
Simple Linear Interpolation Explains All Usual
Choices in Fuzzy Techniques: Membership

Functions, t-Norms, t-Conorms, and Defuzzification

Vladik Kreinovich, Jonathan Quijas,
Esthela Gallardo, Caio De Sa Lopes

Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu, jkquijas@miners.utep.edu
egallardo5@miners.utep.edu
cdesalopes@miners.utep.edu

Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
500 W. University

El Paso, TX 79968, USA
olgak@utep.edu

Shahnaz Shahbazova
Azerbaijan Technical University

Baku, Azerbaijan
shahbazova@gmail.com

Abstract—Most applications of fuzzy techniques use piece-wise
linear (triangular or trapezoid) membership functions, min or
product t-norms, max or algebraic sum t-conorms, and centroid
defuzzification. Similarly, most applications of interval-valued
fuzzy techniques use piecewise-linear lower and upper member-
ship functions. In this paper, we show that all these choices can
be explained as applications of simple linear interpolation.

I. FORMULATION OF THE PROBLEM

Fuzzy techniques are needed. In many application areas,
we have experts whose experience we would like to capture.
Often, experts can express their experience in terms of rules,
but the rules they describe use imprecise (“fuzzy”) words from
natural language, like “small”, “large”, etc. To formalize these
rules, L. Zadeh proposed special fuzzy techniques [1], [6], [7].

Fuzzy techniques: reminder. The usual use of fuzzy tech-
niques consists of three stages.

First stage of fuzzy techniques: eliciting a membership
function. On the first stage, we formalize the original im-
precise terms like “small”. Each such term is described by
assigning, to different possible values x of the corresponding
quantity, a degree µ(x) to which this value x satisfies this
property (e.g., the degree to which x is small).

Some of these values µ(x) are obtained by asking the
expert. However, there are infinitely many real numbers x, and
we can only ask an expert a finite number of questions. Thus,
after eliciting, from expert, several values µ(xi), we need to
perform some interpolation to estimate the degrees µ(x) for
intermediate values x. The resulting function µ is known as
the membership function.

Interval-valued fuzzy degrees. Often, an expert is unable to
describe his or her degree of confidence by an exact number;
a more natural approach is to use intervals of possible values
[2], [3], [5].

In this case, for each possible value of a quantity x, instead
of a single value µ(x), we get an interval [µ(x), µ(x)] of
possible values. Determining such interval-valued membership
function is equivalent to determining the functions µ(x) and
µ(x). These functions are known as the lower and the upper
membership functions.

Second stage of fuzzy techniques: “and”- and “or”-
operations. Once we have elicited the membership functions,
we know to what extent, e.g., the given value of the body tem-
perature corresponds to high fever. However, many expert rules
involve several conditions. For example, since some medicines
increase blood pressure, a medical doctor will probably:

• prescribe the most efficient medicine if the fever is
high and blood pressure is normal, and

• prescribe a different medicine – not so efficient but
without the negative side effects – if the fever is high
and blood pressure is high.

To handle such rules, we need to be able to transform the
degrees a = d(A) and b = d(B) of individual conditions A
and B into a degree of confidence in the composite statement
A&B. The corresponding estimate f&(a, b) is known as an
“and”-operation, or, alternatively, as a t-norm.

Similarly, we need an “or”-operation f∨(a, b) (also known
as t-conorm) to estimate the expert’s degree of confidence in
A∨B and the negation operation f¬(a) to estimate the expert’s
degree of confidence in ¬A.

Third stage of fuzzy techniques: defuzzification. After
performing the first two stages, for the given input x and for
all possible control values u, we get a degree µ(u) to which
this control value is reasonable to apply.

If we want to use this expert knowledge in an automated
system, we need to transform this membership function µ(u)
into a single value u.



In principle, many versions of fuzzy techniques are possi-
ble. From the purely mathematical viewpoint, we can think of
many different membership functions, many different “and”-
and “or”-operations, many different defuzzification procedures.

How to select an appropriate technique? To select an
appropriate combination of fuzzy techniques, a natural idea
is to try different combinations and to see which combination
leads to the best result.

Interesting empirical fact: in many cases, the same few
combinations of fuzzy techniques lead to the best results.
Interestingly, it turns out that in many practical applications,
the same small number of combinations turn out to be most
efficient. Specifically, in these applications, we use:

• trapezoid membership functions that start with 0,
linearly got to 1, stay at 1, and then linearly decrease
back to 0; in particular, when the stay-at-1 interval
degenerates into a single point, we get triangular
membership functions;

• “and”-operations f&(a, b) = min(a, b) (known as
min) or f&(a, b) = a ·b (known as algebraic product);

• “or”-operations f&(a, b) = max(a, b) (known as max)
or f&(a, b) = a+ b− a · b (known as algebraic sum);

• negation operation f¬(a) = 1− a; and

• centroid defuzzification

u =

∫
u · µ(u) du∫
µ(u) du

.

In the interval-valued case, similarly, in many case, both lower
and upper membership functions are trapezoidal.

What we do in this paper. In this paper, we show that all
these choices can be explained in a very simple way – by the
use of the simplest (linear) interpolation.

How this paper is structured. In the following sections, we
will explain these derivations for all three stages

Our result is also useful for teaching fuzzy techniques. Our
explanation not only helps us understand why all these choices
are made, it makes it easier to teach the basic fuzzy techniques
– since now all these techniques can be derived from the same
linear interpolation idea.

II. INTERPOLATION: WHY WE NEED IT, AND WHY
LINEAR INTERPOLATION IS THE SIMPLEST

Need for interpolation. In the above text, we have mentioned
that we need interpolation to elicit a membership function form
an expert.

Similarly, we can elicit the expert’s degrees of confidence
ak, bk, and ck in different statements Ak, Bk, and Ak &Bk.
Then, we should get an “and”-operation f&(a, b) for which
f&(ak, bk) = ck. This will enable us to find the values f&(a, b)
for a finite number of pairs (ak, bk). To estimate the values
f&(a, b) for all other pairs, we need to use interpolation.

A similar interpolation is needed to determine the “or”-
operation f∨(a, b), the negation operation f¬(a, b), and the
appropriate defuzzification.

In the 1-D case, linear interpolation is the simplest.
Interpolation means that we find a curve that goes through
given points, or, equivalently, a function that attains known
values at given points.

The simplest possible functions are constants. The simplest
possible non-constant functions are linear functions. When we
use linear functions to interpolate, we get linear interpolation
– which is, thus, the simplest possible interpolation.

To be more precise, if for two values x1 < x2, we know
the values y1 = f(x1) and y2 = f(x2), then these two values
uniquely determine a linear function:

f(x) = f(x1) +
y2 − y1
x2 − x1

· (x− x1). (1)

What we do in this paper: reminder. In this paper, we
show that this simplest (linear) interpolation explains all usual
choices of fuzzy techniques.

III. SIMPLE LINEAR INTERPOLATION EXPLAINS THE
USUAL CHOICE OF MEMBERSHIP FUNCTIONS

Main idea. Usually, for each property like “small”,

• first, there are some values which are definitely not
small (e.g., negative ones),

• then some values which are small to some extend;

• then, we have an interval of values which are definitely
small;

• this is followed by values which are somewhat small;
and

• finally, we get values which are absolutely not small.

Let us denote the threshold separating these regions by t1, t2,
t3, and t4. In terms of these thresholds, we have the following:

• for all the values x ≤ t1, the desired property is not
satisfied, so we get µ(x) = 0;

• for the values x between t1 and t2, the property is
satisfied to some degree, so we have 0 < µ(x) < 1;

• for the values x between t2 and t3, the property is
absolutely satisfied, so we have µ(x) = 1;

• for the values x between t3 and t4, the property is
satisfied to some degree, so we have 0 < µ(x) < 1;

• finally, for x ≥ t4, the desired property is not satisfied,
so we get µ(x) = 0.

In this description, we know the values µ(x) for x ≤ t1, for
x ∈ [t2, t3], and for x ≥ t4. What we need is estimate the
values µ(x) for x ∈ [t1, t2] and x ∈ [t3, t4].

Let us use linear interpolation. To find the values µ(x) for
x ∈ [t1, t2], we can apply linear interpolation to the known



values µ(t1) = 0 and µ(t2) = 1. As a result, we get a linear
increasing function on this interval.

Similarly, to find the values µ(x) for x ∈ [t3, t4], we can
apply linear interpolation to the known values µ(t3) = 1 and
µ(t4) = 0. As a result, we get a linear decreasing function on
this interval.

As a result of this interpolation, we get a trapezoid mem-
bership function; see, e.g., [4].

Conclusion. Simple linear interpolation explains the usual
choice of a trapezoid membership function.

IV. SIMPLE LINEAR INTERPOLATION EXPLAINS THE
USUAL CHOICE OF T-NORMS

Main idea. What do we know about “and”?

Intuitively, if one of the component statements A is false,
then the composite statement A&B is also false. In other
words, if a = d(A) = 0, then f&(a, b) = f&(0, b) = 0.

Also, if A is absolutely true, then our belief in A&B is
equivalent to our degree of belief in B. In other words, if
a = d(A) = 1, then f&(1, b) = b.

We thus know the values f&(a, b) for the cases when a
is equal to 0 or 1. We would like to use this information to
estimate the value f&(a, b) for all possible pairs (a, b).

Let us use linear interpolation. Let us fix b and consider a
function Fb(a)

def
= f&(a, b) that maps a into the value f&(a, b).

We know that:

• for a = 0, we have Fb(0) = 0, and that

• for a = 1, we have Fb(1) = b.

We can use linear interpolation to find the value Fb(a) for all
a ∈ [0, 1]. The general formula for linear interpolation leads
to Fb(a) = a · b, i.e., to the algebraic product f&(a, b) = a · b.

Comment. Please note that while the resulting operation is
commutative and associative, we did not require commutativity
or associativity: all we required was linear interpolation.

What if we additionally require that A& A is equivalent
to A. Another intuitive property of “and” is that for every
statement A, “A and A” means the same as A. In terms of the
“and”-operation, this means that for every a = d(A), we have
f&(a, a) = a.

Now, for each b, in addition to knowing the values f&(a, b)
for the values a = 0 and a = 1, we also know its value for
a = b.

What if we also require that A& A is equivalent to A:
let us use linear interpolation. Let us fix b and consider a
function Fb(a) = f&(a, b) that maps a into the value f&(a, b).

We know that Fb(0) = f&(0, b) = 0 and that Fb(b) =
f&(b, b) = b. Thus, on the interval [0, b], linear interpolation
leads to Fb(a) = a, i.e., to f&(a, b) = a.

Let us now apply linear interpolation to the interval [b, 1].
From Fb(b) = b and Fb(1) = f&(1, b) = b, we conclude that
for the values a from this interval, we have Fb(a) = b, i.e, we
have f&(a, b) = b.

These two case lead us to the following conclusion:

• when a ≤ b, then f&(a, b) = a;

• when b ≤ a, then f&(a, b) = b.

These two cases can be described by a single formula
f&(a, b) = min(a, b). This is exactly the min-operation.

Conclusion. Simple linear interpolation explains the usual two
choice of an “and”-operation: algebraic product and min.

V. SIMPLE LINEAR INTERPOLATION EXPLAINS THE
USUAL CHOICE OF T-CONORMS

Main idea. What do we know about “or”?

Intuitively, if one of the component statements A is ab-
solutely true, then the composite statement A ∨ B is also
absolutely true. In other words, if a = d(A) = 1, then
f∨(a, b) = f∨(1, b) = 1.

Also, if A is absolutely false, then our belief in A ∨ B
is equivalent to our degree of belief in B. In other words, if
a = d(A) = 0, then f∨(0, b) = b.

We thus know the values f∨(a, b) for the cases when a
is equal to 0 or 1. We would like to use this information to
estimate the value f∨(a, b) for all possible pairs (a, b).

Let us use linear interpolation. Let us fix b and consider a
function Gb(a)

def
= f∨(a, b) that maps a into the value f∨(a, b).

We know that:

• for a = 0, we have Gb(0) = b, and that

• for a = 1, we have Gb(1) = 1.

We can use linear interpolation to find the value Fb(a) for all
a ∈ [0, 1]. The general formula for linear interpolation leads
to Gb(a) = b+a · (1−b), i.e., to the algebraic sum f∨(a, b) =
a+ b− a · b.

Comment. Please note that, similarly to the case of “and”-
operations, while the resulting operation is commutative and
associative, we did not require commutativity or associativity:
all we required was linear interpolation.

What if we additionally require that A ∨ A is equivalent
to A. Another intuitive property of “or” is that for every
statement A, “A or A” means the same as A. In terms of
the “and”-operation, this means that for every a = d(A), we
have f∨(a, a) = a.

Now, for each b, in addition to knowing the values f∨(a, b)
for the values a = 0 and a = 1, we also know its value for
a = b.

What if we also require that A ∨ A is equivalent to A:
let us use linear interpolation. Let us fix b and consider a
function Gb(a) = f∨(a, b) that maps a into the value f∨(a, b).



We know that Gb(0) = f∨(0, b) = b and that Gb(b) =
f∨(b, b) = b. Thus, on the interval [0, b], linear interpolation
leads to Fb(a) = b, i.e., to f∨(a, b) = b.

Let us now apply linear interpolation to the interval [b, 1].
From Gb(b) = b and Gb(1) = f∨(1, b) = 1, we conclude that
for the values a from this interval, we have Gb(a) = a, i.e,
we have f∨(a, b) = b.

These two case lead us to the following conclusion:

• when a ≤ b, then f∨(a, b) = b;

• when b ≤ a, then f∨(a, b) = a.

These two cases can be described by a single formula
f∨(a, b) = max(a, b). This is exactly the max-operation.

Conclusion. Simple linear interpolation explains the usual two
choice of an “or”-operation: algebraic sum and max.

VI. SIMPLE LINEAR INTERPOLATION EXPLAINS THE
USUAL CHOICE OF NEGATION OPERATIONS

Formulation of the problem. For the classical 2-valued logic,
with two truth values ‘ (“true”) and 0 (“false”), the negation
operation is easy to define:

• the negation of “false” is “true”: f¬(0) = 1, and

• the negation of “true” is “false”: f¬(1) = 0.

We want to extend this operation from the 2-valued set {0, 1}
to the whole interval [0, 1].

Let us use linear interpolation. In this case, in terms of the
formula (1), we have x1 = 0, x2 = 1, y1 = 1, and y2 = 0.
Thus, the formula for linear interpolation leads to

f¬(a) = 1− a.

This is exactly the most frequently used negation operation in
fuzzy logic.

Conclusion. Simple linear interpolation explains the usual
choice of negation operation.

VII. SIMPLE LINEAR INTERPOLATION EXPLAINS THE
USUAL CHOICE OF DEFUZZIFICATION

Main idea. The desired control u should be close to reasonable
control values u: u ≈ u. In principle, we have different
possible control values u.

Let us start with a simplified situation in which we have
finitely many reasonable values u1, . . . , uk, and all these values
are equally reasonable. In this case, we want to find the values
u for which u ≈ u1, u ≈ u2, . . . , u ≈ uk.

Since the values ui are different, we cannot get the exact
equality in all k cases, i.e., we cannot get all k approximation
errors ek

def
= u−uk to 0. What we want is to make the vector

e
def
= (e1, . . . , ek) consisting of all these errors to be as close

to the ideal point (0, . . . , 0) as possible.

The distance between the vector e and the 0 point is equal
to

√
e21 + . . .+ e2k. Minimizing this distance is equivalent to

minimizing its square, i.e., the sum

e21 + . . .+ e2k = (u− u1)
2 + . . .+ (u− uk)

2.

This is the usual Least Squares method.

In the continuous case, when all the value u are possible, in
the limit, we get an integral instead of the sum

∫
(u− u)2 du.

This method works well if all the values u are equally
possible. In reality, different values u have different degrees
of possibility µ(u).

• If the value u is fully possible, i.e., if µ(u) = 1, then
we should keep the corresponding term (u − u)2 in
the sum.

• If the value u if completely impossible, i.e., if µ(u) =
0, then we should not consider this term at all.

In general, a natural idea is, instead of simply adding the
squares, to first multiply each square by a weight w(µ(u))
depending on the degree of possibility, so that:

• when µ(u) = 1, we get full weight w(µ(u)) =
w(1) = 1;

• when µ(u) = 0, we get zero weight w(µ(u)) =
w(0) = 0; and

• for values µ(u) intermediate between 0 and 1, we
should use intermediate values of weight.

In the discrete case, we thus minimize the sum∑
i

w(µ(i)) · (u− ui)
2;

in the continuous case, we minimize the corresponding integral∫
w(µ(u)) · (u− u)2 du. (2)

Let us use linear interpolation. We know that w(0) = 0
and w(1) = 1. We want to estimate the values w(µ) for all
µ ∈ [0, 1]. Linear interpolation leads to w(u) = u.

Thus, we should select u for which the integral∫
µ(u) · (u− u)2 du (3)

attains the smallest possible value.

Differentiating the expression (3) with respect to u and
equating the derivative to 0, we conclude that∫

2µ(u) · (u− u) du = 0. (4)

Dividing both sides of this equality by 2 and moving all the
terms not depending on u to the right-hand side, we conclude
that

u ·
∫

µ(u) du =

∫
u · µ(u) du,

and thus, that

u =

∫
u · µ(u) du∫
µ(u) du

.



This is exactly the centroid defuzzification which is efficiently
used in many practical applications. ion operation in fuzzy
logic.

Conclusion. Simple linear interpolation explains the usual
choice of defuzzification.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-
ShARE Center of Excellence) and DUE-0926721.

REFERENCES

[1] G. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic”, Prentice Hall,
Upper Saddle River, New Jersey, 1995.

[2] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Prentice-Hall, Upper Saddle River, 2001.

[3] J. M. Mendel and D. Wu, Perceptual Computing: Aiding People in
Making Subjective Judgments, IEEE Press and Wiley, New York, 2010.

[4] H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathe-
matics to Computer Science, Kluwer, Dordrecht, 1997.

[5] H. T. Nguyen, V. Kreinovich, and Q. Zuo, “Interval-valued degrees
of belief: applications of interval computations to expert systems and
intelligent control”, International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems (IJUFKS), 1997, Vol. 5, No. 3, pp. 317–358.

[6] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic,
Chapman and Hall/CRC, Boca Raton, Florida, 2006.

[7] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8,
pp. 338–353.


