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Abstract—One of the main objectives of ecology is to analyze,
maintain, and enhance the bio-diversity of different ecosystems.
To be able to do that, we need to gauge bio-diversity. Several
semi-heuristic diversity indices have been shown to be in good
accordance with the intuitive notion of bio-diversity. In this
paper, we provide a theoretical justification for these empirically
successful techniques. Specifically, we show that the most widely
used techniques – Simpson index – can be justified by using
simple fuzzy rules, while a more elaborate justification explains
all empirically successful diversity indices.

I. INTRODUCTION

Gauging bio-diversity is important. One of the main ob-
jectives of ecology is to study and preserve bio-diversity.
To compare different situations and different strategies, it
is therefore important to have a numerical measure of bio-
diversity that would adequately describe the diversity in a
given area.

How bio-diversity is measured now. Most existing measures
of diversity are based on the relative frequencies pi of different
species. The most widely used measures are the Shannon
index [14]

H = −
n∑

i=1

pi · ln(pi), (1)

and the Simpson index [15]

D =
n∑

i=1

p2i (2)

(see, e.g., [1], [2]). The Simpson index is also known as
the Herfindahl index [6] or the Herfindal-Hirschman in-
dex (HHI) [7].

Both measures attain their largest values when there are no
species is rare than others, i.e., when when all the frequencies
are the same

p1 = . . . = pn =
1

n
.

In addition to the original Simpson index D, ecologists also
use indices which are related to D such as the inverse Simpson
index

1

D

and the Gini-Simpson index 1−D. The Gini-Simpson index is
also known as the probability of interspecific encounter (PIE),
as the Gibbs-Martin index [5], and as the Blau index.

In addition to the Simpson index, which is the sum of
squares of corresponding frequencies, ecologists also use
indices related to the sum of the q-th powers

n∑
i=1

pqi , (3)

for an arbitrary real value q. For example, they use Rényi
entropy [13]

Hq =
1

1− q
· ln

(
n∑

i=1

pqi

)
. (4)

Rënyi entropy if not directly defined for q = 1, but we can
defined if we take a limit q → 1. In this limit, the expression
(4) tends to the Shannon index (1).

Why these measures? Experience has shown that the above
measures of diversity are, empirically, in good accordance
with the ecologists’ intuition. However, from the theoretical
viewpoint, the success of these particular measures of diversity
is somewhat puzzling: why these expressions and not other
possible expressions?

What we do in this paper. In this paper, we provide possible
justification for the above empirically successful measures. To
be more precise, we provide two possible justification:

• we start with a simple fuzzy logic-based justification
which explains Simpson index, and then

• we provide a more elaborate justification that explains all
the above diversity measures.

Comment. Our “more elaborate” justification uses mathemat-
ical techniques similar to the ones that we used in [9] for a
different practical problem: how to select the most appropriate
image reconstruction technique.

II. A STRAIGHTFORWARD FUZZY-BASED EXPLANATION
OF SIMPSON INDEX

An intuitive meaning of bio-diversity. An ecosystem is
perfectly diverse if all the species that form this ecosystem
are reasonably frequent but not dominant. In other words, the
ecosystem is healthy if:

• the first species is reasonably frequent but not dominant,
and



• the second species is reasonably frequent but not domi-
nant,

• etc.

Let us translate this intuitive meaning into a precise
measure of diversity. The above intuitive statement is not
precise, since it uses an imprecise (“‘fuzzy”) natural-language
terms like “reasonably frequent” and “not dominant”. We need
to translate this statement into precise terms.

The need to translate statements containing imprecise
(“fuzzy”) words from natural language into precise terms was
recognized in the early 1960s by L. Zadeh who invented, for
such translations, a special techniques that he called fuzzy
logic; see, e.g., [8], [12], [17]. Let us therefore use fuzzy logic
techniques to translate the above statement into precise terms.

What is the meaning of “reasonably frequent”. The above
statement consists of several elementary statements combined
by “and”. In accordance with the general fuzzy logic method-
ology, let us first describe each elementary statement in precise
terms. For that, we need to assign a precise meaning to the
terms “reasonably frequent” and “not dominant”.

In fuzzy logic, the meaning of each imprecise word is de-
scribed by a membership function that assigns, to each possible
value x of the corresponding quantity, a degree µ(x) to which
this value satisfies the corresponding imprecise property. In
our case, we thus need to assign, to each possible value
of frequency pi, a degree µ(pi) to which the corresponding
species is reasonably frequent and not dominant.

Let us combine the elementary statements into a single
composite statement describing diversity. We are interested
in the degree to which a given ecosystem is diverse. As
we have mentioned, the ecosystem is diverse if the above
elementary statement holds for the first species and for the
second species, etc.

We already know the degree µ(pi) to which each individual
statement holds. In fuzzy logic, the degree to which an “and”-
combination of several statements is true, we apply a special
“and”-operation f& : [0, 1] × [0, 1] → [0, 1] (also known as a
t-norm) to the degrees to which individual statements are true.

The general strategy in applications of fuzzy techniques is
to select the simplest possible “and”-operation; see, e.g., [8],
[12]. In line with this idea, the two most frequently used (and
more practically successful) “and”-operations are the product
and the minimum.

Minimum is somewhat easier to compute, but let us recall
that our objective is not simply to gauge diversity, but to come
up with some recommendations for boosting bio-diversity. In
other words, our objective is not so much to estimate, but
rather to use the resulting estimates as an objective function
whose value we try to maximize.

Most efficient optimization techniques use differentiation.
Actually, optimization was one of the main reasons why
calculus was invented in the first place – since it turned out
that to find the optimum of a function, it is sufficient to find the

point where its derivative is equal to 0. From this viewpoint,
it is desirable to come up with the differentiable measure of
diversity.

This desire eliminates minimum, since min(a, b) is not
always differentiable: namely, it is not differentiable when
a = b. Thus, of the two simplest “and”-operations, we should
select the product.

What is the resulting measure of diversity. The resulting
measure of diversity is thus equal to the product

n∏
i=1

µ(pi) (5)

of the values µ(pi) corresponding to all the species from this
ecosystem.

This expression can be somewhat simplified if we take into
account that maximizing the product is equivalent to maxi-
mizing its logarithm L, and that the logarithm of the product
is equal to the sum of the logarithms. Thus, maximizing the
product is equivalent to maximizing the expression

L =
n∑

i=1

f(pi), (6)

where we denoted f(pi)
def
= ln(µ(pi)).

In a diverse ecosystem all the frequencies pi are rather
small – if one of the values is large, this means that we have
a dominant species, the ecosystem is no longer diverse. For
small pi, we can replace each value f(pi) with the sum of the
few first terms in its Taylor expansion.

In the first approximation, we can take f(pi) = a0+a1 ·pi,
and thus,

L =
n∑

i=1

(a0+a1 ·pi) =
n∑

i=1

a0+
n∑

i=1

a1 ·pi = a0 ·n+a1 ·
n∑

i=1

pi.

The sum of all the frequencies pi is 1, so in this approximation,
L = a0 · n + a1. This expression does not depend on the
frequencies pi at all and thus, cannot serve as a reasonable
measure of diversity.

So, to adequately describe diversity, we need to take into
account quadratic terms in the Taylor expansion, i.e., take
f(pi) = a0 + a1 · pi + a2 · p2i . In this approximation,

L =

n∑
i=1

(a0 + a1 · pi + a2 · p2i ) = a0 · n+ a1 + a2 ·
n∑

i=1

p2i .

Since a0, a1, and a2 are constants, maximizing this expression
is equivalent to maximizing the sum

n∑
i=1

p2i .

So, we have indeed justified the use of Simpson index.



III. A MORE ELABORATE JUSTIFICATION THAT EXPLAINS
ALL EMPIRICALLY SUCCESSFUL DIVERSITY MEASURES

The ultimate purpose of diversity estimation is decision
making. As we have mentioned, the ultimate purpose of
gauging uncertainty is to make a decision. When we have
a diverse ecosystem, we need to decide how to preserve and
maintain the corresponding healthy level of bio-diversity. In
situations when the level of diversity is far from ideal, we need
to come up with some recommendations on how to improve
bio-diversity.

From this viewpoint, what we really want is to describe
the expert’s preferences: which combinations of frequencies
p = (p1, . . . , pn) are preferred and which are not.

How to describe preferences? There exists a general
formalism. The necessity to describe preferences is extremely
important in decision making in general, including decision
making under conflict (also known under a somewhat mis-
leading name of game theory). To describe these preferences,
a special utility theory has been developed; see, e.g., [3], [10],
[11], [16].

The mathematical formalism of utility theory comes from
the observation that sometimes, when a person faces several
alternatives A1, . . . , An, instead of choosing one of these al-
ternatives, this person may choose a probabilistic combination
of them, i.e., A1 with probability P1, A2 with a probability
P2, etc. For example, if two alternatives are of equal value to
a person, that person will probably choose the first one with
probability 0.5 and the second one with the same probability
0.5. Such probabilistic combinations are called (somewhat
misleadingly) lotteries.

For example, in ecology, in addition to (often very costly)
plans that guarantee that bio-diversity improves, it makes
sense to also consider more affordable plans that improve bio-
diversity only with a certain probability.

In view of this realistic possibility, it is desirable to consider
the preference relation not only for the original alternatives,
but also for arbitrary lotteries combining these alternatives.
Each original alternative Ai can be viewed as a degenerate
lottery, in which this alternative Ai appears with probability
1, and every other alternative Aj ̸= Ai appear with probability
0.

The main result of utility theory states that if we have an
ordering relation L ≽ L′ between such lotteries (with the
meaning “L is preferable to L′”), and if this relation satisfies
natural consistency conditions such as transitivity, etc., then
there exists a function u from the set L of all possible lotteries
into the set R of real numbers for which:

• L ≽ L′ if and only if u(L) ≥ u(L′), and
• for every lottery L, in which each alternative Ai appears

with probability pi, we have

u(L) = P1 · u(A1) + . . .+ Pn · u(An).

This function u is called a utility function. Each consistent
preference relation can thus be described by its utility function.

In our case, to describe preferences between frequency tu-
ples p = (p1, . . . , pn), we need a utility function u(p1, . . . , pn)
that is defined on the set of all possible tuples.

Which function should we choose?

Localness property: intuitive idea. An important intuitive
feature of bio-diversity is the localness property. This property
is motivated by the fact that, in addition to the bio-diversity of
the whole ecosystem, we may be interested in the bio-diversity
of its subsystem.

For the whole ecosystem, the sum of frequencies is 1. When
we analyze a subsystem, we only take into account some of
the species, so the sum of the frequencies can be smaller than
1.Thus, we need to consider the values u(p) for tuples for
which

∑
i

pi < 1.

It should be mentioned, however, that while it makes sense
to compare two possible arrangement within the ecosystem as
a whole, or two possible arrangements within a subsystem of
this ecosystem, we do not consider a more complex problem
of comparing the bio-diversity of the whole ecosystem with
the bio-diversity of a subsystem. In precise terms, it means that
only compare tuples p = (p1, . . . , pn) and p′ = (p′1, . . . , p

′
n)

for which
n∑

i=1

pi =
n∑

i=1

p′i.

Let us now consider two tuples p = (p1, . . . , pn) and
p′ = (p′1, . . . , p

′
n) which are, in this sense, comparable. Let us

assume that for some species, the frequencies are the same,
i.e., pi = p′i for all indices i from some set I . Suppose also
that, from the point of bio-diversity, the tuple p is preferable
to tuple p′: p ≽ p′.

Intuitively, this means that while in the two tuples, the level
of diversity is the same for species from the set I , species from
the complement set −I have a higher degree of bio-diversity.
Thus, if we replace the values pi = p′i corresponding to species
i ∈ I with some other values qi = q′i while preserving the
same frequencies for species i ̸∈ I (i.e., qi = pi and q′i = p′i
for such i), then the resulting tuple q will still correspond to
a higher degree of bio-diversity the tuple q′: q ≽ q′.

Localness property: description in precise terms. In precise
terms, this localness property takes the following form. Let
I ⊆ {1, . . . , n} be a set of indices, let p ≽ p′ be two tuples
for which pi = p′i for all i ∈ I , and let q and q′ be another
two tuples for which:

• qi = pi and q′i = p′i for all i ̸∈ I; and
• qi = q′i for all i ∈ I .

Then, q ≽ q′.

Consequences of localness property. Such a localness prop-
erty (also known as independence property) is a frequent
feature in practical problems, and utility theory has developed
a precise description of utility functions that satisfy this
property. Namely, it has been shown that when alternatives
are characterized by n parameters x1, . . . , xn, then the lo-
calness of the preference is equivalent to the utility function
u(x1, . . . , xn) being of one of the two types [4]:



• additive u(x1, . . . , xn) = u1(x1)+. . .+un(xn) for some
functions ui(xi); or

• multiplicative U(x1, . . . , xn) = U1(x1) · . . . ·Un(xn) for
some functions Ui(xi).

Multiplicative case can be reduced to an additive one. Our
objective is to compare different tuples. We are not interested
in specific values of utility, we only want to find out which
tuples correspond to higher degree of bio-diversity. Since
logarithm is a strictly increasing function, the comparison
U(p) ≥ U(p′) is equivalent to ln(U(p)) ≥ ln(U(p′)). So,
instead of the original degree U(p), we can also use ln(U(p))
as a measure of bio-diversity.

For the product utility

U(p1, . . . , pn) =

n∏
i=1

Ui(pi),

its logarithm is the sum of the corresponding logarithms

ln(U(p)) =
n∑

i=1

ln(Ui(pi)).

Thus, in the multiplicative case, we can use an additive
measure of bio-diversity

u(p) =
n∑

i=1

ui(pi),

where u(p)
def
= ln(U(p)) and ui(pi)

def
= ln(ui(pi)).

Thus, in both case, we can use an additive measure of bio-
diversity

u(p) =
n∑

i=1

ui(pi).

The degree of bio-diversity should not change if we change
the arbitrary numbers assigned to different species. In our
formulation of the problem, we only take into account the
frequencies of different species. In this formulation, numbers
assigned to species – which species is number 1, which is
number 2, etc. – are arbitrary. So, if we simply change these
arbitrarily selected numbers, the degree of bio-diversity should
not change.

Thus, the dependence of ui on pi should not depend on
i, i.e., we should have ui(pi) = d(pi) for one of the same
function d(p). In this case, the desired degree of bio-diversity
is equal to

u(p) =
n∑

i=1

d(pi).

So, the question is which functions d(p) are appropriate for
describing bio-diversity.

Without losing generality, we can assume that the function
d(p) is twice differentiable. Since our ultimate goal is
optimization, it is desirable to consider only smooth (dif-
ferentiable) functions d(p), because for smooth functions,
optimization is as easy as computing the derivatives and

equating them to 0. Moreover, since many useful optimization
techniques use the second derivatives as well, it is desirable
to consider only twice differentiable functions.

Fortunately, we can impose this restriction without losing
generality, because, as it is well known, every continuous
function can be, with an arbitrary accuracy, approximated by
twice differentiable functions (even by polynomials). Since
we are dealing with not 100% accurate data anyway, there
is no reason to compute the bio-diversity measure absolutely
precisely. Therefore, even if the actual expert opinion on bio-
diversity is best described by a non-smooth function d(p),
we can, within any given accuracy, still approximate it by a
smooth function. Because of this possibility, in the following
text, we will assume that the desired function d(p) is twice
differentiable.

Possibility of scaling. We have mentioned earlier that we
can either consider bio-diversity of the ecosystem as a whole,
or, alternatively, bio-diversity of its subsystem. Strictly speak-
ing, however, this distinction is rather artificial: in nature,
everything is related, so each ecosystem can be viewed as
a subsystem of a larger ecosystem – all the way to the entire
biosphere.

Whether we consider an ecosystem by itself or as a part
of larger ecosystem changes the corresponding frequencies. If
we consider an ecosystem by itself, then the corresponding
frequencies add up to 1:

n∑
i=1

pi = 1.

Alternatively, when we consider this ecosystem as a part of
the larger ecosystem, the frequencies change: previously, each
frequency was determined as

pi =
ni

n
,

where ni is the total population of the i-th species in the given
area and n is the total bio-population in this area. Now, instead,
we have the ratio

ni

N
,

where N is the total bio-population of the larger area. Thus,
the new frequencies have the form λ · pi, where we denoted

λ
def
=

n

N
.

So, instead of the original tuple p = (p1, . . . , pn), we have a
new tuple λ · p def

= (λ · p1, . . . , λ · pn).
Relative bio-diversity of a region should not depend on

whether we consider this region as a separate ecosystem or
as a part of a larger ecosystem. Thus, if we have p ≽ p′ for
two tuples, we should also have λ · p ≽ λ · p′.

Since p ≽ p′ is equivalent to
n∑

i=1

d(pi) ≥
n∑

i=1

d(p′i),

we thus arrive at the following precise description of the
scaling property.



Definition 1. We say that a twice differentiable function d(p)
is scale-invariant if for every two tuples p = (p1, . . . , pn) and
p′ = (p′1, . . . , p

′
n) for which

n∑
i=1

pi =
n∑

i=1

p′i and
n∑

i=1

d(pi) =
n∑

i=1

d(p′i),

and for every real number λ > 0, we have
n∑

i=1

d(λ · pi) =
n∑

i=1

d(λ · p′i).

Definition 2. We say that two functions d1(p) and d1(p) are
equivalent if d2(p) = a+ b · p+ c · d1(p) for some constants
a and b > 0.

Comment. When the functions d1(p) and d2(p) are equivalent,
then

n∑
i=1

d2(pi) = a · n+ b+ c ·
n∑

i=1

d1(pi).

Thus, when we compare different tuples, these two functions
d1(p) and d2(p) lead to the same conclusions on which tuple
corresponds to larger bio-diversity.

Proposition. Every scale-invariant function is equivalent to
d(p) = ± ln(p), d(p) = ±pq for some q, or to

d(p) = ±p · ln(p).

Discussion. The corresponding sums
n∑

i=1

d(pi)

are exactly Shannon, Simpson, and Rényi indices. Thus, we
have indeed explained why exactly these indices adequately
describe expert’s intuition about bio-diversity.

Proof.

1◦. Let us consider small deviations p′i = pi+ε ·∆pi for some
small ε. Then,

n∑
i=1

p′i =
n∑

i=1

(pi + ε ·∆pi) =
n∑

i=1

pi + ε ·
n∑

i=1

∆pi;

n∑
i=1

d(p′i) =
n∑

i=1

d(pi + ε ·∆pi) =

n∑
i=1

(d(pi) + d′(pi) · ε ·∆pi +O(ε2)) =

n∑
i=1

d(pi) + ε ·
n∑

i=1

d′(pi) ·∆pi +O(ε2);

and
n∑

i=1

d(λ · p′i) ≈
n∑

i=1

d(λ · pi + λ · ε ·∆pi) =

n∑
i=1

(d(λ · pi) + d′(λ · pi) · λ · ε ·∆pi +O(ε2)) =

n∑
i=1

d(λ · pi) + λ · ε ·
n∑

i=1

d′(λ · pi) ·∆pi +O(ε2),

where d′(p) denotes the derivative of the function d(p).
Thus, for these pairs p and p′, scale-invariance means that if

n∑
i=1

∆pi = 0 and
n∑

i=1

d′(pi) ·∆pi +O(ε) = 0,

then
n∑

i=1

d′(λ · pi) ·∆pi +O(ε) = 0.

In the limit ε → 0, we have the following implication: if
n∑

i=1

∆pi = 0 and
n∑

i=1

d′(pi) ·∆pi = 0,

then
n∑

i=1

d′(λ · pi) ·∆pi = 0.

2◦. The above property can be reformulated in geometric
terms, if we take into account that the sum

n∑
i=1

∆pi

is a dot (scalar) product between the vector ∆p =

(∆p1, . . . ,∆pn) and a unit vector e def
= (1, . . . , 1):

n∑
i=1

∆pi = ∆p · e.

In this terms, the fact that ∆p · e = 0 means that the vector
∆p is orthogonal to the vector e.

Similarly,
n∑

i=1

d′(pi) ·∆pi = d′ ·∆p,

where d′
def
= (d′(p1), . . . , d

′(pn)), and
n∑

i=1

d′(λ · pi) ·∆pi = d′λ ·∆p,

where d′λ
def
= (d′(λ · p1), . . . , d′(λ · pn)).

Thus, the above property says that any vector ∆p which is
orthogonal to both vectors e and d′ is also orthogonal to the
vector d′λ.

In geometric terms, it is easy to prove that if a vector v is
orthogonal to every vector x that is orthogonal to two given
vectors v1 and v2, then v belongs to the linear space generated
by v1 and v2: indeed, otherwise, we could take a projection
π(v) of v on the orthogonal complement to that linear space;



this projection is orthogonal to both vi, but not to v. Thus, for
every tuple p and for every λ, we have

d′λ = α(λ, p) · e+ β(λ, p) · d′

for some coefficients α and β which, in general, depend on λ
and on p. In terms of the vector components, this means that
for every i, we have

d′(λ · pi) = α(λ, p) + β(λ, p) · d′(pi). (7)

3◦. Let us show that the values α and β depend only on λ
and do not depend on the tuple p. Let us first prove this for
β. Indeed, if we subtract the equations (7) corresponding to
two different indices i and j, we conclude that

d′(λ · pi)− d′(λ · pj) = β(λ, p) · (d′(pi)− d′(pj)), (8)

i.e., that

β(λ, p) =
d′(λ · pi)− d′(λ · pj)

d′(pi)− d′(pj)
. (9)

The right-hand side of this equality only depends on pi and
pj and does not depend on any other frequencies pk. Thus,
the coefficient β(λ, p) only depends on pi and pj and does
not depend on any other frequencies pk.

If we consider a similar formula with a different pair
(i′, j′), we will conclude that β(λ, p) does not depend on the
frequencies pi and pj either. Thus, β does not depend on the
tuple p at all, it only depends on λ: β(λ, p) = β(λ).

Thus, the formula (7) has the form

d′(λ · pi) = α(λ, p) + β(λ) · d′(pi), (10)

hence
α(λ, p) = d′(λ · pi)− β(λ) · d′(pi). (11)

The right-hand side of this formula only depends on pi
and does not depend on any other frequency pj . Thus, the
coefficient α(λ, p) only depends on pi and does not depend
on any other frequency pj .

If we consider a similar formula with a different index i′, we
will conclude that α(λ, p) does not depend on the frequency
pi either. Thus, α does not depend on the tuple p at all, it only
depends on λ: α(λ, p) = α(λ). So, the formulas (7) and (10)
take the form

d′(λ · pi) = α(λ) + β(λ) · d′(pi). (12)

4◦. We assumed that the function d(p) is twice differentiable.
Thus, the function D(p)

def
= d′(p) is differentiable. In terms of

this function, the equality (12) take the form

D(λ · pi) = α(λ) + β(λ) ·D(pi). (13)

Let us prove that the functions α(λ) and β(λ) are also
differentiable. Indeed, from the formula (9), we conclude that

β(λ) =
D(λ · pi)−D(λ · pj)

D(pi)−D(pj)
. (14)

Since the function D(p) is differentiable, the right-hand side
of the formula (14) is differentiable and thus, its left-hand side
(i.e., the function β(λ)) is differentiable as well.

From the formula (11), it follows that

α(λ) = D(λ · pi)− β(λ) ·D(pi). (15)

Since the functions D(p) and β(λ) are differentiable, we can
thus conclude that the function α(λ) is differentiable as well.

5◦. Now, we are ready to deduce the differential equation from
the functional equation (13).

Since all three functions D(p), α(λ), and β(λ), are differ-
entiable, we can differentiate both sides of the equation (13)
with respect to λ and substitute λ = 1. As a result, we get the
following differential equation:

p · dD
dp

= A+B ·D, (16)

where we denoted A
def
= α′(1) and B

def
= β′(1).

6◦. To solve the equation (16), let us separate the variables D
and p by multiplying both sides by

dp

p · (A+B ·D)
;

then, the equation takes the form

dD

A+B ·D
=

dp

p
. (17)

This equation is easy to integrate; the resulting solution is
slightly different for B = 0 and B ̸= 0.

6.1◦. If B = 0, then integrating both parts of (17), we get
A−1 · D = ln(p) + C1 (C1, C2, . . . will denote constants).
Hence,

D(p) = d′(p) = A · ln(p) + C2,

and integrating again, we get

d(p) = A · p · log(p) + C2 · p+ C3

for some constants Ci.
Thus, in this case, the function d(p) is equivalent to the

function ±p · ln(p) that corresponds to the Shannon index.

6.2◦. If B ̸= 0, then

dD

A+B ·D
=

d(D + c)

A · (D + c)
,

where we denoted
c

def
=

A

B
,

hence
d(D + c)

A · (D + c)
=

dp

p
. (18)

After integrating both parts of the equation (18), we get

A−1 · ln(D + c) = ln(p) + C1; (19)



hence ln(D+c) = A · ln(p)+C2, and so, after exponentiating,
we get D + c = C3 · pA. Thence,

d′(p) = D(p) = C3 · pA + C4.

• If A ̸= −1, we get

d(p) = C5 · pA+1 + C4 · I + C6.

Thus, the function d(p) is equivalent to the Rényi index.
• If A = −1, we similarly get

d(p) = C5 · ln(p) + C4 · I + C6,

in which case the function d(p) is equivalent to ± ln(p).

7◦. In both cases B = 0 and B ̸= 0, the function d(p) is
equivalent to one of the functions listed in the formulation of
the Proposition. theorem. The Proposition is thus proven.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721.

REFERENCES

[1] S. Braude and B. S. Low (eds.), An Introduction to Methods and Models
in Ecology, Evolution, and Conservation Biology, Princeton University
Press, Princeton, New Jersey, 2010.

[2] G. Cox, General Ecology Laboratory Manual, McGraw-Hill, New York,
2001.

[3] P. C. Fishburn, Utility Theory for Decision Making, John Wiley & Sons
Inc., New York, 1969.

[4] P. C. Fishburn, Nonlinear Preference and Utility Theory, The John
Hopkins Press, Baltimore, MD, 1988.

[5] J. P. Gibbs and W. T. Martin, “Urbanization, technology, and the division
of labor”, American Sociological Review, 1962, Vol. 27, pp. 667–677.

[6] O. C. Herfindal, Concentration in the U.S. Steel Industry, PhD Disserta-
tion, Columbia University, 1950.

[7] A. O. Hirshman, National Power and the Structure of Foreign Trade,
Berkeley, 1945.

[8] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall, Upper Saddle River, New Jersey, 1995.

[9] O. Kosheleva, “Symmetry-group justification of maximum entropy
method and generalized maximum entropy methods in image processing”,
In: G. J. Erickson, J. T. Rychert, and C. R. Smith (eds.), Maximum Entropy
and Bayesian Methods, Kluwer, Dordrecht, 1998, pp. 101–113.

[10] D. R. Luce and H. Raiffa, Games and Decisions, Introduction and
critical survey, John Wiley & Sons, Inc., New York, 1957.

[11] R. B. Myerson, Game Theory: Analysis of Conflict, Harvard University
Press, Cambridge, MA, 1991.

[12] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[13] A. Rényi, “On measures of entropy and information”, Proceedings of
the fourth Berkeley Symposium on Mathematics, Statistics and Probability
1960, pp. 547–561.

[14] C. E. Shannon, “A mathematical theory of communication”, The Bell
Systems Technical Journal, 1948, Vol. 27, pp. 379–423 and 623–656.

[15] E. H. Simpson, “Measurement of diversity”, Nature, 1949, Vol. 163,
p. 688.

[16] P. Suppes, D. M. Krantz, R. D. Luce, and A. Tversky, Foundations of
Measurement. Vol. II. Geometrical, Threshold, and Probabilistic Repre-
sentations, Academic Press, San Diego, CA, 1989.

[17] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.


