
How to Speed Up Software Migration and
Modernization: Successful Strategies Developed by

Precisiating Expert Knowledge

Francisco Zapata1, Octavio Lerma2,
Leobardo Valera2, Vladik Kreinovich1,2

1Department of Computer Science
2Computational Science Program

University of Texas at El Paso
500 W. University

El Paso, Texas 79968, USA
Email: fazg74@gmail.com, lolerma@episd.org
leobardovalera@gmail.com, vladik@utep.edu

Abstract—Computers are getting faster and faster; the op-
erating systems are getting more sophisticated. Often, these
improvements necessitate that we migrate the existing software
to the new platform. In the ideal world, the migrated software
should run perfectly well on a new platform; however, in reality,
when we try that, thousands of errors appear, errors that need
correcting. As a result, software migration is usually a very time-
consuming process. A natural way to speed up this process is
to take into account that errors naturally fall into different
categories, and often, a common correction can be applied to
all error from a given category. To efficiently use this idea, it is
desirable to estimate the number of errors of different type. In
this paper, we show how imprecise expert knowledge about such
errors can be used to produce very realistic estimates.

I. INTRODUCTION: SOFTWARE MIGRATION AND
MODERNIZATION IS IMPORTANT BUT DIFFICULT

Computers are ubiquitous. Computers are ubiquitous. In
many aspects of our daily life, we rely on computer systems:
computer systems record and maintain the student grades,
computer systems handle our salaries, computer systems record
and maintain our medical records, computer systems take care
of records about the city streets, computer systems regulate
where the planes fly, etc.

Most of these systems have been successfully used for
years and decades – and this is what every user wants, to have
a computer system that, once implemented, can effectively run
for a long time, without a need for time- and effort-consuming
maintenance.

Need for software migration and modernization. No matter
how successful a computer system, the time comes when there
is a need to modernize it.

The main reason for such a need comes from the fact that
computer systems operate in a certain environment; they are
designed:

• for a certain computer hardware – e.g., with support
for operations with data pieces (“words”) of certain
length,

• for a certain operating system,

• for a certain programming language,

• for a certain computer interface, etc.

Eventually, the computer hardware is replaced by a new
one. While all the efforts are made to make the new hardware
compatible with the old code, there are limits to that: every
hardware or software feature that makes possible the use of
old software inevitably slows down the new system and thus
makes its use not as convenient for new users. Every computer
upgrade requires a trade-off to balance the interest of old and
new users. As a result, after some time, not all the features of
the old system are supported. In such situations, it is necessary
to adjust the software so that it will work on a new system. This
process is called software migration or, alternatively, software
modernization, and the software that needs such a migration
is called legacy software; see, e.g., [5], [6], [9], [10], [11].

Software migration and modernization is difficult. At first
glance, software migration and modernization sounds like a
reasonably simple task. Indeed, the main intellectual challenge
of software design is usually when we have to invent new
algorithms, new techniques – because the previous techniques
cannot solve the practical problem; in software migration and
modernization, these techniques have already been invented.

However, anyone who has ever tried to upgrade a legacy
system knows that it is not as easy as it may sound at first
glance. It may have been easier if every single operation
from the legacy code was clearly explained and justified. This
abundance of explanatory comments is what we all strive
for, but the actual software is far from this ideal. There is
a strong competition between software companies; whoever
releases the product first has a great advantage, and whoever
is last risks bankruptcy. In such an environment, there is no
time to properly document all the code. Moreover, comments
are sometimes obscured or even deleted on purpose, so that
competitors would not learn about the ideas that make this
code efficient.



In search for efficiency, many “tricks” are added by pro-
grammers that take into account specific hardware, specific
operating system – and when the hardware and/or operating
system changes, these tricks can slow the system down instead
of making it run more efficiently. For example:

• some old image processing systems utilized the ex-
istence of hardware supported operations with long
inputs;

• in newer RISC systems, with limited number of
hardware supported operations, processing of large
inputs is no longer hardware supported, and thus, the
resulting software becomes very slow.

People who need to migrate the legacy code do not know
which parts of the code contain such tricks.

A typical legacy code is huge: the corresponding system
has a million or more lines. As a result, when a user tries to
run an old legacy code on a new system, the compiler will
produce an astronomical number of error messages: 5,000 or
even 10,000 is a typical number.

How migration and modernization are usually done. Usu-
ally, migration is done the hard way: a software developer
looks into each and every error message, tries to understand
what is the problem, and come up with a correction. This is
a very slow and very expensive process: correcting each error
can take hours, and the resulting salary expenses can run to
millions of dollars.

There exist tools that try to automate this process by
speeding up the correction of each individual error. These tools
definitely help, they speed up the required time by a factor of
two, three, or even ten, but still thousands of errors have to be
handled individually.

Resulting problem: need to speed up migration and
modernization. Since migration and modernization of legacy
software is a ubiquitous problem, it is desirable to come up
with ways to speed up this process.

In this paper, we propose such an idea, and we show how
expert knowledge can help in implementing this idea.

II. OUR MAIN IDEA: DESCRIPTION AND CHALLENGES

Main idea. Our main idea is based on the fact that modern
compilers do not simply indicate that there is an error, they
usually provide a reasonably understandable description of the
type of an error. For example:

• it may be that a program is trying to divide by zero,

• it may be that a program is trying to access an element
of an array with a computed index which is beyond
the original bounds, etc.

Some of these types of error appear in numerous places in
the software. Our experience shows that in many such places,
these errors are caused by the same problem in the code. So,
instead of trying to “rack our brains” over each individual error,
a better idea is to look at all the errors of the given type, and
come up with a solution that would automatically eliminate
the vast majority of these errors.

This idea is actually natural. Judging by the current practice,
this idea sounds innovative in software migration. However, if
one looks at it from the general viewpoint, one can see that
this from the viewpoint of a general algorithmic development,
this is a very general idea.

This is how most algorithms originated; let us give a few
historical examples. In many case, people wanted to know what
will happen if we merge two groups of objects together. If we
have a group of 20 sheep and we merge it with a group of 12
sheep, how many sheep will we have? While sheep herders
were solving this type of problems, cow herders were solving
similar problems about cows: what if we merge a group of 20
cows and a group of 12 cows, how many cows will there be
total? Later on they discovered that it is possible to find an
algorithm that would add objects no matter whether they are
sheep, cows, or plates.

Similarly in our case, instead of dealing with individual
errors, we try to come up with a general approach that would
enable us to handle all (or at last almost all) errors of a given
type.

This idea only works if we have sufficiently many errors
of a given type. Of course, this idea saves time only if we
have enough errors of a given type. For example, if we only
have two or three errors of some type, it is probably faster to
eliminate these few errors one by one than to try to come up
with a general solution that would include all these errors.

How many errors of different type there are? Need for an
expert knowledge. To successfully implement this approach,
we therefore need to be able to predict how many errors of
different type we will encounter.

To the best of our knowledge, there are currently no well-
justified software models that can predict these numbers. What
we do have is many system developers who have an experience
in migrating and modernizing software. It is therefore desirable
to utilize their experience.

Since experts usually describe their experience not in
precise terms, but by using imprecise (“fuzzy”) words from
natural language, it is reasonable to use the known precisiation
techniques to transform this expert knowledge into precise
terms – in particular, techniques developed in fuzzy logic; see,
e.g., [2], [8], [12].

III. EXPERT KNOWLEDGE ABOUT SOFTWARE
MIGRATION AND MODERNIZATION AND ITS PRECISIATION

What we are trying to describe. Once we know how many
errors of different types are there, a reasonable idea is to start
with the errors of the most frequent type. Once we have learned
how to deal with these errors, we should concentrate on errors
of the second most frequent type, etc. After a few iterations,
when all frequently repeated errors are eliminated, we reach
a stage on which for each remaining type, there are so few
errors of this type that it is easier to deal with these errors one
by one.

From this viewpoint, what we would like to describe is
how many errors there are of different types. We would like
to know the number of errors n1 of the most frequent type, the



number of errors n2 of the second most frequent type, etc. In
general, we want to know the numbers n1, n2, . . . , for which

n1 ≥ n2 ≥ . . . ≥ nk−1 ≥ nk ≥ nk+1 ≥ . . .

Available expert knowledge. We know that for every level
k, the number of errors nk+1 of the next level is somewhat
smaller than the number of errors nk of a given type.

Similarly, if we compare the number of errors nk of a given
type and the number of errors nk+2 of the level k + 2, then
we can say that nk+2 is more noticeably smaller than nk, etc.

How can we precisiate this idea – first approximation: idea.
Let us start with the rule that nk+1 is somewhat smaller than
nk. By using the usual fuzzy control methodology:

• We first formulate what is means for two given values
of nk and nk+1 to be consistent with this rule. In
fuzzy logic, this is obtained by describing, for every
two possible values nk and nk+1, the degree to which
the pair of nk+1 and nk is consistent with this rule.

• For a given nk, we then apply a defuzzification
procedure and get a single estimate for nk+1 as a
function of nk:

nk+1 = f(nk). (1)

Comments.

• The exact form of the function f(n) function depends
on which membership function we used to describe
the imprecise term “somewhat smaller” and on what
defuzzification procedure we use.

• In principle, in addition to using the standard fuzzy
methodology, we can use any other appropriate tech-
niques to precisiate the dependence of nk+1 and nk.
For example, we can use interval-valued fuzzy tech-
niques which often lead to a more accurate description
of expert knowledge; see, e.g., [3], [4], [7].

Which function f(n) should we select? To select an appro-
priate function f(n), let us take into account that in many
cases, a software package that needs migration consists of two
(or more) parts. Because of this, we can estimate the number
of errors of type k + 1 in two different ways:

• We can use the overall number nk = n
(1)
k + n

(2)
k of

k-th type errors in both parts to predict the overall
number nk+1 of the (k + 1)-th type errors. In this
case, we get the following estimate:

nk+1 ≈ f(nk) = f(n
(1)
k + n

(2)
k ).

• Alternatively, we can start with the numbers of errors
n
(1)
k and n

(2)
k in each part, predict the values n(1)

k+1 and
n
(2)
k+1, and then add up these predictions. As a result,

we get the following estimate:

nk+1 ≈ f(n
(1)
k ) + f(n

(2)
k ).

It is reasonable to require that these two approaches lead to
the same estimate, i.e., that we have

f(n
(1)
k + n

(2)
k ) = f(n

(1)
k ) + f(n

(2)
k )

for all possible values of n
(1)
k and n

(2)
k . In other words, for

any two natural numbers a and b, we should have

f(a+ b) = f(a) + f(b). (2)

For a = b = 0, the formula (2) implies that f(0) = 2f(0)
and thus, f(0) = 0. For any other integer a, this formula
implies that

f(a) = f(1) + . . .+ f(1) (a times),

i.e., that
f(a) = c · a, (3)

where we denoted c
def
= f(1). Thus, the most appropriate

function f(n) is a linear function f(n) = c · n.

Resulting dependence nk. Substituting the linear function
f(n) = c · n into the equation (1), we conclude that nk+1 =
c · nk. Thus, n2 = c · n1, n3 = c · n2 = c2 · n1, etc. One can
easily see that for a general k, we get

nk = n1 · ck−1,

i.e., that nk =
n1

c
· ck and thus,

nk = A · exp(−b · k), (4)

where A
def
=

n1

c
and b

def
= − ln(c).

How accurate is this estimate? To check how accurate is this
estimate, we compared with the actual numbers of errors of
different type that one of us (F.Z.) obtained when migrating a
health-related C-based software package from 32-bit to 64-bit
architecture.

In the following table, the number of errors of type k =ab
is stored:

• in the a-th column (which is marked ax),

• in its b-th row (which is marked marked xb).

For example, the number of errors of type k = 23 is stored:

• in the 2-nd column (which is marked 2x),

• in its 3-rd row (which is marked x3).

0x 1x 2x 3x 4x 5x 6x 7x
x0 – 308 95 47 13 5 2 1
x1 7682 301 91 38 13 4 2 1
x2 4757 266 85 34 12 4 2 1
x3 3574 261 81 34 12 4 2 1
x4 2473 241 76 30 11 3 2 1
x5 2157 240 69 24 9 3 2 1
x6 956 236 58 21 8 3 2 1
x7 769 171 57 19 8 3 1 1
x8 565 156 50 17 8 2 1 1
x9 436 98 47 17 6 2 1 –



One can easily see that for k ≤ 9, we indeed have
nk+1 ≈ c · nk, with c ≈ 0.65-0.75. Thus, the above simple
rule described the most frequent errors reasonably accurately.

However, starting with k = 10, the ratio nk+1/nk becomes
much closer to 1. Thus, the one-rule estimate is no longer a
good estimate.

Let us use two rules: an idea. We have just mentioned that
if we only use one expert rule, we do not get a very good
estimate for nk. A natural idea is this to use two rules:

• in addition to the rule that nk+1 is somewhat smaller
than nk,

• let us also use the rule that nk+2 is more noticeably
smaller than nk.

In this case, once we know nk and nk+1, we can use the
standard fuzzy methodology (or any other appropriate method-
ology) and get an estimate

nk+2 = f(nk, nk+1).

Which function f(nk, nk+1) should we use? Similarly to
the one-rule case, once we take into account that the software
package consists of two parts, we can estimate the number of
errors of type k + 2 in two different ways:

• We can use the overall numbers nk = n
(1)
k +n

(2)
k and

nk+1 = n
(1)
k+1+n

(2)
k+1 of k-th and (k+1)-th type type

errors in both parts to predict the overall number nk+2

of the (k + 2)-th type errors. In this case, we get the
following estimate:

nk+2 ≈ f(nk, nk+1) = f(n
(1)
k + n

(2)
k , n

(1)
k+1 + n

(2)
k+1).

• Alternatively, we can start with the numbers of errors
n
(p)
k and n

(p)
k+1 in each part p, predict the values n

(1)
k+2

and n
(2)
k+2, and then add up these predictions. As a

result, we get the following estimate:

nk+2 ≈ f(n
(1)
k , n

(1)
k+1) + f(n

(2)
k , n

(2)
k+1).

It is reasonable to require that these two approaches lead to
the same estimate, i.e., that we have

f(n
(1)
k +n

(2)
k , n

(1)
k+1 +n

(2)
k+1) = f(n

(1)
k , n

(1)
k+1) + f(n

(2)
k , n

(2)
k+1)

for all possible values of n(1)
k , n(1)

k+1, n(2)
k , and n

(2)
k+1. In other

words, for any two four numbers a ≥ a′ and b ≥ b′, we should
have

f(a+ b, a′ + b′) = f(a, a′) + f(b, b′). (5)

Let us solve the corresponding functional equation. We
want to find the value f(x, y) for all x ≥ y. By taking
a = a′ = y, b = x− y, and b′ = 0, we conclude that

f(x, y) = f(y, y) + f(x− y, 0). (6)

From the same formula (5), we can now conclude that

f(y, y) = f(1, 1) + . . .+ f(1, 1) (y times),

i.e., that
f(y, y) = c1 · y (7)

for a real number c1
def
= f(1, 1).

Similarly, from the property (5), we conclude that

f(z, 0) = f(1, 0) + . . .+ f(1, 0) (z times),

i.e., that
f(z, 0) = c2 · z, (8)

where c2
def
= f(1, 0).

Substituting the expression (7) and (8) into the formula (6),
we conclude that

f(x, y) = c1 · y + c2 · (x− y) = c2 · x+ (c1 − c2) · y.

In other words, we conclude that f(x, y) is a linear function
of x and y. Thus, we have

nk+2 = a · nk + b · nk+1 (9)

for some constants a
def
= c1 − c2 and b

def
= c1.

Resulting dependence nk. Let us use the difference equa-
tion (9) to find the dependence of nk on k. A general solution
to a difference equation with constant coefficients is well
known (see, e.g., [1]). In general, this solution is a linear
combination of the expressions ρk, where ρ is a solution (real
or complex) of the polynomial equation that is obtained when
we plug in ρk into the corresponding difference equation. If
the equation has a double or triple solution, then we can also
consider the terms k · ρk, k2 · ρk, etc.

In our case, substituting nk = ρk into the equation (9)
and dividing both sides of the resulting equality by ρk, we
conclude that

ρ2 = a+ b · ρ. (10)

This is a quadratic equation, and a quadratic equation either
has two different real roots, or a single double real root, or it
has complex conjugate roots.

For complex-conjugate roots ρ and ρ∗, the corresponding
dependence has the following form:

nk = A1 · ρk +A2 · (ρ∗)k = A1 · (z · k) +A2 · (z∗ · k) =

const · exp(p · k) · cos(q · k) + const · exp(p · k) · sin(q · k),

where p + q · i = ln(a + b · i). This dependence contains
trigonometric terms and is, thus, oscillating – and we want
to a dependence for which always nk ≥ nk+1.

So, in our case, the case of complex roots can be excluded,
and we are left with situations in which we either have two
different real roots, or one double real root. So, we have either

nk = A1 · ρk1 +A2 · ρk2 , (11)

or
nk = A1 · ρk1 +A2 · k · ρk1 , (12)

for some values ci and ρi. In other words, we have either

nk = A1 · exp(−b1 · k) +A2 · exp(−b2 · k), (13)



or

nk = A1 · exp(−b1 · k) +A2 · k · exp(−b1 · k), (14)

where bi
def
= − ln(ρi).

With this new model, we get a much better fit with the
data. Which of the models (13) and (14) is the best fit for
the above data? One can see that the degenerate model (14) is
close to exponential and thus, is not a good fit for the above
experimental data.

So, we need to consider a general model (13). In this case,
the values bi are different. Thus, without losing generality, we
can assume that b1 < b2. So, the desired estimate nk is the
sum of two terms:

• a slower-decreasing term A1 · exp(−b1 · k), and

• a faster-decreasing term A2 · exp(−b2 · k).

Under this assumption, what is the relation between the values
A1 and A2?

If A1 > A2, then:

• for k = 1, the first term is larger, and

• since the second term decreases faster, the first term
dominates for all k.

In this case, the expression (13) is close to an exponential
function A1 · exp(−b1 · k), and we already know that an
exponential function is not a good description of nk.

Thus, to fit the empirical data, we must use models with
A1 < A2. In this case:

• for small k, the second – feaster-decreasing – term
A2 · exp(−b2 · k) dominates;

• however, since the second term decreases exponen-
tially faster than the first one, for larger k, the first –
slower-decreasing – term A1 ·exp(−b1 ·k) dominates.

Thus:

• for small k, we have nk ≈ A2 · exp(−b2 · k);
• for larger k, we have nk ≈ A1 · exp(−b1 · k).

In effect, we here have two exponential models:

• the first model works for small k, while

• the second model works for large k.

This double-exponential model indeed describes the above data
reasonably accurately:

• for k ≤ 9, as we have mentioned, the data is a
good fit with an an exponential model for which
ρ = nk+1/nk ≈ 0.65-0.75;

• for k ≥ 10, the data is a good fit with another
exponential model, for which ρ10 ≈ 2-3.

Practical consequences. Since for small k, the dependence nk

rapidly decreases with k, the values nk corresponding to small

k constitute the vast majority of all the errors. In the above
example, 85 percent of errors are of the first 10 types. Thus,
once we learn to repair errors of these type, the remaining
number of un-corrected errors decreases by a factor of seven.
This observation has indeed led to a significant speed-up of
software migration and modernization.

IV. CONCLUSION

In many practical situations, we need to migrate legacy
software to a new hardware and system environment. Usually,
if we simply run the existing software packages in the new
environment, we encounter thousands of difficult-to-correct
errors. As a result, software migration is very time-consuming.
A reasonable way to speed up this process is to take into
account that errors can be naturally classified into categories,
and often all the errors of the same category can be corrected
by a single correction.

Coming up with such a joint correction is also somewhat
time-consuming; the corresponding additional time pays off
only if we have sufficiently many errors of this category. So, to
plan when to use this idea, it is desirable to be able to estimate
the number of errors nk of different categories k. In this paper,
we show that an appropriate use of expert knowledge leads to
a double-exponential model (13) that is in good accordance
with the observations.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721.

REFERENCES

[1] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[2] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall, Upper Saddle River, New Jersey, 1995.

[3] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Prentice-Hall, Upper Saddle River, New Jersey,
2001.

[4] J. M. Mendel and D. Wu, Perceptual Computing: Aiding People in
Making Subjective Judgments, IEEE Press and Wiley, Piscataway, New
Jersey, 2010.

[5] A. Menychtas, K. Konstanteli, J. Alonso, L. Orue-Echevarria, J. Gor-
ronogoitia, G. Kousiouris, C. Santzaridou, H. Bruneliere, B. Pellens,
P. Stuer, O. Strauss, T. Senkova, T. Varvarigou, “Software modernization
and cloudification using the ARTIST migration methodology and frame-
work”, Scalable Computing: Practice and Experience, 2014, Vol. 15,
No. 2, pp. 131–152.

[6] A. Menychtas, C. Santzaridou, G. Kousiouris, T. Varvarigou, J. Gorrono-
goitia, O. Strauss, T. Senkova, L. Orue-Echevarria, J. Alonso, H. Brune-
liere, B. Pellens, P. Stuer, “ARTIST methodology and framework: a novel
approach for the migration of legacy software on the cloud”, Proceedings
of the 15th IEEE International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing SYNASC’2013, Timisoara, Romania,
September 23–26, 2013, pp. 424–431.

[7] H. T. Nguyen, V. Kreinovich, and Q. Zuo, “Interval-valued degrees
of belief: applications of interval computations to expert systems and
intelligent control”, International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems (IJUFKS), 1997, Vol. 5, No. 3, pp. 317–358.

[8] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[9] I. Sahin and F. Zahedi, “Policy analysis for warranty, maintenance,
and upgrade of software systems”, Journal of Software Maintenance:
Research and Practice, 2001, Vol. 13, pp. 469–493.



[10] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business
Practices, Addison-Wesley, Boston, Massachusetts, 2003.

[11] I. Warren and J. Ransom, “Renaissance: a method to support software
system evolution”, Proceedings of the 26th Annual International Com-
puter Software and Applications Conference COMPSAC’2002, Oxford,
UK, August 26–29, 2002, pp. 415–420.

[12] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.


