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Abstract

In many practical situations, we have probability distributions which
are close to normal but skewed. Several families of distributions were pro-
posed to describe such phenomena. The most widely used is skew-normal
distribution, whose probability density (pdf) is equal to the product of the
pdf of a normal distribution and a cumulative distribution function (cdf)
of another normal distribution. Out of other possible generalizations of
normal distributions, the skew-normal ones were selected because of their
computational efficiency, and not because they represent any real-life phe-
nomena. Interestingly, it turns out that these distributions do represent
a real-life phenomena: namely, in a natural simple model of scientists’
strength, this strength is skew-normally distributed. We also describe
what happens if we consider more complex models of scientists’ strength.

1 Introduction

Normal distributions are ubiquitous. In practice, many quantities – rang-
ing from the distribution of measurement errors [3] to the distribution of blood
pressure in humans – are normally distributed. The probability density of a
normal distribution has the form

f(x) =
1

σ
· f0

(
x− µ

σ

)
,

where µ is the mean, σ is the standard deviation, and

f0(x) =
1√
2π

· exp
(
−x2

2

)
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is the probability density function of the “standard” normal distribution, with
mean 0 and standard deviation 1. Correspondingly, the cumulative distribution

function (cdf) F (x)
def
= Prob(ξ ≤ x) of the normal distribution has the form

F (x) = F0

(
x− µ

σ

)
,

where F0(x)
def
=

∫ x

−∞ f0(t) dt is the cdf of the standard normal distribution.
The ubiquity of normal distribution can be explained by the fact that in

many cases, the value of the quantity is caused by many independent factors,
and the known Central Limit Theorems states, crudely speaking, that the distri-
bution of the sum of large number small independent factors is close to normal;
see, e.g., [4].

Some distributions are close to normal but skewed. Normal distribu-
tion is symmetric. In practice, we sometimes encounter distributions which are
close to normal but “skewed” (asymmetric).

Skew-normal distributions. Several different families of distributions have
been proposed to described skewed distributions which are close to normal. The
most widely used distributions of this type are skew-normal distributions, whose
probability density function has the form

f(x) = const · f0
(
x− µ

σ

)
· F0

(
x− µ′

σ′

)
for some parameters µ, σ µ′, and σ′. For σ′ = ∞, we get the usual normal
distribution; see, e.g., [1, 2, 6].

Why this form. Out of other possible approximations, skew-normal distri-
butions were introduced because they are, for many problems, computationally
efficient [1], they were not intended as exactly describing some special class of
phenomena.

What we show in this paper. In this paper, we show that skew-normal
distributions actually describe an important phenomena – namely, that a natural
simple model of scientists’ strength leads to this distribution.

We also show that a more detailed description of scientists’ strength leads
to a natural generalization of skew-normal distributions.

Comment. Some preliminary results were described in [5].

2



2 A Natural Simple Model of Scientists’
Strength

Toward a simple model: idea. To become a professional scientist, one has
to defend his/her PhD. Not all students who start their PhD studies end up
with a dissertation: some students succeed, but many don’t. Crudely speaking,
a student succeeds if his/her strength is sufficient to solve the corresponding
problem, i.e., in other words, if his/her strength is larger than or equal to the
complexity of the selected problem.

Transforming the above idea into a precise model. It is reasonable to
assume that the strength x of students entering a PhD program is normally dis-
tributed, with some mean µ and standard deviation σ. (The strength is caused
by many different factor, so it is reasonable to apply the Central Limit Theo-
rem.) It is similarly reasonable to assume that the complexity y of a problem
is normally distributed, with some mean µ′ and some standard deviation σ′.

Because of the above assumptions, the number of students of strength x who

enter the PhD program is proportional to f0

(
x− µ

σ

)
. It is also reasonable to

assume that a student picks a problem at random. Thus, out of the incoming
students of strength x, the proportion of those who succeed is equal to the
probability Proby(y ≤ x) that the randomly selected problem has complexity
≤ x – i.e., to the value F (x) of the corresponding cdf. Since the complexities

are normally distributed, this probability is equal to F0

(
x− µ′

σ′

)
.

The resulting number of scientists of strength x can be obtained by multi-

plying the number const ·f0
(
x− µ

σ

)
of incoming students of strength x by the

proportion F0

(
x− µ′

σ′

)
of those who successfully get their PhD degrees. Thus,

the probability density function that described scientists with PhDs is equal to

const · f0
(
x− µ

σ

)
· F0

(
x− µ′

σ′

)
.

This is exactly the skew-normal distribution!

3 More Detailed Models and Resulting Distri-
butions

Towards a more detailed model: idea. In the above analysis, to determine
whether a student succeeds or not in solving the corresponding problem, we
only took into account the student’s strength and the problem’s complexity. In
practice, often, there is an additional factor affecting the student’s success: the
presence of competition.

3



In a well-organized university department, students’ topics are distributed
in such a way that an unproductive competition between students from the
same university be avoided. However, since students from different universities
handle largely the same problems, competition between students from different
university is inevitable.

If we take this competition into account, then we see that for a student to
succeed, it is not enough that this student’s strength is larger than or equal
to the complexity of the problem, it is also important to make sure that the
student solves the problem ahead of the competition, i.e., that his/her strength
is larger than than the strengths of students from other departments who select
the same problem.

Transforming the above idea into a precise model. For a student of
strength x to succeed, this strength must be larger than or equal to the com-
plexity y of the selected problem and also great then the strengths x1, . . . , xn

of students from competing universities who handle the same problem. In this
case, the probability of a student succeeding is equal to the probability that

y ≤ x and x1 ≤ x and . . . and xn ≤ x.

It is reasonable to assume that the corresponding distributions are independent,
so this probability is equal to the product of the corresponding probabilities

Proby(y ≤ x) · Prob1(x1 ≤ x) · . . . · Probn(xn ≤ x).

For each university i, the strengths xi are normally distributed with mean µi

and standard deviation σi. Thus, the probability that a student of strength x
succeeds is equal to the product

F0

(
x− µ′

σ′

)
· F0

(
x− µ1

σ1

)
· . . . · F0

(
x− µn

σn

)
.

As a result, the probability density function that describes scientists with PhDs
is equal to

const · f0
(
x− µ

σ

)
· F0

(
x− µ′

σ′

)
· F0

(
x− µ1

σ1

)
· . . . · F0

(
x− µn

σn

)
.

This is a generalization of the skew-normal distribution, in which the original
pdf is multiplied not by one normal cdf, but possible by many normal cfds.
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