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Abstract—To gauge the risk corresponding to a possible disas-
ter, it is important to know both the probability of this disaster
and the expected damage caused by such potential disaster
(“expected shortfall”). Both these measures of risk are easy to
estimate in the ideal case, when we know the exact probabilities
of different disaster strengths. In practice, however, we usually
only have a partial information about these probabilities: we may
have an interval (or, more generally, fuzzy) uncertainty about
these probabilities. In this paper, we show how to efficiently
estimate the expected shortfall under such interval and/or fuzzy
uncertainty.

I. FORMULATION OF THE PROBLEM

How to gauge risk. In the ideal world, there should be no risk:
all engineering designs should be 100% reliable. To achieve
such reliability, civil engineers use the record of historic floods,
tsunamis, hurricanes, earthquakes, and other natural disasters
to estimate the largest possible strength of such a disaster, and
design the buildings, bridges, and other structures so that they
can withstand such disasters.

The historic experience shows, however, that there is always
a possibility that the disaster strength S exceeds the estimated
threshold s0: this was the reason why the hurricane Katrina
devastated New Orleans, why in 2011, Fukushima nuclear
power station in Japan was destroyed by an unusually high
tsunami, etc.

Since we cannot have a threshold s0 that would guarantee
that the disaster strength never exceeds s0, the next best
thing is to select a threshold s0 for which the probability of
exceeding s0 does not exceed a given small number p0, i.e.,
for which, we probability p

def
= 1− p0 ≈ 1, we have S ≤ s0.

The choice of the threshold probability p0 depends on the
situation. For example:

• for manned space flights, NASA selected p0 = 10−3;
smaller values were not feasible because of high uncer-
tainty associated with space flights;

• on the other extreme, for reliability of a cell forming
a computer memory, we need p0 ≪ 10−9, because

otherwise, if we allow p0 ≫ 10−9, at least one of the
billions of cells will always go wrong.

In addition to knowing the threshold s0, it is also desirable
to also know how much damage will come, on average,
if this threshold is exceeded. For each possible value S
of the corresponding disaster strength, we can estimate the
corresponding damage X; the stronger the disaster, the larger
the damage. Let xp denote the damage corresponding to the
threshold value s0; then, the condition S ≥ s0 is equivalent
to X ≥ xp.

In these terms, the probability that the disaster strength
exceeds the threshold s0 is equal to Prob(X > xp). In
addition to this probability, it is desirable to also know the
conditional expectation of the damage under the condition that
the disaster strength exceeds the threshold xp, i.e., the value

ESp
def
= E[X |X ≥ xp].

The corresponding conditional expectation is known as
expected shortfall. These two values:

• the threshold xp, and
• the expected shortfall ESp,

is how we gauge the risk.
Similar two measures are used in finance to describe the risk

that an investment would result in a big loss; see, e.g., [4].

How to estimate the expected shortfall in the ideal case,
when we know the probability distribution describing
damage. In the ideal case, we know the probability distribution
that describes possible values of the damage X . A usual
way to describe a probability distribution is by describing its
cumulative distribution function (cdf) F (x)

def
= Prob(X ≤ x);

see, e.g., [6].
In terms of cdf, the probability of exceeding the threshold

value x0 is simply equal to 1 − F (xp). Thus, we have
1 − F (xp) = p0 and hence, F (xp) = 1 − p0 = p. For each
probability p, the value xp for which F (xp) = p is known as
the p-th quantile. For example:



• for d = 0.5, we get the median;
• for d = 0.25 and d = 0.75, we get quartiles,

etc. In mathematical terms, the function that maps d to xd is
an inverse function to the cdf F (x).

The conditional expectation can then be computed as the
ratio ∫∞

xp
x dF (x)

1− p
. (1)

In practice, we only have partial information about the
probabilities. In practice, we rarely know the exact values of
all the probabilities, we only have partial information about
these probabilities. This may mean that, instead of the exact
values F (x) corresponding to different values x, we only know
an interval [F (x), F (x)] that contains the actual (unknown)
value F (x). Such situation when, for each d, we only know
the corresponding intervals, is known as a probability box or,
for short, a p-box; see, e.g., [1], [2].

Even more generally, for each x, we may have several
intervals [F (x), F (x)] corresponding to different degrees of
certainty α ∈ [0, 1], i.e., in effect, a fuzzy number; see, e.g.,
[3], [5], [7].

How to gauge risk under such an uncertainty? For different
distributions F (x) ∈ [F (x), F (x)] within a given p-box, we
get different values of quantiles xp for which F (xp) = p. One
can easily check that:

• the smallest value xp corresponds to the largest values
F (x) of the cdf; while

• the largest value xp corresponds to the smallest values
F (x) of the cdf.

Thus, possible values of the quantile xp form an interval
[xp, xp] in which F (xp) = F (xp) = p.

Such quantile intervals are often useful when we perform
computations with p-boxes; see, e.g., [1], [2].

We can use this idea to handle the case when we have a
fuzzy-valued function F(x), if we take into account the known
fact that for all possible computation y = f(x1, . . . , xn) with
fuzzy numbers, the alpha-cut

y(α)
def
= {y : µ(y) ≥ α}

of the result is equal to the range

f(x1(α), . . . ,xn(α)) =

{f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}

of the values f(x1, . . . , xn) when each xi belongs to the
corresponding α-cut xi(α) = {xi : µi(xi) ≥ α}; see, e.g.,
[3], [5].

Thus, to find the α-cut of the quantile xp, it is sufficient
to compute the interval [xp, xp] in situation when each F (x)
belongs to the corresponding α-cut of the fuzzy number F(x).

Such straightforward computation is possible because the
dependence of the probability p = F (xp) on the unknown
function F (x) is monotonic (namely, increasing), and that each

cdf F (x) is also an increasing function. So, if we increase the
values of the function F (x), then for newly increased function
F̃ (x), we will have F̃ (xp) > F (xp) = p. Thus, to find the
value x̃p for which F̃ (xp) = p, we need to decrease the value
xp: x̃p < xp.

So, to find the range of possible values [xp, xp] of the
quantile xp, we do not need to enumerate all possible functions
F (x) from the p-box [F (x), F (x)] – because of monotonicity,
we know that:

• the smallest value xp of the quantile xp is attained when
the cdf F (x) attains its largest possible value, i.e., when
F (x) = F (x) for all x; and

• the largest value xp of the quantile xp is attained when
the cdf F (x) attains is smallest possible value, i.e., when
F (x) = F (x) for all x.

For expected shortfall, different probability distributions
from the p-box, in general, lead to different values. We
would like to find the range of possible values of the ex-
pected shortfall. Estimating this range, however, is not a
very straightforward task: when we increase F (x), it is not
a priori clear whether the corresponding integral increases
or decreases. Thus, we cannot immediately come up with a
simple expression for the range of the expected shortfall.

It is therefore necessary to come up with efficient algorithms
for estimating the range of the expected shortfall under p-box
(interval) uncertainty. Similarly, for the fuzzy case, we need
to be able to transform the fuzzy-valued cdf F(x) into a fuzzy
value for the resulting expected shortfall.

What we do in this paper. In this paper, we provide the
efficient algorithms for computing the expected shortfall under
interval (p-box) and fuzzy uncertainty.

To be more precise, we produce an algorithm for computing
the expected shortfall under interval (p-box) uncertainty. Based
on what we mentioned earlier about fuzzy computations, to
find the α-cut of the expected shortfall, it is sufficient to
compute the range of possible values of ESp of the expected
shortfall in situation when each F (x) belongs to the corre-
sponding α-cut of the fuzzy number F(x). In other words,
from the algorithmic viewpoint, the problem of computing
the expected shortfall under fuzzy uncertainty can be indeed
reduced to the case of interval (p-box) uncertainty.

II. ANALYSIS OF THE PROBLEM

Let us find an equivalent expression for ESp. To find the
range of possible values of expected shortfall ESp, let us
find an equivalent expression for ESp that would simplify the
computation of this range.

According to formula (1), we have

ESp =
1

1− p
· I, (3)

where
I

def
=

∫ ∞

xp

x dF (x). (4)

Thus:



• the expected shortfall ESp attains its smallest possible
value ESp when the integral I attains its smallest possible
value I , and

• the expected shortfall ESp attains its largest possible
value ESp when the integral I attains its largest possible
value I .

The integral I has an infinite upper bound. This integral
can be thus represented as a limit of integrals IT with a finite
upper bound T when T → ∞:

I = lim
T→∞

IT , (5)

where
IT

def
=

∫ ∞

xp

x dF (x). (6)

Thus, for very large T , we have I ≈ IT .
The integral IT can be integrated by part:

IT = x · F (x)|Txp
−

∫ T

xp

F (x) dx =

T · F (T )− xp · F (xp)−
∫ T

xp

F (x) dx. (7)

For large T , we have F (T ) practically equal to

lim
T→∞

F (T ) = 1,

so T · F (T ) = T and

IT = T − xp · F (xp)−
∫ T

xp

F (x) dx. (8)

By definition of a quantile xp, we have F (xp) = p, so

IT = T − xp · p−
∫ T

xp

F (x) dx. (9)

When does the integral IT attain its largest and smallest
possible values? According to our analysis:

• the expected shortfall ESp attains its largest possible
value when the value of the integral IT (corresponding
to a very large value T ) is the largest possible, and

• the expected shortfall ESp attains its smallest possible
value when the value of the integral IT (corresponding
to a very large value T ) is the smallest possible.

Let us thus analyze when the integral IT attains its largest and
smallest possible values.

When does the integral IT attain its largest possible value?
Let us start with the largest possible value. Different cdfs F (x)
from the given p-box result, in general, in different values of
the integral IT . Let xmax

p be the value corresponding to the cdf
Fmax(x) for which this integral is the largest possible. This
means, in particular, that among all cdfs F (x) with the same
value of the p-th quantile xmax

p (i.e., for which F (xmax
p ) = p),

this particular cdf Fmax(x) leads to the largest possible value
of the integral IT .

One can easily see, from the expression (9), that the integral
IT is a decreasing function of the values F (x). Thus, this
integral is the largest when all the values F (x) are the smallest.
What limitations on the values F (x) do we have?

• We have a limitation F (x) ≤ F (x) ≤ F (x) coming from
the fact that we only consider cdfs from a given p-box
[F (x), F (x)].

• We also have a limitation F (x) ≥ F (xp) = p, which, for
values x ≥ xp, comes from the requirement F (xp) = p
and from the fact that each cdf is an increasing function
of x.

These constraints F (x) ≤ F (x) ≤ F (x) and F (x) ≥ p can
be equivalently described by a single constraint

max(F (x), p) ≤ F (x) ≤ F (x). (10)

Thus, the smallest possible values of F (x) correspond to

F (x) = max(F (x), p). (11)

When F (x) ≥ p, we have

max(F (x), p) = F (x)

and hence F (x) = F (x). As we described earlier, the equality
F (x) = p is equivalent to x = xp, thus the condition F (x) ≥ p
is equivalent to x ≥ xp.

On the other hand, when F (x) < p, i.e., equivalently, when
x < xp, we have F (x) = p. Thus,∫ T

xmax
p

F (x) dx =

∫ xp

xmax
p

p dx+

∫ T

xp

F (x) dx =

(xp − xmax
p ) · p+

∫ T

xp

F (x) dx. (12)

Thus, the expression (9) takes the form

IT = T − xmax
p · p− (xp − xmax

p ) · p−
∫ T

xp

F (x) dx. (13)

The two terms xmax
p · p and (xp − xmax

p ) · p can be easily
combined into a single term xp · p, so

IT = T − xp · p−
∫ T

xp

F (x) dx. (14)

Since xp is the quantile corresponding to the lower endpoint
F (x) of the p-box, we can therefore conclude that the ex-
pression (14) is the value of the integral IT corresponding to
F (x) = F (x).

Thus, the largest value of the integral IT – and hence, of
the expected shortfall – is attained when F (x) = F (x).

When does the integral IT attain its smallest possible
value? Let us now consider the smallest possible value. Let
xmin
p be the value corresponding to the cdf Fmin(x) for which

this integral is the largest possible. This means, in particular,
that among all cdfs F (x) with the same value of the p-th
quantile xmin

p (i.e., for which F (xmin
p ) = p), this particular



cdf Fmin(x) leads to the smallest possible value of the integral
IT .

Since the integral IT is a decreasing function of the values
F (x), this integral is the smallest when all the values F (x)
are the largest. Under the limitations (10), the largest possible
values are F (x) = F (x).

Thus, the smallest value of the integral IT – and hence, of
the expected shortfall ESp – is attained when F (x) = F (x).

III. RESULTING ALGORITHM

Problem: reminder. We want to find the range [ESp,ESp] of
possible values of the expected shortfall ESp when cdf F (x)
is in the given p-box [F (x), F (x)].

Conclusion. The above analysis leads to the following con-
clusion:

• The largest possible value ESp of the expected shortfall
ESp is attained when F (x) = F (x) for all x.

• The smallest possible value ESp of the expected shortfall
ESp is attained when F (x) = F (x) for all x.

Thus, we arrive at the following algorithm:

Resulting algorithm.
• First, we compute the expected shortfall ESp correspond-

ing to F (x) = F (x). This shortfall we be the desired
upper endpoint ESp of the desired interval [ESp,ESp].

• Then, we compute the expected shortfall ESp correspond-
ing to F (x) = F (x). This shortfall we be the desired
upper endpoint ESp of the desired interval [ESp,ESp].

Comment. Of course, these two computations, of ESp and ESp,
do not have to be performed sequentially: if parallel computers
are available, we can perform the computation of these two
endpoints in parallel.
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