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Abstract

In geophysics, signals come with noise. It is desir-
able to minimize the effect of this noise. If we knew
the probabilities of different values of signal and
noise, we could use statistical filtering techniques.
In geophysics, however, we rarely know the exact
values of these probabilities; instead, we have to rely
on the expertise and intuition of experts. We show
how fuzzy techniques can transform this expertise
into precise de-noising methods, we explain that the
resulting methods indeed satisfy several natural re-
quirements, and that these methods are in good ac-
cordance with heuristic techniques successfully used
by geophysicists.
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1. Formulation of the Problem

Need for de-noising. In geophysics, signals come
with noise; this noise affects the resulting images
and maps. It is therefore desirable to minimize the
effect of this noise.

De-noising: ideal case. In some practical situa-
tions, we know the probabilities of different values
of signal and we know the probabilities of different
values of noise. In such situations, we can use statis-
tical filtering techniques to find optimal de-noising;
see, e.g., [1].

Comment. Techniques for optimal de-noising are
known since the 1940s when N. Wiener designed
his famous Wiener filter [16].

Specifics of geophysics. In geophysics, however,
we rarely know the exact values of these probabili-
ties. One of the reasons is that, in contrast to many
other disciplines, where we can determine the true
values of different quantities by measuring them di-
rectly, in geophysics, it is very difficult (or even
impossible) to directly measure the physical char-
acteristics of the rocks at large depths, and these
characteristics are what we are trying to determine.

Need for experts in geophysics. Since we do
not know the corresponding probabilities, it is diffi-
cult to determine a priori which de-noising methods

are most adequate for geophysical data. To select an
appropriate de-noising method, we therefore have to
use the expertise and intuition of expert geophysi-
cists.

How geophysical expert knowledge is used
now. At present, the knowledge of geophysical ex-
perts is mainly used to select the most physically
reasonable Earth model among all the models which
are consistent with the observations.

If some semi-heuristic method consistently leads
to models which are — according to the experts —
more physically adequate than models generated by
other methods, then this method is adapted by geo-
physicists. If some semi-heuristic method does not
always result in adequate models, then geophysicists
try to modify the original methods.

It is desirable to directly translate expert
knowledge into data processing techniques.
The current trial-and-error approach to designing
geophysical data processing techniques has led to
many successful applications, ranging from success-
ful discovery of mineral deposits to description of
risks in earthquake-prone areas.

However, like most trial-and-error search-in-
the-dark processes, this approach is very time-
consuming — and, honestly, somewhat frustrating
from researchers who are designing new methods. It
is desirable to come up with faster (and less frustrat-
ing) ways to translate expert knowledge into data
processing techniques.

What we do in this paper. In this paper, we
show that fuzzy techniques [6, 11, 17] — techniques
specially designed to translate imprecise (“fuzzy”)
expert knowledge into precise algorithms — can help
translate geophysical expert knowledge into relevant
data processing techniques.

We provide two types of arguments that the re-
sulting techniques are indeed reasonable:

e we show that the results of applying these tech-
niques satisfy reasonable requirements, and

e we also show that these techniques are in
good accordance with the empirically success-
ful semi-heuristic geophysical methods.

2. Statistical De-Noising: Successes and
Limitations

Need for de-noising: a general description.
In many practical situations, we want to know how



a certain physical quantity « changes with time (or,
more generally, how the values of the corresponding
quantity changes with time and with a spatial loca-
tion). In many such cases, we can directly measure
the values z(t) of this quantity at different moments
of time.

For example, in meteorology, we measure the
temperature, wind speed and direction, etc., at dif-
ferent moments of time. In geophysical seismic data
processing, we measure, at different moments of
time, the displacement caused by the seismic waves.

Measurements are never absolutely accurate. As
a result, the measured values Z(t) are, in general,
somewhat different from the actual (unknown) val-
ues xz(t): F(t) = x(t) + Ax(t), where Az(t) &
Z(t) — xz(t) # 0 is the measurement uncertainty
(a.k.a. noise).

It is therefore desirable to decrease the effect of
the noise, i.e., to recover the actual signal z(t) as
accurately as possible.

Case when we know the probability distribu-
tions. In some situations, we have many records of
the actual signals, of the measured values, and/or of
the values of measurement uncertainty. In such sit-
uations, we can use these records to determine the
probabilities of different values of signal x(t) and
noise Ax(t).

In such situations, when we have the measured
values Z(t), we can estimate the probability of dif-
ferent values of the actual signal x(t). Based on
this information, we would like to find an estimate

X (t) which is the closest to the actual value, i.e.,
€

for which the difference e(t) e x (t) — z(t) between
the reconstructed and actual signals is close to 0 for
all ¢.

Both the original signal and the reconstructed sig-
nal can be naturally represented as points in multi-
D space, for which the corresponding value X (¢) or
x(t) is the t-th coordinate. We want X (t) to be
close to z(t); in geometric terms, this means that
we want the corresponding points X (¢) and z(t) to
be close.

How do we describe closeness. In general, the
distance between the two points = (z1,...,z,)
and y = (y1,...,Yn) in n-dimensional space is equal
to d(z,y) = /(1 —y1)2 + ... + (¥n — yn)2. Here,
strictly speaking, we have infinitely many coordi-
nates, so we need to take the limit of the corre-
sponding sun > (X (t) — z(t))?, i.e., the integral:
t

d(X,z) = \//(X(t) ()2 dt.

In effect, this distance is what we would like to min-
imize.

From minimizing distance to the Least
Squares approach. Strictly speaking, it is possi-
ble to start minimizing the distance directly. How-

ever, from the computational viewpoint, this di-
rect minimization has a problem: most traditional
optimization techniques are based on computing
the derivatives. For example, a straightforward
calculus-based minimization of a function means
that we take the partial derivatives of the mini-
mized function with respect to all the unknowns,
and equate all these partial derivatives to 0 (since,
according to calculus, at minimum and maximum
points, the function’s derivative is equal to 0). The
problem is that for the square root f(z) = /x, the
derivative at © = 0 (where we want to be) is infinite.

So, from the computational viewpoint, it is desir-
able to avoid the square root when formulating the
objective function. In minimization, the square root
is easy to eliminate. Indeed, since the square root
is an increasing function, minimizing the square
root of some expression is equivalent to minimiz-
ing the expression itself. Thus, instead of mini-
mizing the square root, we can minimize the inte-
gral [(X(t) — x(t))* dt. Minimization of the sum of
the squares of approximation errors — known as the
Least Squares method — is indeed one of the most
widely used ideas in signal processing; see, e.g., [14].

The Least Squares method can also be justified by
the fact that the purpose of the signal reconstruc-
tion is to minimize the loss L(X (t) —x(t)) caused by
the inaccuracy in reconstructing the signal. Since
the inaccuracy is usually small, we can expand the
loss function into Taylor series and keep only the
first few terms in this expansion:

L(Az(t)) = co + Z c(t) - Az(t)+

SO et t) - Ax(t) - Ax(t).

This loss is equal to 0 when Az(t) = 0; thus, we
should have ¢y = 0 and ¢(¢t) = 0 for all ¢. Thus,

L(Az(t) =Y ct,t) - Ax(t) - Ax(t).

If ¢(t,t") # 0 for some t # ¢, this would mean
that for some combination of signs of the inaccura-
cies Az(t) and Axz(t') (same sign if ¢(t,¢') < 0 and
different signs if ¢(¢,t') > 0), the presence of both
inaccuracies would decrease the overall loss. This
may be the case in some specific situations, but in
general, this seems counter-intuitive. It is therefore
reasonable to require that c(¢,¢') = 0 when ¢t = ¢'.
Thus, the loss formula takes the simplified form

L(Ax(t)) =Y c(t,t) - (Ax(t))*.

t

In general, we have no prior reason to believe
that the loss at one moment of time is more damag-
ing than a similar loss at another moment of time.
Thus, it makes sense to assume that the coefficient



¢(t, t) does not depend on time ¢, i.e., that the loss
is simply proportional to the sum

> (Az(1)?,

t

or, in the continuous case, to the corresponding in-
tegral [(X(t) —z(t))? dt.

Need to minimize the expected value. Accord-
ing to decision making theory (see, e.g., [7, 10, 12]),
an appropriate decision is the one that minimizes
the expected value of the utility — or, equivalently,
minimizes the expected value of the loss. Thus, it
is reasonable to look for an estimate X (¢) for which
the expected value E[ [ (X (¢)—z(t))? dt] of the above
integral attains the smallest possible value.

Once we know all the probability distributions,
this minimization is a well-defined optimization
problem, so we can find the corresponding esti-
mate X (t).

In many reasonable cases, we have an explicit
formula for de-noising. In the general case, opti-
mization may be complicated, but in many cases, we
have explicit formulas for optimal de-noising; see,
e.g., [1].

These formulas are made possible by the fact that
the measurement uncertainty usually comes from
many different independent factors. It is known
that the distribution of the joint effect of many inde-
pendent factors is close to Gaussian (normal); this
is known as the Central Limit Theorem (see, e.g.,
[14]). Thus, it is reasonable to assume that the mea-
surement uncertainty Az(t) is normally distributed.

Similarly, in many situations, the signal x(t) is
caused by the joint effect of several different fac-
tors. For example, the seismic signal comes from
the movement of different rocks which are reason-
ably independent. Thus, it is also reasonable to
assume that the distribution of the signal is Gaus-
sian.

It also makes sense to assume that the signal
and the measurement uncertainty are independent
— since they are caused by different causes.

In many practical applications, the probability
distributions for z(¢) and Az(t) are stationary —i.e.,
the corresponding probabilities do not change with
time. It is known that stationary process are conve-
nient to describe in terms of their Fourier transforms

Z(w) . \/% . /x(t) ~exp(i-t-w)dt and
Aa(w) \/% . /Am(t) coxpli-t-w)dt

namely, the Gaussian stationary process with 0
mean is uniquely determined by the corresponding

spectra Sy, (w) ef B [\@(w)ﬂ and Saz az(w) o

R 2
E UAx(w)‘ } . In terms of the spectra, the Fourier

transform X (w) of the optimal estimate X (¢) has
the form

. z(w)
X(W) - SAm Am(w) '
TS )

Comment.  This formula was first derived by
N. Wiener, the father of cybernetics (see, e.g., [16])
and is, therefore, known as the Wiener filter.

Wiener filter and similar formulas have many
successful applications. As shown in [1], optimal
statistical de-noising formulas are ubiquitous, they
are efficiently used in all areas of signal processing.

Limitations of the optimal statistical de-
noising. The formulas for the optimal de-noising
assume that we know the corresponding probabili-
ties. In many practical situations, however, we do
not know these probabilities.

Geophysics is one of such areas, since, as we have
mentioned earlier, in contrast to many other dis-
ciplines where, in principle, we can directly and
accurately measure the actual values of the phys-
ical quantities of interest, in geophysics, it is often
impossible to directly measure the desired physical
characteristics.

To handle such situations, it is therefore impor-
tant to use methods of de-noising under uncertainty,
when we do not have full information about the cor-
responding probabilities.

3. De-Noising under Uncertainty, Case of
Smooth Signals: Existing Algorithms,
Successes, and Limitations

Case of smooth signals: description. In many
practical situations, while we do not know the corre-
sponding probabilities, we do know that the actual
signal z(t) is smooth.

In contrast, the measurement errors Axz(t) corre-
sponding to different moments of time ¢ are usually
independent random variables, as a result of which
the dependence of Az(t) on time t is not smooth.

De-noising: idea. The signal is smooth z(¢) and
close to the observed signal Z(t). There may be
other smooth functions y(¢) which are close to Z(t).
However:

e For the actual smooth signal x(¢), there is only
one reason why this signal is different from the
measured signal Z(¢): the presence of the noise.

e In contrast, for a smooth function y(t) # x(t),
there are two reasons why y(t) # z(t): the pres-
ence of the noise and the difference between

x(t) and y(t).

We therefore expect that the distance d(Z,z) be-
tween the observed signal Z(t) and the actual signal
z(t) is smaller than the distance d(Z, y) between the



observed signal Z(t) and any different smooth func-
tion y(t) # z(t).

Thus, we can find the actual signal as the smooth
function X (t) which is the closest to the observed
signal Z(t).

How this idea 1is wusually formalized:
Tikhonov regularization. We already know how
to describe that the functions z(t) and X(t) are
close: by using the integral [(X(t) — z(t))?dt. So,
to describe the above idea in precise terms, it is
sufficient to come up with an exact definition of a
smooth function.

Intuitively, a function X (¢) is smooth if all the
values of its derivative X (t) are reasonable small.
In other words, we can say that a function X(¢) is
smooth if the vector consisting of all the values X (t)
is sufficiently close to the vector consisting of all ze-
roes. The corresponding distance can be described
as the square root of the interval [(X(t))?dt; thus,
a bound b on this dlstance is equivalent to a bound
on this integral [(X(¢))?dt < b*.

In these terms, the above idea means that we find
the signal X (¢) for which the integral

/(X(t) —Z(t))*dt

attains its smallest possible value under the con-
straint [(X )2dt < b2. In general, the minimum
under the 1nequality constraint is attained:

e cither inside the constraint region, i.e., in this
case, when [(X(t))%dt < b?,
e or at this region ’s boundary f ()% dt = v?.
If the minimum was attained inside, this would
mean that we have a global minimum, the con-
straint could be ignored. However, the global mini-
mum of the non-negative integral [(X (¢)—Z(t))*dt
(0 value) is attained when X (t) = Z(¢) (= «(t) +
Ax(t)), and this function Z(t) is not smooth.
Thus, the minimum cannot be attained inside it
has to be attained at the boundary [(X(t))?dt =
b2. So, our optimization problem is equivalent to
minimizing the integral J(X(t) — Z(t))?dt under
the constraint [(X(¢))?dt = b2. Due to the La-
grange multiplier idea, this is equivalent to an un-
constrained minimization of a functional

/(X(t) S )2 dE+ A /(X(t))2 dt

for an appropriate Lagrange multiplier A\. This for-
mulation is known as Tikhonov reqularization; see,
e.g., [15].

Tikhonov regularization: successes. Tikhonov
regularization is easy to implement: for example,
in terms of Fourier transforms, its solution can be
described explicitly, as

A

o EWw)
X = Tep

The computational efficiency of regularization is one
of the reasons why regularization has been success-
fully used in many application areas [15].

Tikhonov regularization: first limitation.
Tikhonov regularization works reasonably well
when we know how smooth is the original signal,
i.e., equivalently, what is the value A. In many
practical situations, however, we do not have a pri-
ori information about this smoothness. As a result,
sometimes, after using Tikhonov regularization to
smoothen the measured signal, we realize that the
resulting signal is not smooth enough, and an addi-
tional smoothing is needed.

Intuitively, we expect that if the original smooth-
ing was not sufficient, then we just need to apply, to
an under-smoothed signal, an additional smoothing
of the same type. Alas, this is not the case: if we
first apply Tikhonov smoothing with some X, and
then, to the result X (w) of this smoothing, we ap-
ply a similar smoothing with some other parameter
A\, we get a signal

o #w)
)= TN+ Ar- o)

which is different from the expected signal
5 z(w)
Sw)=——"—
@) = TP

corresponding to some appropriate value \: sim-
ply because the product of two quadratic expression
(1+X-|w]?) - (1+ AN |w]?) is not itself equal to
a quadratic expression 1+ )’ - |w|?, no matter what
value A we select; see, e.g., [3, 9].

Tikhonov regularization: second limitation.
The second limitation is even more fundamental:
Tikhonov regularization assumes that the actual
signal is smooth. In many practical applications,
this assumption makes sense.

However, in geophysics, there are real abrupt
transitions between different layers of rocks. As a
result, recorded geophysical signals are often not
smooth. Smoothing the signal smoothes the ac-
tually abrupt transition — i.e., makes the resulting
model less realistic.

What we plan to do. In this paper, we show
that expert knowledge can help us overcome both
limitations of Tikhonov regularization.

4. From Semi-Heuristic Ideas of Tikhonov
Regularization to Smoothing Motivated
by Expert Knowledge

What is smoothing? Let us describe this
problem in intuitive terms. Instead of trying
to formulate smoothing as a complex optimization
problem, let us instead try to describe simple rules
describing smoothing.



We want to come up with a smooth function
X (t) which is close to measured values Z(t). Again,
instead of trying to describe closeness in complex
mathematical terms, let us simply describe this re-
quirement as an imprecise (fuzzy) relation

X (1) ~ #(t).

We have not yet described what smoothness mean
here; let us now try to describe smoothness in sim-
ilar simple terms. Intuitively, a smooth function
is the one for which the values at nearby points
are close to each other: if ¢ is close to t/, then
X(t) = X(t'). This is simple to describe, but not
as simple to solve, since, in contrast to the rela-
tion X(t) ~ Z(t) that relates the unknown X (¢)
directly to the measured value Z(t), the property
X (t) = X(t') relates two unknown values X (¢) and
X (t') to each other. So, to make it easier to use this
constraint when solving a problem, it is desirable to
reformulate these constraints in a more direct terms.
This can be done if we take into account that from
X(t) = X(t') and X (t') =~ Z(t'), we can conclude
that X (t) =~ Z(t').

Thus, the intuitive meaning of smoothing is cap-
tured by the following general rule:

if ' is close to x, then X (t) ~ Z(¢).

From the intuitive description to exact for-
mulas. For each moment ¢, once we fix a member-
ship function u(t,t’) that describes closeness, the
above rules leads to different values X (t) = Z(t')
with different degrees u(t,t'). In other words, we
get a membership function that describes possible
values of X (t). We would like to select a single esti-
mate from this membership function. For this “de-
fuzzification”, let us use centroid defuzzification, the
most widely used defuzzification procedure [6, 11],
according to which we select the value

[ ultt) @) de
 Jutt)at

How do we describe closeness? In [8], we have
shown that, under reasonable assumptions, a natu-
ral way to describe closeness is by using a Gaussian
membership function, which, in the 2isotropic case,

, (t—1)
has the form p(t,t') = exp <%‘2
For this function, the integral [ u(t,t')dt’ does not
depend on t and is, thus, equal to a constant. Thus,
after the corresponding smoothing, the value X ()
(t - 1)

202

In terms of Fourier transforms, this smoothing
takes the form X (w) = Z(w) -exp (1 - 02 - w?) .

X(1)

for some o.

is equal to X(¢t) =C - [Z(t') - exp (

The resulting expert-motivated smoothing
overcomes the first limitation of Tikhonov
regularization. The first limitation of Tikhonov’s
regularization is that when we apply an additional

smoothing to an already smoothed signal, we do
not get the same result as when we performed more
smoothing from the very beginning.

For the new smoothing procedure, there is no
such limitation: if we apply several such smooth-
ings one after another, the joint effect of all these
smoothings is equivalent to a single smoothing of
the same type. This is the easiest to show in terms
of Fourier transforms: every smoothing is equivalent
to multiplying a signal by an expression exp(—a-w?)
for some constant a (which is equal to 02/2). If we
apply several smoothings, corresponding to values
ai,-..,a,, then as a result of these smoothings, the
original Fourier transform is multiplied by the prod-

n

uct H exp(—a;-w?) of such terms, and one can eas-
i=1
ily see that this product is equal to a exp(—a - w?),

n

where a & > a;, i.e., to a single smoothing of the
i=1

same type.

Moreover, the expert-motivated smoothing
procedure is the only one that is free from
this limitation. Let us show that not only the
expert-motivated smoothing is free from the above
first limitation, it is also the only possible smoothing
procedure which is free from this limitation.

Indeed, if a smoothing procedure is free from this
limitation, this means that any smoothing can be
represented as a composition of many small smooth-
ings. Each shift-invariant smoothing has the form
z(t) — [ k(' —t) - x(t)dt for an appropriate func-
tion k(t' — t). When we apply two smoothings
one after another, this is equivalent to applying
a smoothing x(t) — [ko(t’ — ¢) - x(t) dt, where
ko(t) = [k(s) - k(t — s)ds is a convolution of two
copies of the function k(t) corresponding to a single
smoothing. Similarly, n consequent smoothings are
equivalent to applying a function k, () which is a
convolution of n copies of the function k(t).

Interestingly, the same convolution also describes
how the probability density function (pdf) k(t) of
a single random variable  get transformed into a
pdf for the sum (3 + ...+ (, of several independent
variables distributed according to the same distri-
bution with pdf k(t). We have already mentioned
that, according to the Central Limit Theorem, the
distribution of the sum of many independent ran-
dom variables is close to Gaussian — and the more
variables we add, the closer to the Gaussian distri-
bution we get.

The pdf of the Gaussian distribution has the form
C-exp(—a-t?). Thus, the convolution k,,(t) of many
functions k,,(t) has the same Gaussian form — and
the convolution with a Gaussian function is exactly
our expert-based smoothing.

Comment. From the mathematical viewpoint, the
above argument is similar to the one given in [13] for
a somewhat different problem related to geophysical
data processing.



The resulting expert-based smoothing oper-
ation is in line with heuristic geophysical
smoothing techniques. It is worth mentioning
that our expert-based smoothing is close to the
smoothing successfully used in geophysics under the
name of shape regularization [3, 9]. For example, the
paper [3] shows, on the example of the Gulf of Mex-
ico data, that the new smoothing leads to a more
adequate geophysical description than the more tra-
ditional Tikhonov smoothing.

5. What If Signals Are Sometimes Not
Smooth?

Need to consider possibly non-smooth sig-
nals: reminder. Many geophysical structures
have abrupt boundaries. As a result, the corre-
sponding signals are not always smooth: they have
abrupt transitions corresponding to these bound-
aries.

How such signals are processed now: splines.
In mathematical terms, the corresponding signals
are not always smooth, they are sometimes piece-
wise smooth. To describe such signals, it is thus
natural to use piece-wise smooth models (splines).

Splines have indeed been efficiently used in data
processing, in particular, in seismic data processing.

Limitations of the splines approach. While
splines are often successful, in some situations,
splines do not fully reflect our understanding of the
geophysical phenomena.

Indeed, general splines simply assume that there
is a non-smooth transition, without explaining what
type of a transition this is. A more adequate de-
scription should take into account not only the
specifics of the smooth part of the signal, but also
specifics of the corresponding transitions.

How to take geophysical specifics into ac-
count: finite-parametric models. In general,
specifics means that instead of considering all pos-
sible smooth (or piece-wise smooth) dependencies,
we have a family of models m(¢,¢) depending on
some parameter(s) ¢ = (cy,...,cx), models that de-
scribe the corresponding phenomenon.

For example, a linear (and, more generally,
smooth dependence can be locally well described by
a linear model x(t) &~ m(t) = ¢1 + ¢o - t, a wave can
be locally described by a sinusoid z(t) ~ m(t) =
¢1 - cos(cg - t + ¢3). There are also finite-parametric
models for such non-smooth phenomena as phase
transitions, etc.

The corresponding models are usually local.
In all the above cases, a model with a finite number
of parameters is only an approximation; the longer
the period of time that we need to cover, the less
accurate the model becomes. Thus, to provide a
more adequate description, a reasonable idea is to

use each such model only locally, i.e., to have sev-
eral (n) models each of which covers some short time
period.

In this approach, instead of k parameters, we
need k - n parameters.

Traditional approach to combining local
models: use of splines. The more parameters
we need, the more computational time and com-
putational resources we need. As a result, in the
past, when these computer resources were limited —
so that routine geophysical computations required
computers much more powerful that a usual PC —
practitioners tried to limit the number of models n,
i.e., in effect, go back to piece-wise models.

Limitations of the splines approach. The re-
sulting spline-type models were a good fit, but at
the transitions between the n regions, we have devi-
ations from smoothness which were not correspond-
ing to anything geophysically meaningful.

Let us explain this problem on an example of ap-
proximation a smooth function by linear models.
Each smooth function z(¢), in the vicinity of each
point %y, can be well approximated by a linear func-
tion: z(t) = m(t) = x(to) + @(to) - (t —to). The fur-
ther ¢ from tg, the less accurate the corresponding
approximation. To come up with an approximation
which is accurate for all moments ¢, we thus need
to use different linear approximations on different
time intervals: first m(t) = z(to) + @(to) - (¢t — to),
then m(t) = z(t1) +4(t1) - (t —t1), etc. This is OK,
but at the border between two different intervals,
the derivative of the approximating function m(t)
changes abruptly — e.g., from z(tp) to &(¢1), while
the original signal z(¢) may have been very smooth,
with a differentiable first derivative @(t).

New approach: use of local attributes. Nowa-
days, the computers are more powerful, so it has
become possible to use numerous local models. It
has even been computationally possible to consider,
for each moment ty, a model z(t, &(to)) which is the
best fit for some neighborhood of ¢y [2, 5, 4].

This approach is consistent with the geophysi-
cists’ intuition: for example, a geophysicist can
meaningfully talk about a local frequency and am-
plitude of a wave, and how these quantities change
as a wave changes.

This approach has led to interesting practical re-
sults. For example, in [2, 5] this approach helped
to enhance oil recovery by providing a clearer pic-
ture of how oil migrated in the (natural) reservoir
rock (where oil accumulates before going into the
production well).

How to translate this general idea into a pre-
cise algorithm? The papers [2, 5] use a semi-
heuristic approach to process the corresponding
models. Let us show that — similarly to smoothing
— these semi-heuristic techniques can be explained
as a natural formalization of the expert rules.



Let us therefore describe the natural expert’s
ideas. In situations when a signal is not necessarily
smooth, we cannot claim that the dependence x(t)
is smooth. However, it is still reasonable to claim
that when we have two local models m(t, &(¢)) and
m(t, c(ty)) corresponding to two nearby moments
of time t{, = tg, then the corresponding parameters
&(to) and é(t;) should be close. In other words, the
dependence ¢(tp) of the corresponding parameters
on the time ¢y should be smooth.

Thus, a natural idea is to apply the above-
described expert-based smoothing to the depen-
dence ¢(tp). To be more precise:

o first, we determine, for each tg, the values c(tg)
that provide the best fit for the observed sig-
nal Z(t) in the appropriate neighborhood of the
point tp;

e then, we apply the expert-based (Gaussian)
smoothing to the resulting dependence &(tg).

This is, in effect, how the successful practical appli-
cations were obtained in [2, 5].

Additional comment. Let us show that not only
the above idea naturally comes from the expert
knowledge, but that this idea is in good accordance
with the general Least Squares approach.

For simplicity, let us first consider the case when
the corresponding model m(t, ¢) has only one pa-
rameter c. In this case, for each moment tg, we find
the value c(to) that provides, on average, the best
fit for all the values from the neighborhood, i.e., the
value for which the integral [(z(t) —m(t, c(to)))? dt
is the smallest possible, where integration is over
all the points ¢t which are neighbors to t;. We
need to solve such a minimization problem for all
to, i.e., we need to solve many optimization prob-
lems [(Z(t) — m(t, c(to)))?* dt — H(ItI% corresponding

c(to

to different value tg.

The integral minimizes in each of these problems
depends only on the value ¢(tg) and does not de-
pend on the values ¢(t(,) corresponding to all other
moments t(. Thus, instead of considering many in-
dependent minimization problems, we can simply
minimize the sum

S / dto - / (F(t) — mt, (o)) di.

This sum is the smallest if and only each of its terms
J(@(t) — m(t, c(to))? dt is the smallest.

To clarify what J is equal to, let us re-arrange
the integration in the expression J. In the original
expression, J is the sum of expressions correspond-
ing to different values t3. For each such value, we
consider the values Z(t) corresponding to all neigh-
boring moments ¢t. Instead, let us group together
all the terms containing the given value z(t). As
a result, we get the following equivalent expression
for the minimized expression J:

7= [t [ @O - me.ctt)? o,

where the internal integration is over all moment %,
which are close to t.

We expect the local model m(t,c(ty)) to be
smoothly changing when ¢y changes. Thus, when
to is close to t, we have

m(t, c(to)) = m(t,c(t)) + 88—7? () - (ko — t).

So,
(@(t) — m(t, c(to)))? = (F(t) — m(t, c(t)))*+

(terms linear in t — to) + w(t) - (¢(t))% - (to — t)?,

2
where w(t) &f <687:) . The integral of the linear

term ¢t —to over a symmetric neighborhood is 0. The
integral of the quadratic term (¢ —ty)? is a constant
co. Thus,

J = /(a?(t)—m(t, c(t)))thJrco-/w(t)-(é(t))th.

In effect, this means that, in addition to the
Least Squares best-fit first term, we also have
a regularization-type second term describing the
smoothness of the dependence of parameters c(t)
on time ¢ — this is exactly the idea from [2, 5].
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