frequent — way of gauging
the student’s success is to assign weights to differ-
ent subtasks and to take, as a student’s grade, the
sum of the weights corresponding to successful sub-
tasks. This somewhat mechanistic way of grading
is fast and easy to automate, but it often lack nu-
ances: for example, it does not allow to take into
account to what extent the student succeeded in
each non-fully-successful subtask. A more adequate
(and more complex) way — used, e.g., in grading es-
says — is to ask expert graders to take into account
all the specifics of the student’s answer and to come
up with an appropriate overall grade. In terms of
different uncertainty techniques, this grade can be
viewed as a particular case of a fuzzy degree [3, 6, 9].

Rasch model. Empirical data shows that, no mat-
ter how we measure the success rate, the success s in
a task can be estimated by the following formula [4]:
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where ¢ is an (appropriately re-scaled) complexity
of the task and ¢ is an (also appropriately re-scaled)
skill level of a student.

This formula was first proposed — in a general psy-
chological context — by G. Rasch [7]; it is therefore
known as the Rasch model.

The remaining challenge. While empirically,
this formula seems to work reasonably well, prac-
titioners are somewhat reluctant to use it widely,
since it lacks a deeper justification.

What we do in this paper. In this paper, we pro-
vide two possible justifications for the Rasch model.
The first is a simple fuzzy-based justification which
provides a good intuitive explanation for this model
and thus, will hopefully enhance its use in teaching
practice. The second is a somewhat more sophis-
ticated explanation which is less intuitive but pro-
vides a justification for the specific quantitative type
of the dependence (1).



2. First Justification for the Rasch Model:
Simple, Intuitive, but Somewhat
Qualitative

We are looking for a dependence: reminder.
For a fixed level of the task’s complexity ¢, we need
to find out how the success rate s depends on the
skill level ¢.

Skill level. In general, the skill level ¢ can go from
a very small number — practically —oo — to a very
large number (practically +00) corresponding to an
extremely skilled person.

Monotonicity. The desired function s(¢) is clearly
monotonic: the more skills a student has acquired,
the larger the success i solving the tasks.

Extreme cases. In the absence of skills, a student
cannot succeed in the corresponding tasks, so when
{ — —oo, we have s({) — 0. On the other side,
when a person is very skilled, this person should
have a perfect success in all the tasks, i.e., we should
have s(¢) — 1 when ¢ — 4oo0.

Smoothness. Intuitively, a very small increase in
the skill level £ can also result in a very small in-
crease in the success s. Thus, it is reasonable to
assume that the desired dependence s(¢) is differen-
tiable (smooth).

Let us make the problem easier. Let us use
smoothness to reformulate the problem of determin-
ing the dependence s(¢) so that it will be easier to
process in a computer and easier to describe in di-
rectly measurable terms.

How to make the problem easier to process
in a computer. If we change the skills ¢ a little
bit, to £ + A, the success rate changes also a little
bit. Thus, once we know the value s(¢), and we are
interested in the success s(¢ + A), it is convenient
not to describe the value by itself, but rather to
describe the resulting small change s(¢+ Af) — s(¥)
in the success — this difference is smaller and thus,
requires fewer bits to record.

For small A/, this difference is approximately

equal to

ds
=2 U AL.
d¢ ¢

Thus, describing such differences is equivalent to
describing the corresponding derivative

ds
de

How to make the problem easier to describe
in directly measurable terms. In principle, we
can describe this derivative in terms of the skills
level ¢, but since the directly observable character-
istic is the success s, it is more convenient to express

the derivative p
S
ar - f(s)

for an appropriate function f(s).
Let us now use our understanding of this problem
to describe this function f(s).

Let us describe our intuition about f(s) in
imprecise (“fuzzy”) terms. When there are no
skills, i.e., when £ ~ —oco and s ~ 0, adding a little
but of skills does not help much. So, when s is small,

the derivative
ds

e
is also small. In other words, the derivative

ds

¢
is reasonable if and only if s is not small (i.e., rea-
sonably big).

On the other hand, when s is really big, i.e., s ~ 1,
then the student is already able to solve the corre-
sponding tasks, and adding skills does not change
much in this ability. So, for the derivative

ds

dl
to be reasonable, the value s must be big but not
too big.

From a fuzzy description to a reasonable
crisp equation. The derivative is reasonable when
s is big but not too big. In this context, “but” means
“and”, so the degree to which this rule is applicable
can be estimated as the degree to which s is big and
s is not too big.

How can we describe “big” in this context? The
value s is from the interval [0,1]. The value 0 is
clearly not big, the value 1 is clearly big. Thus,
the corresponding membership function should be
0 when s = 0 and 1 when s = 1. The simplest
such membership function is u(s) = s. A natural
description of “not big” is thus 1 — s. If we use
product for “and” — one of the most widely used
“and”-operations in fuzzy logic — we conclude that
the degree to which the derivative

ds
dl
is reasonable is s - (1 — s). Thus, we arrive at the

equation
ds
L =s1-) 2)

Solving this equation leads exactly to the
Rasch model. To solve the equation (2), let us
move all the terms containing the unknown func-
tion s to one side and all other terms to another
side. Thus, we get

ds
s (1= = d/. (3)
The fraction 1
s-(1—3s)



can be represented as the sum

1 1

s 1—s

Thus, the equation (3) has the form

ds ds

s 1—s

= dt. (4)
Integrating both sides, we conclude that
In(s) —In(1 —s) =4 —c, (5)

for some constant ¢. Thus, In(1 —s) —1In(s) = c—£.
Exponentiating both sides, we get

1—
- exp(c —¥),
i.e.,
! 1=-exp(c—1¥)
= —1=-exp(c—1¥).
S p
Thus,
1
5 =1+exp(c—10)
and
s(f) = v
 1+exp(c—Y)

for some parameter c. This is exactly the Rasch
model.

Comment. What if we use a different “and”-
operation, for example, min(a,b)? Let us show that
in this case, we also get a meaningful model.

Indeed, in this case, the corresponding equation
takes the form

ds = min(s,1 — s).

dl

For s < 0.5, this leads to

ds
g
de ’

i.e., to s(¢) = C_-exp(s) for some constant C_. For
s > 0.5, this formula results in

ds
— =1-s3s,

dal

i.e., to s(f) = 1—C -exp(—s) for some constant C; .
In particular, for C_ = 0.5, the resulting function
is a cumulative distribution corresponding to the
Laplace distribution, with the probability density

() = 5 - exp(-al).

This distribution is used in many application ar-
eas — e.g., to modify the data in large databases to
promote privacy; see, e.g., [1].

3. Second Justification for the Rasch
Model: Quantitative but Somewhat Less
Simple and Less Intuitive

We need a quantitative justification. In the
previous section, we provided a justification for the
Rasch model, but this justification was more on
the qualitative side. For example, to get the exact
formula of the Rasch model, we used the product
“and”-operation, and we mentioned that if we use a
different “and”-operation — for example, minimum
— then we get a different formula (still reasonable
but different).

It is therefore still necessary to provide a quanti-
tative justification for the Rasch model. This justifi-
cation will be provided in the present section. It will
not be less simple and less intuitive that the justifi-
cation from the previous section, but it will enable
us to come up with a quantitative explanation for
the Rasch model.

Assumption. Let us assume that the success s
depends on how much the skills level ¢ exceeds the
complexity ¢ of the task, i.e., that that success s
depends on the difference £ —¢: s = s(¢ — ¢).

Success as a measure of skills level. As we
have mentioned, success in solving problems of given
time is a directly observable measure of the stu-
dent’s skills. Thus, we can use the value s(c—¢) for
some fixed ¢ to gauge these skills.

As a result, we get different scales. Depend-
ing on which task complexity ¢ we select, we get
different numerical values describing the same skills
level: if ¢ # ¢/, then we get s(£ —¢) # s({ — ). In
other words, we have different scaled for measuring
the same quantity.

This is similar to scales in physics. The fact
that we have different scales for measuring the same
quantity is not surprising: in physics, we also have
different scales depending on which starting point
we use for measurement and what measuring unit
we use. For example, we can measure length in
inches or in centimeters, we can measure tempera-
ture in the Celsius (C) scale or in the Fahrenheit (F)
scale, etc. These are all examples of different scales
for measuring the same physical quantity.

Re-scaling in physics. In physics, if we change
a measuring unit to a one which is a times smaller,
then the corresponding numerical value multiplies
by a. In other words, instead of the original numer-
ical value x, we get a new numerical value ' = a- .
For example, if we replace meters with centimeters,
then all numerical values get multiplied by 100: 2 m
becomes 200 cm.

Similarly, when we change a starting point to the
one which is b units smaller, the numerical value is
changed by the addition to b: 2’ = x + b.

In general, if we change both the measuring unit
and the starting point, we get a linear transforma-
tion 2’ =a-x +b.



Physical re-scalings form a finite-dimensional
transformation group. If we first apply one lin-
ear transformation, and after that another one, we
still get a linear transformation. In mathematical
terms, this means that the class of linear transfor-
mations is closed under composition.

For example, we can first change meters to cen-
timeters, and then replace centimeters with inches.
Then, the resulting transformation from meters to
inches is still a linear transformation.

Also, if we have a transformation, e.g., from C to
F, then the “inverse” transformation from F to C is
also a linear transformation. In precise terms, this
means that the class of all linear transformation is
invariant under taking the inversion.

In general, a class of transformations which is
closed under composition and under taking the in-
verse is called a transformation group. Thus, we can
say that the class of all linear transformations is a
transformation group.

To describe a linear transformation, it is sufficient
to provide two real-valued parameters, a, and b. In
general, transformation groups whose elements can
be uniquely determined by a finite set of parame-
ters are called finite-dimensional. Thus, the class
of all linear transformations is a finite-dimensional
transformation group.

In our case, we need non-linear transforma-
tions. In our case, we need to describe a transfor-
mation f(s) that transforms the value s(¢ — ¢) into
the value s(¢ — ¢):

s(6—c') = f(s(f—c)).
When ¢ — —oo, we have
s(t—c)—0

and
s(¢ —¢) — 0.

Thus, for our function f(s), we must have f(0) = 0.

Similarly, when ¢ — +o00, we have s({ — ') — 1
and s(¢ —¢) — 1. Thus, for our function f(s), we
must have f(1) = 1.

This immediately implies that the function f(s)
must be non-linear: the only linear function f(s)
for which f(0) = 0 and f(1) = 1 is the identity
function f(s) = s. Thus, for our purpose, we need
to consider non-linear re-scalings f(s).

How can we describe non-linear transforma-
tions: general case. Which non-linear transfor-
mations are reasonable?

Similarly to physics, it is reasonable to require
that if f(s) is a reasonable re-scaling from scale A
to scale B, and g(s) is a reasonable re-scaling from
scale B to scale C, then the transformation g(f(s))
from scale A directly to scale C should also be rea-
sonable. In other words, the class of reasonable
transformations must be closed under composition.

Also, if f(s) is a reasonable transformation from
scale A to scale B, then the inverse function f~1(s)
is a reasonable transformation from scale B to scale
A. Thus, the class of reasonable transformations
should be closed under inversion.

Therefore, the class of reasonable transformations
should form a transformation group.

Our goal is computations. Thus, we want to be
able to describe such transformation in a computer.
In a computer, at any given moment of time, we
can only store finitely many real-valued parameters.
Thus, it is reasonable to require that the class of all
reasonable transformations is a finite-dimensional
transformation group.

In general, linear transformations are also rea-
sonable. Thus, to describe all reasonable transfor-
mations, we need to describe all finite-dimensional
transformation groups that contain all linear trans-
formations. Under certain smoothness conditions —
and we have argued that in our case, the depen-
dencies are smooth — such groups have been fully
described: namely, it has been proven that all the
transformations from such groups are fractionally
linear, i.e., have the form

a-s+b
c-s+d

fO = (5)
for appropriate values a, b, ¢, and d; see, e.g., [2, 5,
8].

How can we describe non-linear transforma-
tions: our case. In our case, we have two re-
strictions on a re-scaling transformation f(s): that
f(0) = 0 and that f(1) = 1. Substituting the ex-
pression (5) into the equality f(0) = 0, we conclude
that b = 0, thus

a-s

)= 7a

(6)
We cannot have d = 0, since then we
f(s) = 2 — const
c

for all s. Thus, d # 0.
Since d # 0, we can divide both numerator and
denominator by d, and get a formula

A-s

&) =165

(7)
where we denoted
a
A=—
d
and

C
C’—g.

Substituting the expression (7) into the equality
f(1) =1, we conclude that A = 1+ C, so we con-
clude that in our case, non-linear transformations
have the form

(1+C)-s

1s) = 1+C- s

(8)



Resulting equation for the desired depen-
dence s(¢ — ¢). The function f(s) is a transforma-
tion that transforms, for two different values ¢ # ¢/,
the estimate s(£ — ¢) into the estimate s(£ — ¢’): for
every ¢, we have s({ — ') = f(s(¢ — ¢)). In par-
ticular, for £ = z, ¢ = 0 and ¢/ = —cgp, we have
s(x+co) = f(s(z)). Substituting the expression (8)
for the transformation f(s) into this formula, we get
the following equation:

(14 C(co)) - s(x)
15 Cleo) -5(2) | ©)

s(z+¢o) =

for some C' which, in general depends on ¢q. To find
the desired dependence s(z), we thus need to solve
this equation.

Solving the resulting equation. Let us first
simplify the equation (9), by taking the reciprocal
(1 over) of both sides:

1 14+ C(co) - s(x)

(14 C(cp)) - s(z)

s(x + o)

1 1 C(co)
1+ C(co) s(z)  1+C(c)

Subtracting 1 from both sides, we get

o
s(z + co) -
1 o1 Cleo)
1+ C(co) S(ﬂf)+1+c(00) =
1 1 1

Thus, for
def 1
= —=-1
and )
Alco) & ———
(CO) 1 + C(Co),

we get a simplified equation
S(z + o) = A(e) - S(x). (10)

This equation holds for all real values z and cg.
Since the function s(z) is differentiable, the func-
tion S(z) is also differentiable and therefore, the
ratio
S(x + ¢o)
S(x)
is differentiable. Differentiating both sides of the
equation (10) with respect to ¢y and taking ¢ = 0,
we get

Alco) =

s

—=k-5,

where we denoted

et 44

dI |m:0'

By moving all the terms related to S to one side
and all other terms to another side, we get

ds

— =k -duz.

5 x
Integrating, we then get In(S(x)) = k-x+c; for some
integration constant c. Exponentiating both sides,
we get S(x) = co - exp(k - x), where ca = exp(cy).
For c; & — In(ca), we have S(z) = exp(k - x — ¢3)),
so for

L
we have
S(x) =exp(k - (x —¢)). (11)
From
S(x) = L 1,

we conclude that

1
and 1
s(z) = ma

i.e., in view of the formula (11):

1

O = et =0y (12)

A final linear re-scaling leads to the desired
formula. The formula (12) is almost the formula
we need, with the only difference that now we have
an additional parameter k. From the requirement
that the function s(¢) be increasing, we conclude
that £ < 0, so

_ 1
~ 1+exp(lk|-(c—0))

s(f) (13)

We can transform the formula (13) into exactly
the desired formula if we change the measuring units
for both ¢ and ¢ to a unit which is |k| times smaller.
In the new units, ¢/ = |k|- £ and ¢’ = |k| - ¢, so the
formula (14) takes the desired form

N 1
) = Trew@ =)

Thus, the Rasch model has indeed been justified.
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