Setting Up a Highly Configurable,
Scalable Nimbus Cloud Test Bed Running
ona MANET

Master’s Project Report

By Joshua McKee (Advisor: Patricia J. Teller, Ph.D.)

Department of Computer Science
The University of Texas at El Paso

December 2014

Acknowledgements

This work would not have been possible without the software and technical assistance provided by
FutureGrid. In particular, we extend our sincere thanks to Kate Keahey and Pierre Riteau of the
University of Chicago for their assistance. Also, we wish to acknowledge the economic support provided

by the Army Research Laboratory through the Army High Performance Computing Research Center
(AHPCRC), Stanford University Award 60300261-107307-B.

Contents

(O oY o1 (=T g R [a1 oY [Tox o] o TS UUUUPPURRRN 1
Chapter 2: REIATEA WOTK . uuuiiiiiiiiiciiieiee e e ettt ese e e eeeeeeeeeeaaaeaassessssssssssssssrsssarasnnnn 4
2.1 Cloud COMPULING TEST BEAS .evviiiiiiiieiiiiiiiiieeee e e e e e sttt et e e e e e e s s sbete e e e e e e eeeeesssssasbeaaeeeaeesssssnnnsnssnnne 5
2.2 FUBUEGTIA ettt sttt e s sr e s ba e e st e s bae e sme e e snneesbaeesnnee s 6

(0 0T o) A=Y GRS D T = o PP 7
I A o 1T = T TR I B LT - o PP PPUPPRPSRIN 7
3.2 Software Selected to Implement High-level DESINcueiiiiiiiiiiiiiiiiiiiieeeeee e 8

(O oY o1 (=T S [gV o] (=Y a1 €= 1o o FS USSP 12
4.1 Setting up Nimbus 0N @ IMANET ...ovviiiiiiiie e e e e e e s e st re e e e e e e e s e s ssssnebseneeeeaeeas 12
4.2.1 Setting up VM Bridging using Wireless Cards.........cccveiiiiiiiiiiiiiieeeeeeee e ssssirieeeeeeseseesssssnnnnnnns 12
4.1.2 Configuring Nimbus t0 RUN 0N @ MANETuuuiiiiiiiiieie e ee e e e ssssiirreeee e e e e e s e s ssssennrnnes 14

4.2 Making NimbUS RESOUICTE AWAIE ...uuviiiiiiiiiiiiiiiiiitieeeeeeeeeessssiatieeeeeeeeeeessssssnsssseeeeeeesesssssssssssseseeeeeess 16
Chapter 5: Automatic CoONfIGUIATION ..oooeeiiiiiieeeie e e e e e e e s s st eeeeeeeeeeessssssenennes 18
5.1 FIOWECRNAIES .ottt s s sna e sane 18
I A AU} o] g g =N 4 (o] g B Yol o T e} £ USRS 19
5.2.1 Test Bed Management SCIiPTS...uuiiiiiiiiiiiiiiiieeeee e e e eeeseiirrreeeee e e e e e s sssbarrrreeeeeeeeessssnnsabseneeeeaeens 20
5.2.2 Test Bed Management COre SCIiPLS ...coiviuiriiiieeieeeeeeeiiiiiireeeee e e e e e esssnerrreeeeeeeeeessssnansreneeeeaeens 20
5.2.2.1 Manage-hoSt COME SCIIPES uuuuriiriiiiieiiiiiiiiiiiieeeee et e e e eesrrrrrree e e e e e e e s e s ssararreeeeeesessssasssnsrnnns 20
5.2.2.1. 1 add-NOSt c.neiiiiiiiiiiic e 20

5.2.2.1.2 remMOVE-hOST ...eoiiiiiiiiiiic e 21

I B RV o Yo -1 (- o To 1 £ 22

5.2. 2.1 4 lIST-NOSES ..ttt 22

5.2.2.2 manage-0lsrd-hosts COre SCrPLS ciiiiiiiiiiiiiiiiiieie it e e e e e e e s s s aaaeenes 22
5.2.2.2.1 add-0ISrd-N0OSt ...cccuviiiiiiiiiiii e 22

5.2.2.2.2 remoVe-0lSrd-hOSt......c.ciiriiiiiiiiiiii e 23

5.2.2.2.3 UPAte-0lSrd-NOSEScceeeiieeeeeieeiieticccrrere et e e e e e e e e e ———————————— 23

5.2.2.2.4 UPdate-0lSrd-NOST........cceiiieeeeieeiie et e e ———————————————— 24

5.2.2.2.5 [iSt-01Srd-NOSES ...couviiiiiiiiiiie e 25

5.2.2.3 manage-nimbus-head-N0de COre SCriPtS.....ciiiiiiiiiiiiiiiiiiiiiieeeie e eersirrrreee e e e e e e s e ssaeaneees 25
5.2.2.3.1 setup-Nimbus-Nead-NOAEouuriiiiiiiicicieieie e 25

5.2.2.3.2 remove-nimbus-head-node............ccoocuiiiriiiiiiiiiniiii 26

5.2.2.3.3 update-nimbus-head-NOdEuuururiiiiiieieieieee s 27

5.2.2.4.8 list-nimbus-head-Nodecccoriiiiiiiiiniiii e 27
5.2.2.4 manage-nimbus-VMmM-N0Ode COre SCIiPLS.....uuuiiiiiiiiiiiiiiiiiiiirieeteeeeeeessssirrrreeeeeeeeessssssnnnnenns 27
5.2.2.4.1 add-nimbus-VMM-NOGE.......ccccceiiriiiiiiiiiiiiic e 27
5.2.2.4.2 remove-nNimbusS-VMM-NOGEc.ccceirriiiiiiiiiiiiiiieee e 29
5.2.2.4.3 update-NimbuS-VMM-NOUES.........uuuuriiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e es 30
5.2.2.4.4 update-nimbuS-VMM-NOAEuuuuruuiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e e e e e es 30
5.2.2.4.5 connect-nimbus-vmm-to-headc.ccoociiiiriiiiiiiiii 31
5.2.2.4.6 disconnect-nimbus-vmm-from-headcccccoveiiiiriiiiniiiinie 32
5.2.2.4.7 is-nimbus-vmm-connected-to-head..........ccccociiiviiiiiiiiniii 32
5.2.2.4.8 list-NimMbBUS-VMM-NOAES.......cocciiiiriiiiiiiiiiiiic e 33
5.2.2.5 manage-nimbus-client-nodes COre SCriptscciiiiiiiiiiiiiiiiiiieeie e 33
5.2.2.5.1 add-nimbus-client-NOdeccceoriiiiiiiiiii 33
5.2.2.5.2 remove-nimbus-Client-NOde........cceiviiiiniiiiiiii e 34
5.2.2.5.3 update-nimbus-CliENt-NOAESuuuuriiiiiieiiieie e 34
5.2.2.5.4 update-nimbus-Cli@Nt-NOUE.........uuuiuiiicicieieee e 35
5.2.2.5.5 list-nimbus-Client-NOdeS.......cccceiriiiiiiiiiiic e 35
5.2.2.6 manage-phantom-VM COMe SCHPES ciiiiiiiriiiiiiiiiieeee e e eeeriiiireeeee e e e e s e s ssirrrreeeeeeeeesesssannnnnnns 35
5.2.2.6.1 setup-for-phantom-Vm........ooveiiiiiiiiccciiieie et e e eee e e e e e es 35
5.2.2.6.3 remoVve-phantomM-VM-SELUPuuuuiuriiiiiiiiiiieieee e eeeeeeeeeeeeeeeeeeeeeeeeeeerara e eneeeeas 36
5.2.2.6.2 Create-phantom-VmM e e e e e e e e e eeee e e e e e eeeeeees bbb eneeeees 37
5.2.2.6.4 SetUP-adhOC-atEWAYuuuiiiiiiiiieie i e e e e e e e s s s rareeeee e e e e e sennannnranes 38

5.2.3 Other Test Bed Management SCriPts ...oovvvuiiiiiiiieiie et e e e e e e e e s s s seannnnee 38
o T Y < U o PP 38
oA T IOt Y= U o B PSP PPPTRUPPRRt 38
Chapter 6: Demonstration and OBSErVatioNnsoovvveiiiiiiiiiiiiii e e e e e e e e eeeeeeeeeeeeeeeeseeeseserraranas 40
6.1 Functionality Offered by aNTRUMccoiiiiiiieeeeeeeeeeeee s e e e e e e e e e e eeeeeeeeeeeeeeereesesssasensaranas 40
6.2 ODSEIVALIONS «..eeiiiiiiiiiie ittt st s st st 41
6.2.1 Network Communication ObServationsccoceiviiiiiiiiiniiiciii e 41
6.2.2 Device Load ObSEIrVAtioNSeiiiiiiiiiiiiiiicete et e 42
Chapter 7: Conclusions and FULUIE WOKKcoooiiiiiiiieeeeeeeeeeeeeecrre s s e e e e e e e e e e e eeeeeeeeeeeeeessesesesersasanas 43
7.0 CONCIUSIONS ettt ettt et et e e e st e e e s b et e sba e e sba e e sbaeesaneeesanaeesane 43

A U (U =I Yo o TN 44

271 o] [To =42 o] o 1 V2RSSR 45
APPENAIX Az ADDIEVIATIONScciieiieeeeeeeeeee e e et e e e e e e e e e e et e e e eeee et ae e areseseseeeaeaeaaaaaaeeeens 47
ApPendix B: Test BEA DELAIIS ...cceveieeeeeiieiieicc ettt e e ee e e et s e s e e e eeeeaeaeaaaaaasaeens 48
B.1 SOTEtWAIrE VEISIONS .ccuiiiiiiiiiiiiic ittt st sr e e sne e e sanee e sanees 48
B.2 NETWOIK LAYOUL....coiiiiieeieeeeeieeett e s eereeereasara b e e b e bt eseseseseeeaeaeasaeaeseeeeens 48
Appendix C: Test Bed Set UpP TULOMIA] ...uuuiuriiiiiiiiiiiiiiiieee e e s e e e e e e eeeaeaaaaaasenens 50
C.1 Hardware REQUITEMENTScceeiieieieeeeeeeeeeeeeeett et eee e s e s e s e eeeeeeaeaeaaaeeesesesesesessssararsrsannnnnnnnnaaeeeens 50
C.2 SOftWAre REQUIFEIMENTS ...ccceeeeiiiieieceeeeeeeeeeeee e e e s e e e e e e e eeeeeeeeaeaeeeeesesesessssararsbsbaannannnaneeens 50
C.3 Setting UP the Master NOGEuuuiiiiiii it e e e e e s e e e e e e s e s s s sabataaeeeeaeeeeesannns 50
C.4 Setting UP the TesSt BEA NOUES ...cciiiiiiiiiciiiieteeee ettt e e e e s ee e e e e e e e s s s saabbraaeeeeaeaeeesannns 51
(O Yo [[T g T~ = Fo 1) PP PP S P PPP 51
C.4.2 Setting UP OLSRA .cciiiiiiiiiiiiiteeeee et e e e e e e et e e e e e e e e s s s s ssaabtebaaeaeeaeeeeesssnsnrsenneaeaeens 51
C.4.3 Setting UP NIMDUS cooiiiiiiiieeeee e e e e e e e e e e e e e s s s berbeeaeeeeeeeeessssssnrsenneeeaeens 52
C.4.3.1 Setting Up the SErvice NOGE .. .uuiiiii it s e e e e e e e s s s ssaanennes 52
C.4.3.2 Setting UP the VIVIIM NOESvvviiiiiiiiiiiiiiiieeeee e e e eeeriiinre e et e e e e e s s s ssaaarneeeeeeseesssnssnnnsnnns 52
C.4.3.3 Setting Up the CHENT NOGES......uiiiiiiii e s e e e e e e e s e s ssenbnnnes 53

C.d.4 TestiNg the SEBIUP .coiiii it e e e e e e e s s s bbbt e e e eeeeeeeesssnnsabtaaeeeeaeens 53
C.4.5 Setting up Phantom (OPtioNal)ececcciiiei it e e e e eae e e e srrr e e e s snaaeeeeenees 54
(O N Ao Ta Lo I LV I 2V 1Y/ 55
Appendix D: Test Bed Management SCIIPES ..ooivcuuriiiieiiiiee e iiiiiiteeee e e e s essrirrrrree e e e e e s e s sssaaareaeeeeeaeeeesnnnes 56
D R e T 0 =T VYo | o) £ USSRt 56

D 0 0 =Y = <= £ o] U UPPPPUSPPIN 56
D.1.2 Mmanage-NimbuS-CHENT-NOAESuiiiiiiiieiii e e e e e s s rereeeee e e e e e sssnenbrnnes 57
D.1.3 manage-Nimbus-head-NOTE...........uuuieiiiiiiiiiiiee e e e e e e s s eeeee e e e e e ssssenbrnnes 58
D.1.4 Manage-NimbUS-VMM-NOUESuuiiiiiiiieeeeeiiiiciiiireteeeeeeeeessssiartreeeeeesessssasssssrereeeseesesssssssnsrnnes 59
D.1.5 MaNage-0lSrd-NOSES ...uuuiiiiiiiiiiiicciiiiteeee e e e e e e e e s e e e e e e e e s s bbb e raeeaaeeeeeeannnarranee 61
D.1.6 Manage-PhantomM-ViMcciiiiiiiiiiiiiiieeee e e e s s e e e e e e e e e s st aabeeeeeeeeeesssassssssresaeeaaeessssansssnsrnnes 62

D A G0 =T of T | £ S UPUTRRN 63
D.2.1 @0d-NOST .t s e 63
D.2.2 add-nimbus-Client-NOTEcccciiiiiiiiiiiiii e 64
D.2.3 add-NimbuUuS-VMM-NOAEccoriiiiiiiiiiiiiiic et 66

DI A= Yo [o Bt o] Ky o I o To 1Y AU 70

D.2.5 connect-nimbus-vmMmM-to-headcccceeiriiiiiiiiiii 71
D.2.6 Create-PhantomM-Vimouiiieiiiiiceieieie e e ee e e e e e e e e e e eeeeeeeeeeeeeeerarere bbb aaaaeeeeeeeaaaeeeaeaeeeeeeens 73
D.2.7 disconnect-nimbus-vmm-from-headccocceeviiiiiiiiiniiiii e 77
D.2.8 is-nimbus-vmm-connected-to-headccccevviiiiiiiiiiiiii 78
D.2.9 lIST-NOSTS ettt 79
D.2.10 list-nimbus-ClIENt-NOAEScccuviiriiiiiiiiiiiii e 79
D.2.11 list-Nimbus-head-NOde........cooviiiiiiiiiii e 80
D.2.12 list-NimbuS-VMM-NOAESccccutiiriiiiiiiiiiiiii e s 80
D.2.13 [iSt-0lSrad-NOSTES ..eoiiiiiiiiiiiiiiee e 80
D.2.14 re€MOVE-NOST.....ciiiiiiiiiiiiiit e s 81
D.2.15 remove-nimbus-ClienNt-NOdEc.ccovciiiiiiiiiiii e 82
D.2.16 remove-nimbus-head-Nodec.coviiiiiiiiiiiii e 83
D.2.17 remove-NimbuS-VMM-NOGEc.ccciiiiiiiiiiiiiiict e 85
D.2.18 remove-0ISrd-NOST ...c.c.eiiiiiiiiiiiiiiii e e 86
D.2.19 remoVe-PhantomM-VmM=SEEUPuuiiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeerare s asaeeeeeeeeeeaeaaeeaeseeseens 88
D.2.20 SetUP-adhOC-atEWAY ..cciiiiiiiiiiiiiiiieeee e e e e e e e s st e e e e e e e e e e s ssaabteseeeaaeeeeesannnnnrrnnes 89
D.2.21 setup-fOr-phantom-Vim ... e s e s e e e e e e e eeaeaeaaaaaeaeeees 90
D.2.22 setup-NimbUS-NEAA-NOUEuuiiiiiiieiei e e e e e e e e e e e e e aeaeaaaaaeeens 92
D.2.23 UPAATE-NOSES ..ceiiieiiiieeeeittit et e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeaa e r s b — e aaaeeaaeeeeaaeaaaaaaaaereens 94
D.2.24 update-NimbusS-ClIENT-NOAEuuuiiiiieieee e e e e e e e e e e e e e e aaaeaaeens 95
D.2.25 update-Nimbus-ClIE@Nt-NOAES.uiiiieieee et e e e e e e e e e e e e aaaeeaeens 96
D.2.26 update-NimbuS-NEAA-NOAEuuuiiiieieie e e e e e e e e e e e aaaaeaeaaeens 96
D.2.27 update-NimbUS-VMM-NOE e e e e e e e e e e e e eeaeaaaeaaeeeens 98
D.2.28 update-NimbUS-VMM-NOUESccceieieieieiii i se s e e e e e e e e e eeaaaeeeeeeeeeeeresseeanes 100
D.2.29 UPAte-0lSrd-NOSt ...vvviiiiiiiiiciiiieieie e e e e e e e e e aaaeeaeeeeeereraarara—a 100
D.2.30 UPAAte-0lSrd-NOStS . ..uuviiiiiiiiiiiiiieieie e e e e e e e e e e e e eaaaeeaeeeeeereraararaaa 102
D 01 Y=Y G Yol a1 1 £ TSP U TP PPN 103
D0 T 1= (U] T OO PPP PPNt 103
D 0o o} T ={ VT - I oY I o1 =P SPPTP PP 104
D.4.1 MaiN.CONT.EXAMPIE coevvieiiiiii i e et e e e e eeeee et e e eeeeee e ee st reaaseseeeeeaeaeaaaesesesssssssessssnres 104
D.5 LIBIaries oeeeeiiieiiieee e s st 108

DTt A {0 o ot f [o T s 3N o 1Y PP U PPPUPU PPNt 108

D.5.2 fUNCEIONS.SH..ciiiiiiiiii e 108
Appendix E: Test Bed Scripts and Software Modifications............ooovvvviiieieeiiiiiiicrerer e, 117
E.1 Test Bed Management Helper SCripts ...t e e e sirrrrre e e e e e e e e s s aaabeaeeees 117
E.1.1 SEt-PWAIESS-SUAD...ceeirtriiitiiiitiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeereaestsraraa— e saseseeeasaeasaseessesssssssssssnres 117
E.2 TSt BOA SCIIPLS coieieiiiiiiieeiiiiiitit e ses e e e e e e e e e e e e e e eeeeeeeeeeeeeeeaea s s ta b s b ba e e sesesaeeeeasaaaeesesesssssssssssnnes 117
E.2. 1 OULPUL-TESOUICE-STatUS. PY ettt e et e e et s e e et e e et e e e et e aeaaanaaes 117
E.3 Modified SOftWare Files.........ccoiiiiiiiiiiiii e e 119
E.3.1 Cloud-ClIENT.SH c..eeiiiiiii e s 119
ST A= Yo [o B o To 1] =Y | 1 o PR U PP PRSPPIt 123
E.3.3 rE€MOVE-NOST-ENEIY coeeriiiiiiiiiiccicieiee et eee e ee e e e e seseeeeeseeeaeaaaeeeseessssssessssnnes 124
E.3.4 WOIKSPACE-CONTIOL.SI covviiiiiiicccecee s e e e e e e e e e e eeaaaeeeeeeeeeseeeesasenes 124
E.3.5 SELUP-VMNEEWOIK ..ceirtiiiiiiiiitiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeereeestarara i aaaseseseeeaeaeasaseeesesssssssssssnres 126
E.3.6 ClEANUP-VM-NEEWOIK ..evviiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeest bbb s seseseeeeeeeaeaaasseseesssssssssssnres 127
B4 OTNEr FIlES oottt st s 128
E.4.1 Nimbus Service NOE FileScccueiiiiiiiiiiiiiiiiiic e 128
E.4.2 Nimbus VIMIM NOGE FIleS......cciiiiiiiiiiiiiiiiie ettt 129
E.4.3 OLSRA SOFtWAre FileSuiiiiiiiiiiiiiiiiiiiiec e 129
E.4.4 Nimbus Phantom FileS........ccciviiiiiiiiiiiiiiii et 130
Appendix F: Test Bed Scripts Dir€Ctory STrUCLUIEciiiiieee e e e e e e e 131
F.1 Directory Structure DeSCriplioN. ... i it e e e et e e e e e e aa e e e e e e eeaaaeeeeeeeenans 131
(A D 1 [Yot o] VA I =TT PR 132

Vii

Chapter 1: Introduction

Cloud computing is a relatively new and, therefore, rapidly evolving field in computer science.
Consequently, much research is still being done with regards to harnessing clouds for certain
applications. For instance, the use of mobile devices by soldiers or people involved in emergency,
evacuation, or relief operations to perform important field computations is becoming prevalent.
However, despite the rapid increase in the processing capability of mobile devices, there are many cases
where such computations are too large for these devices to handle — either due to memory capacity or
processing capability limitations. In addition, resource-intensive computations tend to increase power
consumption, which is still a major issue for mobile devices. Although most of these devices have
remote access to alternate computing resources via satellite, latency is a major constraint. Because of
this, it is sometimes necessary for these devices to harness the processing and storage power of nearby
mobile and static devices to perform computations in a timely manner. Cloud computing can assist with
this as it provides a means of utilizing other computational resources without the user having to be

concerned about the types and locations of the resources being used.

The goal of this project is to create a highly configurable, scalable test bed that consists of various
heterogeneous hardware devices, both static and mobile, connected over a mobile ad hoc network
(MANET). This test bed will allow us to measure the effectiveness of such a system, for example under
different scheduling strategies. To this end, we implemented a cloud test bed, called aNTRuM (a Nimbus
Test bed Running on a MANET), which consists of the hardware and software described in Chapter 3 and
specified in Appendix B, and in which compute platforms are connected via a MANET. The Nimbus
Infrastructure [1], an open-source Infrastructure as a Service (laaS) cloud software, was used to
implement the cloud infrastructure and OLSRd [2], an implementation of the Optimized Link State

Routing (OLSR) protocol, was used to implement the MANET. Furthermore, we incorporated a technique

1

for individual devices in the test bed to make the status of certain resources, such as battery life,
available to the cloud scheduler, which will facilitate future planned modifications to the cloud
scheduler. We also set up Nimbus Phantom, an open-source multi-cloud scaling tool, in the test bed to
be available for future work. To ease the creation of a cloud test bed of this type, we created

automation scripts for easy test bed setup, configuration, and scaling.

Our main contributions include:

1. amethodology for implementing a cloud test bed where resources are connected via a MANET;
2. automation scripts for easy test bed setup, configuration, and scaling; and
3. atechnique for detecting the state of resources, in particular, the remaining battery life of

mobile devices in the cloud.

The first contribution largely can be attributed to the fact that the underlying network of our cloud test
bed is a MANET — we have not found any work that has set up a cloud test bed in which compute
components communicate in this way. Our second contribution automates the setup, removal, and
configuration of the test bed and its devices. Our final contribution facilitates the scheduling of a cloud

that contains mobile devices.

This report is organized as follows. This chapter introduced the purpose of this project, our goals, and
our contributions. Chapter 2 outlines the differences between our work and other work done with
regards to cloud computing test beds, and provides an overview of the FutureGrid test bed and our
collaborations with the FutureGrid team. Chapter 3 presents the design of aNTRuM and particulars
regarding our choices of the software that was used for its implementation. Chapter 4 reveals
implementation details, specifically, how we set up our test bed to run on a MANET and how we added
resource awareness to our test bed. Chapter 5 provides a flowchart of the setup of a Nimbus test bed

using our automation scripts, as well as description of each script. Chapter 6 demonstrates the

functionality offered by aNTRuM and reports the results of our tests. Chapter 7 presents our conclusions
and discusses possible future work. Appendix A provides definitions of abbreviations used in the report.
Appendix B provides the details of aNTRuM, including software versions and network setup. Appendix C
provides a tutorial on using the automation scripts for creating a setup similar to aNTRuM as well as
information about when the scripts were last tested and issues that arose during testing. Appendix D
presents the scripts described in Chapter 5. Appendix E presents the modifications made to the software
used by aNTRuM and scripts created for use in aNTRuM. Finally, Appendix F presents the directory

structure of aNTRuUM’s scripts.

Chapter 2: Related Work

In general, the term “mobile cloud computing” tends to carry the connotation of a set of mobile devices
that utilize cloud resources, either through a cellular network or via Wi-Fi. More recently, much research
has been done in the area of cloudlets, which serve as intermediary compute or storage resources
between sets of mobile devices and a cloud. The nodes (devices) within a cloudlet usually are located
closer to a mobile device than are the nodes of a cloud, thus, the communication latency between the
mobile device and the resources of a cloudlet is lower than the latency between the mobile device and
the resources of a cloud. For example, the MOCHA Project [3] is studying the performance of fielded
applications using a cloudlet comprised of a small cluster in a vehicle as both a compute resource and
arbitrator between mobile devices and a cloud. Since high latency is an issue when using cloud
resources, a cloudlet can assist in reducing this latency and potentially provide sufficient resources to
avoid having to communicate with a cloud altogether. This is especially true when the computational
requirements of an application are too large for a mobile device but are not large enough to merit the

use of remote cloud resources.

In terms of energy awareness in clouds, work, such as [4], has been done, but is limited to traditional
clouds, making it less relevant to aNTRuM. For example, the authors of [4] use load balancing and virtual
machine (VM) consolidation to minimize power usage, but their approach does not take into account
the potentially higher delay of transferring VMs from one device to another via a MANET (due to
wireless generally being slower than wired networks), or of the fact that some devices may have

battery-life constraints, as is the case with aNTRuM.

This chapter discusses: (1) other cloud computing test beds (including the MOCHA Project) and (2) the

FutureGrid project and our collaborations with its team.

2.1 Cloud Computing Test Beds

The cloudlet test bed used by the Mocha Project is the only one that we found in the literature that
employs mobile devices and a mobile cloudlet. In contrast, our cloudlet (aNTRuM), currently not
connected to a cloud, is composed of various nearby heterogeneous compute resources, rather than a
single device or cluster. This adds new dynamics, such as the potential unreliability of the
aforementioned compute resources due to damage, distance, battery-life constraints, etc. As mentioned
in Chapter 3: (1) OSLRd, a network routing protocol that is used to manage traffic in the MANET that
connects aNTRuM'’s devices, can assist with including networking reliability into cloud scheduler
decision-making, and (2) our technique for making the status of a devices’ resources available can assist
with including power and other non-traditional resource constraints into the scheduler’s decision-

making as well.

Various other cloud test beds exist, but again do not have the same focus and goals as we do for
aNTRuM. The Open Cloud Testbed (OCT) [5], for example, is a distributed cloud test bed with one focus
being network provisioning. The OCT allows for provisioning resources across data centers. However, in
contrast to aNTRuM, it focuses on providing a high performance (10Gb/s) network for handling
extremely large data sets. Open Cirrus [6] is a much larger cloud computing test bed with one of its four
main foci being systems-level research. Consequently, it provides direct access to its physical resources
and, thus, allows for a greater level of control. However, there is no provision for wireless networks.
Emulab [7], on the other hand, provides a wireless test bed, but only for the purpose of network-specific
research. Other cloud computing test beds exist, but are not systems or network (other than high speed

or reliability) focused.

Additionally, two new test beds, CloudLab [8] and ChameleonCloud [9] have recently been announced.

These two test beds seek to provide cloud computing test beds that are configurable at all levels and

support special hardware, which includes programmable networks. However, there is little to no

indication that these test beds will provide real wireless hardware.

2.2 FutureGrid

One of our collaborators for this project is the FutureGrid project team (the FutureGrid project recently
came to a close). FutureGrid [10] is a test bed developed for the purpose of allowing scientists to
experiment with new approaches to cloud computing, as well as parallel and grid computing. FutureGrid
has a set of heterogeneous computing systems, a data management system, and a dedicated network.
Eucalyptus, Nimbus, and OpenStack were the three open-source cloud laaS offering on FutureGrid. The
FutureGrid team has indicated to us that they believe that our project is novel, mainly because of the

underlying network infrastructure of aNTRuM.

Chapter 3: Design

As mentioned in Chapter 1, the goal of this project is to create a highly configurable, scalable cloud test
bed that consists of various heterogeneous hardware devices, both static and mobile, connected over a
mobile ad hoc network (MANET). To this end, we implemented a test bed, called aNTRuM (A Nimbus
Test bed Running on a MANET), in which the cloud hardware components, specifically, the head node,
virtual machine monitor (VMM) nodes, and client nodes are connected via a MANET. aNTRuM also
consists of a set of software components that compose the cloud infrastructure, namely, the cloud,
hypervisor, and optimized link state routing (OLSR) protocol software, as well as a multi-cloud scaling
tool. This chapter describes: (1) the functionality of each software component and how each component
interacts with the other software components of aNTRuM, and (2) the software used to implement each
of the components. A description of the development and actual implementation of the test bed is

presented in Chapter 4.

3.1 High-level Design

Figure 3.1 presents a high-level diagram that depicts the cloud, hypervisor, optimized link state routing
(OLSR) protocol, and multi-cloud scaling software of aNTRuM and their interactions. As shown in the
figure, aNTRuM is comprised of a head node, VMM nodes, and client nodes. The head node handles the
scheduling of the virtual machines (VMs) that run on the VMM nodes, the management of cloud
hardware resources, and interfacing with clients. Installed on the head node are the cloud laaS and OLSR
software. The VMM nodes, which handle the provisioning of VMs, contain the cloud control agent,
hypervisor, and OLSR software. The cloud laaS, cloud control agent, and cloud client software are all
parts of the cloud software. The client uses the cloud client software to interface with the laaS software
on the head node. By interfacing with the cloud control agent software on a VMM node, which, in turn

interfaces with the VMM node’s hypervisor, the head node’s cloud laaS software creates and manages

VMs. The cloud scaling software runs on a VM in the cloud, and allows for easily managing a set of

resources deployed across multiple clouds. The capability provided by this software will be used in

future work.

Because the devices in aNTRuM are connected via a MANET, the OLSR software on the head node, VMM

nodes, and client nodes is used to facilitate communication among the nodes of the cloud. The

information provided by OLSR also will be used in future work to automate some functions of the head

node, which we describe in more detail in the next section.

Client Node Head Node
Cloud Client Cloud laaS
Software Software
\
VMM Node
OLSR Software OLSR Software
| | | Cloud Control
Agent Software
|
VM N
! Hypervisor
:] VM
{ MultiCloud . | Software
|| Scaling Software ||
OLSR Software

VMM Node

Cloud Control
Agent Software

VMM Node

Cloud Control
Agent Software

Hypervisor
Software

VM

Hypervisor
Software

OLSR Software

OLSR Software

Figure 3.1: High-level architecture of aNTRuM.

3.2 Software Selected to Implement High-level Design

Below we present the software that was selected to implement each component of the high-level

architecture of aNTRuM shown in Figure 3.1. In addition, we provide support for our selection decisions.

Cloud Software: The Nimbus infrastructure [1] was used to implement the cloud laaS and control
components of aNTRuM. The Nimbus infrastructure is open-source laaS cloud software that provides
resources to users in the form of VMs, allocated and configured according to user requirements. A
system running the Nimbus infrastructure needs to have a service node (head node) running the cloud
laaS software and one or more VMM nodes, each running the cloud control agent software. Nimbus also
provides client software that can be used with the Nimbus infrastructure. For simplicity, the Nimbus

infrastructure will be referred to as Nimbus in the remainder of this document.

Nimbus uses a service called Cumulus to manage the VM images available for use in the cloud. These
images can be uploaded by either the cloud administrator via the laaS software or by users via the
Nimbus client software or other EC2 clients. Normally, Cumulus stores the images in the service node,

but it can be configured to store them across the various VMM nodes.

Nimbus was selected for the laaS cloud software for the following two reasons: (1) An laa$S cloud allows
us to use a MANET as the interconnection network for aNTRuUM and it permits us to extend, in the
future, the cloud’s scheduling capabilities. This is because laaS is the lowest level of cloud infrastructure
(it provides the most fundamental cloud computing services, i.e., VMs, storage, network, etc.), and
changing something as foundational to the cloud as the network configuration requires changes at the
lowest levels. (2) According to [11], which provides a comparison of the main open-source laa$S software
currently available, Nimbus offers the option of using either a centralized or local (per node) DHCP
server for assigning IP addresses to VMs. Since most solutions for setting up DHCP on MANETSs are not
for VMs, and since the only need for a DHCP server in our test bed was for assigning IP address to VMs,

it was necessary to have local (per VMM node) DHCP servers.

Hypervisor Software: The purpose of hypervisor software is simply to create and run VMs. Nimbus

currently interfaces with either the XEN [12] or KVM [13] hypervisor. We chose to use KVM, over XEN,

for a number of reasons but mainly because XEN is a type 1 (bare metal) hypervisor. This means that it
runs directly on a node’s hardware with the control domain (dom0) running above it; this requires
modifications to the Linux kernel. Since we want aNTRuM to have the capability of running on devices
that are not completely dedicated to the cloud, using XEN would defeat this purpose. In contrast, KVM is
built into the Linux kernel, giving it the ability to act as a type 1 hypervisor but still reside within the
Linux operating system. However, KVM requires hardware virtualization support, making it less friendly

to some ARM-based devices that don’t include such virtualization support.

Multi-Cloud Scaling Software: Phantom [14], open-source software that allows users to manage
resources distributed over multiple clouds via its auto-scaling capabilities, was used as the multi-cloud
scaling software. Phantom can be extended by adding new decision engines; Phantom’s decision
engines are what determine its behavior. It uses OpenTSDB [15] for monitoring VM resources, and can
collect performance-related data from VMs, such as available memory, load, etc., which in turn can be
used in Phantom’s decision engines. Originally, Phantom was going to be used for detecting the state of
resources in our test bed. However, since Phantom’s level of control is limited to making requests to
clouds, and does not have the capability of determining where and how VMs are scheduled in a
particular cloud, it was not practical to use Phantom in that way. In Chapter 4, we discuss this in more
detail and describe how we added resource awareness into our test bed. In Chapter 7, we mention the

possibility of using Phantom in future work to manage multiple clouds.

OLSR Software: We decided to use the OLSR daemon (OLSRd) [2] running on a mobile ad-hoc network
(MANET) for the OLSR protocol software portion of aNTRuM. This allows us to mimic fielded device
connectivity and to align our research with the Army’s interest in routing protocols for wireless
networks, such as the Optimized Link State Routing (OLSR) protocol. OLSRd is an implementation of the

OLSR protocol with the additional feature of link quality sensing, a feature that is lacking in the OLSR

10

protocol. As mentioned in Chapter 7, in future work the data provided by OLSRd can provide data that
may allow us to modify Nimbus to detect when nodes disappear from and reappear in the network and

to handle those situations accordingly.

Operating System: For the underlying operating system (OS) of the aNTRuM nodes, we chose to use
Ubuntu 14.04 LTS [16]. This selection was due to our familiarity with this OS and its popularity. Version
14.04 was chosen because it is the latest Long-Term Support (LTS) version of Ubuntu to date.
Additionally, the development of Ubuntu for phones and tablets is currently in progress. We mention in
Chapter 7 that we plan to later expand aNTRuM to include mobile devices such as tablets and phones
(ARM devices) -- having the same OS distribution on the various nodes of aNTRuM will ease the process
of doing so. This component of the test bed was not mentioned above since it is assumed that each

machine will be running an OS and none of the components are Linux-distribution dependent.

11

Chapter 4: Implementation

In this chapter, we describe the details of our implementation of aNTRuM. In the first section we reveal
how we modified Nimbus to run on a MANET. In the second section we discuss how we made the state

of device resources available to the Nimbus cloud scheduler.

4.1 Setting up Nimbus on a MANET

The following sections describe our process of setting VM bridging using wireless cards and setting up

Nimbus to run on a MANET, as well as the challenges of doing so.

4.2.1 Setting up VM Bridging using Wireless Cards

In any laa$ cloud, for the client to be able to connect to the VMs, a network bridge is required on the
VMM node hosting the VM. One of the challenges with setting up aNTRuM to run on a MANET is that
most wireless cards to not natively support bridging like Ethernet cards do. Because of this, it was

necessary to use a workaround that involved the following five steps for each of aNTRuM’s VMM nodes:

1. create a TAP interface,

2. enable kernel IP forwarding,

3. enable Proxy ARP for the WLAN and TAP interfaces,
4. assign the TAP interface a certain IP address, and

5. add routes from the host to the guests.

Step 1: A TAP device is a virtual-network kernel device that simulates a link-layer device, and is used to
create network bridges. By attaching the VM to a unique TAP device created for that VM, traffic is

bridged between the wireless card on the VMM hosting the VM and the VM itself.

12

Step 2: By enabling kernel IP forwarding on a VMM node the kernel can forward the traffic that arrives
via the wireless card to the VMs running on the node, assuming the destination subnet for said traffic is

the same as that of the VMs.

Step 3: Address resolution protocol (ARP) requests allow determination of the MAC address of a
machine using the machine’s IP address via an ARP broadcast message. An ARP proxy will respond to
requests for MAC addresses that are not on the network, but for which it knows the locations, and will
return its own MAC address. Enabling this technology on a VMM node for both the wireless interface
and the TAP interfaces assigned to the various VMs allows for the wireless interface to respond to ARP
requests directed towards VMs running on the host, as well as from the VMs to the host’s network. ARP

functions at the link layer.

Step 4: By assigning an IP address to a TAP device in the same subnet as the IP address of a VM attached
to the TAP device, traffic can flow between the network card of the VMM node on which the VM is

running and the VM by creating a route to the network to which the VM belongs.

Step 5: By adding a route to a VMM node’s routing table for the IP address of a VM running on the node

and the TAP device to which the VM is attached, traffic destined for that VM can be routed to it.

It is important to note that the setup described above encompasses only the necessary steps taken to
set up bridging between a VMM node’s wireless card and VMs running the VMM node; it does not
account for security issues that may appear as a result of such a setup. Because aNTRuM was set up as a
cloud test bed, and since our focus was on setting up a working test bed with specific features, we did
not focus on setting up a firewall on the VMM nodes to protect our bridging setup. This is left for future

work.

13

4.1.2 Configuring Nimbus to Run on a MANET

Since the Nimbus software is built to run on devices connected via a wired network, it was necessary to
make some changes to the software and its configuration to be able to run on devices connected via a
MANET, with a bridging setup as described in Section 4.1.2. This section describes those software
modifications; the content of the files themselves can be found in Appendix E. Note that the following

three paragraphs refer to modifications done to software running on the VMM nodes of the test bed.

workspace-control.sh: Because the workaround described in Section 4.1.2 cannot be achieved by a

normal configuration of the Nimbus cloud software, it was necessary to modify the script called
workspace-control. sh. Thisis the main script for handling requests for VM creation and
destruction. It sends commands and parameters as large strings to a Python script, which handles the
rest. Essentially, the modification captures the command and parameters before they are sent to the
Python script, and runs one of two auxiliary scripts, depending on the captured command. One of the
scripts sets up one or more TAP interfaces to attach to the VM that will be created and the other tears
down the TAP interface when the VM will be terminated. The parameters that are captured are the

name of the VM and its IP address; these parameters are used in the setup script.

libvirt_template.xml: Another file that was modified to allow for using wireless bridging was the

template for the VM XML definition used by libvirt (1ibvirt template.xml), a hypervisor
management tool used by Nimbus to manage KVM. The template was modified for the VM to use a
generic Ethernet device, which allows the VM to attach to a TAP interface and to not use the standard

VM network startup and shutdown scripts that are triggered by using a generic interface definition.

gemu.conf: A few changes to a configuration file (gemu . conf) were also necessary to allow for libvirt

to use a generic Ethernet device. These modifications include

* settingclear emulator capabilitiestoO,

14

* settinguserto “root”,
* setting group to “root”, and

* adding “/dev/net/tun” tocgroup device acl.

Since aNTRuM runs Ubuntu, which uses apparmor (not SELinux), it was necessary to remove apparmor
in order to allow the above setup to work, thus, increasing potential security issues. This is because
apparmor blocks the VM from attaching to the TAP device, even though it is allowed in the configuration

file.

As mentioned in Chapter 3, it was necessary to set up a local DHCP server on each VMM node.
Fortunately, this option is available in Nimbus. Another option available within Nimbus is the ability to
cache a VM image on a VMM after the first time a VM based on that image is created on the VMM. This
was important for our setup since the transfer of large files, such as VM images, is generally slower
across a MANET than across a wired network. The option to store the VM images on various VMMs in
the first place by disturbing Cumulus’ image storage is also available in Nimbus, but it is much more

complicated to set up and was unnecessary for our purposes. Thus, this is left as a future work item.

cloud-client.sh: Because aNTRuM runs on a MANET, it does not have a domain name system (DNS)
available for its devices and VMs. Therefore, the main script of the Nimbus client software (c1loud-
client.sh)was modified to call auxiliary scripts to add and remove entries for VMs to the hosts file
on the device on which the Nimbus client software is installed. This allows users to access their VMs
from the device running the Nimbus client software using the VM’s hostname, not just its IP address.
However, this modification only works when interfacing with the test bed’s cloud via the Nimbus client
software, and not via the EC2 interface, which is used by a user when he or she sets up Phantom and by
Phantom to communicate with the test bed’s cloud. Hence, an additional workaround was needed to

overcome this limitation when setting up Phantom, which consists of creating a VM through the Nimbus

15

client software, getting its IP and hostname information, adding the information to the hosts file, and
destroying the VM. This workaround assumes that no other VMs will be created or destroyed between

when it is finished and prior to setting up Phantom.

4.2 Making Nimbus Resource Aware

As mentioned in Chapter 3, we originally planned on using Phantom to make the states of resources
available to our test bed’s cloud scheduler. However, we were not able to do this because Phantom only
is able to manage VMs across clouds, not within a single cloud. Even though Phantom’s VM
management and scaling capabilities far exceed those of the Nimbus cloud scheduler, these capabilities
are only useable across multiple clouds (see [17, 18] for more details on Phantom). As a result and since
the scope of this project is limited to a single cloud, this is left as future work. Nonetheless, Phantom is

included as part of aNTRuM.

Because the Nimbus cloud scheduler is limited to simply providing the VM resources requested by the
user, it was impractical to make it provide any more than the current state of resources of its available
VMM nodes, for which it knows only basic information such as the maximum amount of RAM allocated
for VMs to use and how many CPU cores to allot to VMs. The devices in our test bed have other
constraints such as battery life and a widely variable range of currently available RAM (since they
simulate VMM nodes that may not be dedicated to only that purpose). Thus, we created a small script to
run on each VMM node that outputs this information to a file in a specific location on the VMM node
after a certain interval of time. Because the cloud software on the head node uses secure shell (SSH) for
requesting resources on its VMM nodes, it could easily access that file and use the resident information
in its scheduler’s decision process. For example, it could use the available battery life of a mobile VMM
node and the allotted running time of a VM to decide whether to schedule on that VMM node. VMM

nodes also use SHH to notify the head node that a VM is propagated, so they could alert the cloud

16

software on the head node that its battery life is low or depleting. This may seem rudimentary, but it is
consistent with the current capabilities of the scheduler. In this case, the extra capabilities provided by

Phantom would be useful if Phantom had control of individual devices of a cloud.

The following is a description of the information provided by the script that collects the system resource

information (the script itself can be found in Appendix E).

For memory information:

¢ Total memory (in kB): memory.memtotal

* Free memory (in kB): memory.memfree

For device information:

* Device has battery(s) (value can be 0 or 1): device.hasbattery

(The following will only be provided if the device has a battery)

* Device is plugged in (value canbe O or 1): device.pluggedin

For battery information:

* For each battery:

o Battery status (values can be 'full’, 'charging', 'discharging'):

battery [battery number].status

o Battery capacity (in %): battery [battery number].capacity

17

Chapter 5: Automatic Configuration

A computer running independently of the cloud is set up to function as the test bed management
(master) node of aNTRuM. Using a set of automation scripts, the master node allows easy setup,
configuration, and scaling of a Nimbus cloud, while not interfering with it otherwise. The following
sections provide a flowchart of the automated setup process and describe the functionality of the

scripts.

5.1 Flowcharts

Figure 5.1 describes the steps to follow, using the automation scripts that run on the master node of
aNTRuM, to set up a resource-aware Nimbus cloud test bed that runs on a wireless ad-hoc network that

employs OSLRd.

18

Add one or more hosts to the test bed
(using the manage-hosts script)

Y

Set up OLSRd on one or more hosts
(using the manage-olsrd-hosts script)

Modify the OLSRd configuration for the hosts running OLSRd
(by modifying the appropriate configuration files and using
the manage-olsrd-hosts script to update)

Y

Set up a host as the Nimbus service node
(using the manage-nimbus-head-node script)

Modify the Nimbus cloud configuration
(by modifying the appropriate configuration files and using
the manage-nimbus-head-node script to update)

/

Set up one or more hosts as Nimbus VMM nodes
(using the manage-nimbus-vmm-nodes script)

Modify the Nimbus VMM nodes’ configuration
(by modifying the appropriate configuration files and using
the manage-nimbus-vmm-nodes script to update)

Y

Setup the Nimbus client software on one or more hosts
(using the manage-nimbus-client-nodes script)

Y

Create the Phantom virtual machine
(using the setup-for-phantom-vm and create-phantom-vm
scripts)

Figure 5.1: aNTRuM setup and modification using automation scripts

The scripts also allow for easy reconfiguration of hosts from one purpose to another, as well as easy
removal of hosts from the test bed and even a complete teardown of the test bed. They also allow for

easily propagating changes to the settings of the software used in the test bed.

5.2 Automation Scripts
This section describes the function of each script that is executed on the test bed management node. A
tutorial that takes a user through each step in the aNTRuM setup flowchart shown in Figure 5.1, i.e.,

describes how to use the scripts to set up a test bed similar to aNTRuM, is provided in Appendix C.

19

5.2.1 Test Bed Management Scripts

Resident on the master node are scripts that call the core scripts described in Section 5.2.2; these

“primary scripts” allow the user to manage the test bed. The following table lists the core scripts called

by each primary script.

Table 5.1: Core scripts called by primary scripts. The first row lists the primary scripts and the
following rows name the core scripts that are called by each primary script.

manage- manage- manage- manage-nimbus-vmm- manage- manage-
hosts olsrd-hosts nimbus- nodes nimbus- phantom-
head-node client-nodes VM
add-host add-olsrd- setup- add-nimbus- connect- add-nimbus- setup-for-
host nimbus- vmm-node nimbus- client-node phantom-
head-node vmm-to- vm
head
remove-host remove- remove- remove- disconnect- remove- remove-
olsrd-host nimbus- nimbus-vmm- Nimbus- nimbus- phantom-
head-node node vmm-from- et node VM-setup
head
update-host update- update- update- is-nimbus- update- create-
olsrd-hosts nimbus- nimbus-vmm- vVmm- nimbus- phantom-
head-node nodes connected- (jient-nodes VM
to-head
list-hosts list-olsrd- list-nimbus- list-nimbus- list-nimbus-
hosts head-node vmm-nodes client-nodes

5.2.2 Test Bed Management Core Scripts

The following are descriptions of the core scripts listed in Figure 5.1, which are executed on the test bed

management node.

5.2.2.1 manage-host core scripts

5.2.2.1.1 add-host
Description: Sets up a new host, host A, on the test bed.

Prerequisites: Host A does not already belong to the test bed.

20

Script outline:

1. Adds the public key of the management node to the authorized keys file of host A.

2. Runs a script to set up password-less sudo for the user on host A. This is done by creating a
new file for the user in host A’s sudoers.d directory with the NOPASSWD parameter set in
the file.

3. Adds an entry for host A to the testbed hosts file.

4. Adds an entry for host A to the management node’s hosts file.

5. Runs the update-hosts script.

5.2.2.1.2 remove-host
Description: Removes a host, host A, from the test bed.

Prerequisites: Host A belongs to the test bed.

Script outline:

1. Ifthe -—force parameteris not set, then:
a. Runsthe remove-olsrd-host script if OLSRd has been set up on the host A.
b. Removes the entries for the other test bed hosts from host A’s hosts file.
¢. Removes password-less sudo for the user by removing the user file created by add-
hosts from the sudoers. d directory on host A.
d. Removes the public key of the management node from the authorized keys file of
host A.
2. Removes the entries for host A from the management node’s hosts file.
3. Removes the entry for host A from the authorized keys file of the management node.
4. Removes the entry for host A from the testbed hosts file.

5. Runs the update-hosts script.

21

5.2.2.1.3 update-hosts
Description: Updates the hosts file on all hosts that belong to the test bed.

Prerequisites: The test bed contains at least one host.

Script outline:

1. For each host, host A, in the test bed:
a. Copies the test bed sections of the management node’s hosts file to host A’s hosts

file.

5.2.2.1.4 list-hosts
Description: Lists the hosts belonging to the test bed.

Prerequisites: The test bed contains at least one host.

Script outline:

1. Printsthe testbed hosts file.

5.2.2.2 manage-olsrd-hosts core scripts

5.2.2.2.1 add-olsrd-host
Description: Sets up the OLSRd software to run on a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* OLSRd is not already set up on the host.

Script outline:

1. Copies the OSLRd setup files to host A.

2. Installs the packages required to run OLSRd on host A, and reboots host A if necessary.

22

3. Builds and installs OLSRd on host A.
4, Runs the update-olsrd-host script for host A.

5. Runs the update-hosts script.

5.2.2.2.2 remove-olsrd-host
Description: Removes the OLSRd software from a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* OLSRdis set up on host A.

Script outline:

1. Killsthe olsrd process on host A.

2. Removes the configuration to set up an ad hoc connection on the wireless card from the
network/interfaces file on host A.

3. Uninstalls OLSRd on host A, deregisters OSLRd from update-rc.d, and removes the OLSRd
startup script from init.d on host A.

4. |If user approves, uninstalls the packages required to run OLSRd from host A, and reboots host A
if necessary.

5. Removes the OLSRd data from the entry for host A in the testbed hosts file.

6. Removes the OLSRd data from the entries for host A in the management node’s hosts file.

7. Runsthe update-hosts script.

5.2.2.2.3 update-olsrd-hosts
Description: Runs the update-olsrd-host script for each host running OLSRd in the test bed.

Prerequisites: At least one host in the test bed runs OSLRd.

23

Script outline:

1. For each host, host A, running OLSRd in the test bed:
a. Runsthe update-olsrd-host script for host A.

2. Runsthe update-hosts script.

5.2.2.2.4 update-olsrd-host
Description: Updates the OLSRd ad hoc setup script, the OLSRd configuration file, and the wireless-ad-

hoc-connection-related entries in the network/interfaces file on a host, host A, then restarts

OLSRd on host A.

Prerequisites:

* Host Ais part of the test bed.

* OLSRdis set up on host A.

Script outline:

1. Copies the OLSRd ad hoc setup script to the OLSRd directory on host A and runs it. This setup
script configures the available wireless card to run an ad hoc connection.

2. Adds the ad hoc connection data to the entry for host Aiin the testbed hosts file.

3. Adds the ad hoc connection data to the entries for host A in the management node’s hosts
file.

4, Killsthe olsrd process on host A.

5. Copies the OLSRd configuration file to host A.

6. Starts OLSRd on host A.

7. Adds a configuration to set up the wireless card to run the ad hoc connection set up by the

OLSRd ad hoc setup script to the network/interfaces file on host A.

24

8. Adds a startup scriptto init.d on host A to run OLSRd on startup and registers the script with

update-rc.d.

5.2.2.2.5 list-olsrd-hosts
Description: Lists the hosts belonging to the test bed running OLSRd.

Prerequisites: At least one host in the test bed runs OSLRd.

Script outline:

1. Printsthe testbed hosts file and filters the results to display hosts running OLSRd.

5.2.2.3 manage-nimbus-head-node core scripts

5.2.2.3.1 setup-nimbus-head-node
Description: Sets up a host, host A, as the Nimbus service node (head node) of the test bed.

Prerequisites:

* Host Ais part of the test bed.
* OLSRdis set up on host A.

* No other host is set up as the service node in the test bed.

Script outline:

1. Copies the Nimbus laaS setup files to host A.

2. Installs the packages required to run the Nimbus service node software on host A, and reboots
host A if necessary.

3. Performs an operation on host A to work around a bug in Python virtualenv.

4, Runs the Nimbus service node install script on host A.

5. Generates an RSA key pair on host A.

6. Sets host A as the Nimbus service node in the testbed hosts file.

25

7. Modifies rc.local to run Nimbus on startup on host A.
8. Runs the update-nimbus-head-node script.
9. |If user approves, for each host set up as a Nimbus VMM node in the test bed (host B):

a. Runsthe connect-nimbus-vmm-to-head script for host B.

5.2.2.3.2 remove-nimbus-head-node
Description: Removes the Nimbus service node (head node) software from the test bed host, host A,

which is set up as the Nimbus service node.

Prerequisites: The test bed contains a host set up as the Nimbus service node.

Script outline:

1. If user approves, for each host, host B, set up as a Nimbus VMM node in the test bed:
a. Runsthe remove-nimbus-vmm-node script for host B.
Otherwise, for each host, host B, set up as a Nimbus VMM node in the test bed:
a. |If host B is registered as a VMM node on host A, runs the disconnect-nimbus-vmm-from-
head script for host B.
2. |If user approves, for each host set up as a Nimbus client node in the test bed (host C):
a. Runsthe remove-nimbus-client-node script for host C.
3. If the test bed contains a host configured to set up a VM running Phantom and if user approves,
runs the remove-phantom-vm-setup script.
4, Stops the Nimbus service on host A.
5. Removes the lines that run Nimbus on startup from rc.local on host A.
6. Removes the Nimbus directories from host A.
7. Uninstalls the packages required to run the Nimbus service node software from host A, and

reboots host A if necessary.

26

8. Unsets host A as the Nimbus service node in the testbed hosts file.

5.2.2.3.3 update-nimbus-head-node
Description: Updates the Nimbus service node (head node) software configuration files on the test bed

host, host A, which is set up as the Nimbus service node.

Prerequisites: The test bed contains a host that is set up as the Nimbus service node.

Script outline:

1. Creates public and private network pool files for Nimbus to use when assigning network
configurations to VMs on host A.

2. Copies the network pool files and Nimbus service node configuration files to host A.

3. If no DNS server is specified in the main configuration file, adds a fake DNS value to the network
configuration sample file on host A.

4. Restarts Nimbus on host A.

5.2.2.4.8 list-nimbus-head-node
Description: Lists the host that belongs to the test bed and is set up as the Nimbus service node (head

node).

Prerequisites: The test bed contains a host that is set up as the Nimbus service node.

Script outline:

1. Printsthe testbed hosts file and filters the results to display the host that is set up as the

Nimbus service node.

5.2.2.4 manage-nimbus-vmm-node core scripts

5.2.2.4.1 add-nimbus-vmm-node
Description: Sets up the host, host A, as a Nimbus VMM node.

27

Prerequisites:

Host A is part of the test bed.
OLSRd is set up on host A.
The test bed contains a host that is set up as the Nimbus service node.

Host A is not already set up as a Nimbus VMM node.

Script outline:

10.

11.

12.

13.

Returns an error if host A does not support hardware virtualization (or if it is not enabled).
Returns warnings if host A does not have a 64-bit CPU or does not have a 64-bit OS installed.
Copies the Nimbus VMM software to host A.

Installs the packages required to run the Nimbus VMM software on host A (including KVM and
libvirt), and reboots host A if necessary.

Adds user to libvirt and KVM groups on host A.

Returns an error if hardware acceleration is not enabled in the BIOS on host A.

Copies configuration files for KVM and libvirt to host A and restarts libvirt on host A.

Installs the Nimbus VMM software on host A.

Runs the update-nimbus-vmm-node script for host A.

Sets the file and folder permissions in the Nimbus VMM installation directory on host A as
needed.

Runs a script (test-dependencies. sh)on host A that does a dependencies check for the
Nimbus VMM software, and returns an error if the script fails.

Removes apparmor from host A, and reboots host A.

Tests the creation of a VM on host A by:

28

a. Running control-test.sh (from Nimbus) on host A using a sample image and
sample configuration, and returning an error if unsuccessful.
b. Trying to ping the VM, and returning an error if unsuccessful.
14. Runs destroy-control-test.sh (from Nimbus) to destroy the test VM on host A.
15. Sets host A as a Nimbus VMM node in the testbed hosts file.

16. Runs the connect-nimbus-vmm-to-head script for host A.

5.2.2.4.2 remove-nimbus-vmm-node
Description: Removes the Nimbus VMM software from a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* Host Ais set up as a Nimbus VMM node.

Script outline:

1. Ifahost, host B, is set up as the Nimbus service node and host B has host A registered as one of
its VMM nodes, runs disconnect-nimbus-vmm-from-head for host A.

2. Removes the Nimbus VMM software directories from host A.

3. Uninstalls the system resource metric collector script from host A, deregisters it from update-
rc.d, and removes the system resource metric collector startup script from init.d on host A.

4, If user approves, reinstalls apparmor, and reboots host A if necessary.

5. If user approves, uninstalls the packages required to run the Nimbus VMM software from host
A, and reboots host A if necessary.

6. Unsets host A as a Nimbus VMM node in the testbed hosts file.

29

5.2.2.4.3 update-nimbus-vmm-nodes
Description: Runs the update-nimbus-vmm-node script for each host set up as a Nimbus VMM node in

the test bed.

Prerequisites: At least one host in the test bed is set up as a Nimbus VMM node.

Script outline:

1. For each host, host A, set up as a Nimbus VMM node:

a. Runsthe update-nimbus-vmm-node script for host A.

5.2.2.4.4 update-nimbus-vmm-node
Description: Updates Nimbus’ workspace-control script, the DHCP and DHCPd configuration files,

and the Nimbus VMM software configuration files on a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* Host Ais set up as a Nimbus VMM node.

Script outline:

1. Copies a modified version of the Nimbus VMM workspace-control script and the
additional files used by that version to host A (see Appendix E for details on the modifications to
that script).

2. Copies the DHPCd and DHPC configuration files to host A.

3. Copies the Nimbus VMM software configuration files to host A.

4. Copies the system resource metric collector script (see Chapter 4 for details) to host A and

installs it.

30

5. Adds a startup scriptto init.d on host A to run the system resource metric collector script on
startup, registers the script with update-rc.d, and starts the system resource metric

collector script.

5.2.2.4.5 connect-nimbus-vmm-to-head
Description: Registers a host, host A, that is set up as a Nimbus VMM node on the Nimbus service node

(head node).

Prerequisites:

* Host Ais part of the test bed.
* Host Ais set up as a Nimbus VMM node.
* The test bed contains a host set up as the Nimbus service node.

* Host Ais not already registered as a VMM node on the Nimbus service node.

Script outline:

1. Exchanges public keys between host A and the Nimbus service node.
2. Registers host A as a VMM node on the Nimbus service node.
3. Prompts user to enter the amount of RAM to be allocated to VMs on host A. If response is
invalid, defaults to maximum available RAM.
4. If host Ais the first VMM node added to the Nimbus service node:
a. Populates the Nimbus auto-configuration decisions file and copies it to the Nimbus
service node.
b. Runs the Nimbus auto-configuration script on the Nimbus service node.
c. Restarts Nimbus on the Nimbus service node.
Otherwise:

a. Registers host A as a VMM node on the Nimbus service node.

31

5.2.2.4.6 disconnect-nimbus-vmm-from-head
Description: Deregisters a host, host A, that is set up as a Nimbus VMM node on the Nimbus service

node (head node).

Prerequisites:

* Host Ais part of the test bed.
* Host Ais set up as a Nimbus VMM node.
* The test bed contains a host that is set up as the Nimbus service node.

* Host Ais registered as a VMM node on the Nimbus service node.

Script outline:

1. If VMs are running on host A and user approves, terminates those VMs.
2. Deregisters host A as a VMM node on the Nimbus service node.
3. Removes the public key of the Nimbus service node from the authorized keys file of host

A, and vise-versa.

5.2.2.4.7 is-nimbus-vmm-connected-to-head
Description: Check if a host, host A, that is set up as a Nimbus VMM node is registered on the Nimbus

service node (head node).

Prerequisites:

* Host Ais part of the test bed.
* Host Ais set up as a Nimbus VMM node.

* The test bed contains a host set up as the Nimbus service node.

Script outline:

1. Checks if host A is registered as a VMM node on the Nimbus head node, and outputs the result.

32

5.2.2.4.8 list-nimbus-vmm-nodes
Description: Lists the hosts belonging to the test bed that are set up as Nimbus VMM nodes.

Prerequisites: At least one host in the test bed is set up as a Nimbus VMM node.

Script outline:

1. Printsthe testbed hosts file and filters the results to display the hosts in the test bed that

are set up as Nimbus VMM nodes.

5.2.2.5 manage-nimbus-client-nodes core scripts

5.2.2.5.1 add-nimbus-client-node
Description: Sets up the nimbus client software on a host, host A.

Prerequisites:

* Host Ais part of the test bed.
* OLSRdis set up on host A.
* The test bed contains a host that is set up as the Nimbus service node.

* The Nimbus client software is not already set up on host A.

Script outline:

1. Copies the Nimbus client software to host A.

2. Installs the packages required to run the Nimbus client software on host A, and reboots host A if
necessary.

3. Generates an RSA key pair on host A if one does not already exist.

4. Adds a new Nimbus cloud user on the Nimbus service node.

5. Unpacks the Nimbus client software on host A.

33

6. Copies the necessary cloud and new user configuration files to host A from the Nimbus service
node.
7. Sets host A as a Nimbus client node in the testbed hosts file.

8. Runs the update-nimbus-client-node script for host A.

5.2.2.5.2 remove-nimbus-client-node
Description: Removes the Nimbus client software from a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* The Nimbus client software is set up on host A.

Script outline:

1. Removes Nimbus client software directories from host A.

2. Removes the Nimbus cloud user associated with host A on the Nimbus service node.

3. Removes entries for VMs pertaining to the Nimbus cloud user associated with host A from host
A’s hosts file.

4. Unsets host A as a Nimbus client node in the testbed hosts file.

5.2.2.5.3 update-nimbus-client-nodes
Description: Runs the update-nimbus-client-node script for each host with the Nimbus client software

set up on it.

Prerequisites: At least one host in the test bed has the Nimbus client software set up on it.

Script outline:

1. For each host, host A, with the Nimbus client software set up on it:

a. Runsthe update-nimbus-client-node script for host A.

34

5.2.2.5.4 update-nimbus-client-node
Description: Updates Nimbus’ cloud-client. sh script on a host, host A.

Prerequisites:

* Host Ais part of the test bed.

* The Nimbus client software is set up on host A.

Script outline:

1. Copies a modified version of the Nimbus client cloud-client. sh script and the additional
files used by that version to host A (see Appendix E for details on the modifications to that

script).

5.2.2.5.5 list-nimbus-client-nodes
Description: Lists the hosts belonging to the test bed with the Nimbus client software set up on them.

Prerequisites: At least one host in the test bed has the Nimbus client software set up on it.

Script outline:

1. Printsthe testbed hosts file and filters the results to display the hosts with the Nimbus

client software set up on them.

5.2.2.6 manage-phantom-vm core scripts

5.2.2.6.1 setup-for-phantom-vm
Description: Configures a host, host A, to be ready to set up a VM running Phantom in the Nimbus cloud

in the test bed.

Prerequisites:

* Host Ais part of the test bed.

35

The Nimbus client software is set up on host A.
The test bed contains a host set up as the Nimbus service node.
The test bed contains at least one host set up as a Nimbus VMM node.

No other host is configured to set up a VM running Phantom.

Script outline:

1.

Creates a folder for Phantom on host A.

Installs the packages required to set up the Phantom VM from host A, and reboots host A if
necessary.

Downloads the files necessary to set up the Phantom VM to host A.

Performs an operation to work around a bug in Java, then reboots host A.

Adds the VM image on which Phantom will be installed to the Nimbus cloud image repository.
Creates a directory on host A for the Nimbus access keys for the client associated with host A.

Sets host A as the one setting up the Phantom VM in the testbed hosts file.

5.2.2.6.3 remove-phantom-vm-setup
Description: Removes the configuration from the host, host A, which is ready to set up a VM running

Phantom in the Nimbus cloud in the test bed.

Prerequisites: The test bed contains a host configured to set up a VM running Phantom.

Script outline:

Removes the Phantom setup directories from host A.
Removes the image associated with Phantom from the Nimbus cloud image repository.
If user approves, uninstalls the packages required to set up the Phantom VM from host A, and

reboots host A if necessary.

36

4. Unsets host A as the host setting up the Phantom VM in the testbed hosts file.

5.2.2.6.2 create-phantom-vm
Description: Uses the host, host A, which is configured to set up the Phantom VM in the Nimbus cloud in

the test bed, to create the Phantom VM.

Prerequisites:

* Host Ais configured to set up the Phantom VM.
* The test bed contains a host that is set up as the Nimbus service node.
* The test bed contains at least one host that is set up as a Nimbus VMM node.

* A DNS server is specified in the main configuration file.

Script outline:

1. Runs the setup-adhoc-gateway script for all VMM nodes in the test bed.
2. Copies the Phantom credentials file to host A.
3. Creates a python virtual environment for the Phantom setup on host A and installs
cloudinitsdinit.
4. Runs a script on host A that registers a key pair for Phantom to use with the Nimbus cloud.
5. Prepares the image on which Phantom will be installed by:
a. Creating a VM instance of the image in the Nimbus cloud.
b. Adding the host entry for the VM into the VM’s hosts file.
c. Saving the VM into the Nimbus cloud’s image repository.
d. Adding the host entry for the VM into the host’s hosts file.
6. Modifies the Phantom creation plan on host A to remove the VM image generator part due to
an issue with it.

7. Runs cloudinitsd on host A in order to create the Phantom VM.

37

8. If the Phantom VM is created successfully, then:
a. Adds modified versions of the files used for adding a user to Phantom and connecting
Phantom to clouds to the Phantom VM, and runs them.

b. Prints the new Phantom user’s credentials that can be used to access Phantom.

5.2.2.6.4 setup-adhoc-gateway
Description: Sets up a host, host A, that is specified either as a parameter or in the main configuration

file as a gateway node for the test bed’s ad hoc network.

Prerequisites: The specified host is part of the test bed.

Script outline:

1. Setsup host A as a gateway for the test bed’s ad hoc network by enabling IP forwarding and

configuring iptables, if not already done (see Appendix D for details).

5.2.3 Other Test Bed Management Scripts
5.2.3.1 Setup

5.2.3.1.1 setup
Description: Sets up the host, host A, to be the test bed management (master) node.

Prerequisites: The setup script has not already been run on host A.

Script outline:

1. Runs a script to set up password-less sudo for the user on host A. This is done by creating a
new file for the user in host A’s sudoers.d directory with the NOPASSWD parameter set in
the file.

2. Installs the packages required to run the management scripts on host A.

3. Generates an RSA key pair on host A if one does not already exist.

38

4. Sets up the main configuration file on host A if it does not already exist.
5. Creates the testbed hosts file on host A.

6. Downloads the setup files for OLSRd and Nimbus on host A.

39

Chapter 6: Demonstration and Observations

This chapter demonstrates the functionality offered by aNTRuM and reports observations made while

testing aNTRuM.

6.1 Functionality Offered by aNTRuM

As mentioned in Chapter 1, our main contributions include:

1. amethodology for implementing a cloud test bed where resources are connected via a MANET;
2. automation scripts for easy test bed setup, configuration, and scaling; and
3. atechnique to detect the state of a resource on a device in the cloud, in particular, to detect the

remaining battery life of mobile devices in the cloud.

The first contribution alludes to the fact that a MANET is the underlying network of aNTRuM. aNTRuM
contains a fully functional Nimbus cloud that runs on a MANET, instead of a wired network. (Chapter 4

describes the details of this part of the setup.)

The second contribution refers to the automation scripts (described in Chapter 5) that are executed on
the management node of aNTRuM, which allow for easy setup of a Nimbus cloud from scratch, and for
easy addition and removal of nodes, as well as easy propagation of configuration changes to the test

bed nodes.

The final contribution mentions the detection of the state of resources on the devices in the Nimbus
cloud in aNTRuM. aNTRuM uses a script written for this purpose, described in Chapter 4, to accomplish

this goal.

Hence, aNTRuM offers all the aforementioned functionalities, and in Chapter 7 we discuss the

possibilities offered by such a test bed for future work.

40

6.2 Observations

The following sections are observations made during the testing of the aNTRuM test bed.

6.2.1 Network Communication Observations
Because aNTRuM is designed to run on a MANET, a myriad of new potential issues is presented with

regards to the reliability of using such a network, including:

* Anincrease in delay in communication and file transfer times: Because wireless networks are
generally slower than wired networks, especially those in a cluster, a noticeable increase in the
delay of transferring large files (such as VM images) is observable. This is the reason image
caching is used on the VMM nodes in aNTRuM (see Chapter 4 for details). This is also why
aNTRuM includes a wired network for the purpose of setting up the test bed (see Appendix B for
more details).

* Anincrease in potential security issues: Because wireless networks are less secure than wired
networks, attacks such as signal jamming/blocking and packing sniffing may be used against the
systems on the network more easily than on a wired network. Also, as discussed in Chapter 4,
the setup of aNTRuM to use wireless bridging significantly decreases the security of the systems
involved. This is because the cloud software and virtualization software it uses are not designed
to support such a network in a secure fashion. As noted in Chapter 1, the purpose of aNTRuM is
for experimentation with a cloud where resources are connected by a MANET that employs
OLSRd, and not to provide such a design.

* Anincrease in the complexity of the network: MANETSs are inherently more complex than
traditional wired networks. Thus, important network services, such as DHCP and DNS, are far
more complex to implement in a MANET environment. Although work, such as [19, 20], has
been done regarding ways implement both services in a MANET in a robust way, even MANET
protocols (e.g., OLSR) are still under research and development. This is why, as mentioned in

41

Chapter 4, aNTRuM is set up with DHCP servers on each VMM node and with workarounds to
make up for the lack of a DNS server on the MANET; for the purpose of allowing the cloud to
work properly. But, again, the purpose of aNTRuM is as an experimental test bed meant to
function as if such issues were already resolved.

A decrease in reliability of the cloud: Because nodes of aNTRuM'’s cloud could, in theory, be
mobile devices that are not guaranteed to be available at all times, the need for fault tolerance,
such as VM redundancy, is much higher. But with redundancy, the demand on resources is much

higher, which in itself could cause issues.

6.2.2 Device Load Observations
One of the purposes of aNTRuM is to allow for the inclusion of mobile devices as nodes of the cloud.

However, because of the way aNTRuM was set up (some of the reasons are mentioned in Section 6.2.1),

other problems are created, such as:

An overwhelming storage and resource demand on mobile VMM nodes: Because mobile devices
usually have much more limited resources than do non-mobile devices, caching VM images on
mobile VMM nodes could quickly fill up storage space. Even just running VMs on mobile devices
requires them to have the resources to do so. Also, the need for all the extra software that is
required to run VMs on a device cloud potentially quickly drain the available resources,
especially the power, of the device.

The need to transfer VM instances to other VMM nodes due to power constraints: If a mobile
VMM node is running low on power, the need may arise to transfer its VMs to other VMM
nodes. However, the cost of doing so may be quite high due to the reasons described in Section
6.2.1 and the above paragraph, in which case the use of the mobile VMM may not be merited

unless no other resources are available.

42

Chapter 7: Conclusions and Future Work

This chapter presents our conclusions and potential future work.

7.1 Conclusions

aNTRuM was created with the goal of providing an easily scalable and configurable, power-aware cloud
test bed running on a MANET. We created this test bed to be a foundational platform to conduct
interesting research, some of which is mentioned in the next section. One of the valuable aspects of
aNTRuM is that it is a real hardware-based test bed, rather than a simulation test bed. Conducting
experiments on real hardware, rather than or in addition to simulations, can provide insights of greater

value and practicality, especially when dealing with networks and cloud infrastructure at a low level.

Another valuable aspect of aNTRuM is that it is, to the best of our knowledge, unique in the way it is set
up. Having a cloud run on top of a MANET really deviates from the norm in terms of cloud computing,
since generally clouds are thought of as highly reliable systems. As a consequence, a whole new set of

challenges is presented with regards to MANET performance, reliability, and security.

An additional research area that is drawing attention in cloud computing is power and energy usage.
Since clouds are usually implemented on clusters, cloud computing facilities tend to consume high
amounts of energy. As mentioned in Chapter 2, research had been and is being done in the area of
energy awareness in cloud computing. However, the nature of our cloud provides a whole new set of
challenges in terms of power and energy awareness. Because aNTRuM is composed of compute
resources that may not be dedicated to virtualization, there is much less control over power usage aside
from that consumed by the VMs themselves. Of far greater concern is the need for power monitoring

due to the energy and battery-life constraints of the compute resources.

43

7.2 Future Work

A few of the many possibilities for future work that are facilitated by aNTRuM are:

* Modification of the Nimbus cloud scheduler to be resource-aware. Since our test bed already
provides battery and memory metrics, a modification to the scheduler would be all that is
needed to take advantage of these metrics.

* Addition of an ARM-powered device to the cloud. Currently, aNTRuM supports only x86 devices.
However, as mentioned in Chapter 3, aNTRuM was designed with mobile devices in mind. As
Ubuntu for ARM devices and hardware virtualization support in ARM processors is becoming
more main stream, such a goal lies not too far in the future.

* Modification of the cloud scheduler for connectivity awareness. Since aNTRuM is connected via
a MANET, the cloud should be aware of when nodes come into and out of range, as well as the
link quality of the connection and the number of hops between nodes. OLSRd already provides
the information for such detection, thus, modification of the scheduler to take advantage of
such information is the next logical step.

¢ Using Phantom for managing VM resources across multiple aNTRuM-like clouds. Currently, our
test bed only consists of a single cloud. Setting up multiple smaller clouds that are like aNTRuM
would allow for using Phantom to its full potential and assessing its effectiveness in such a
scenario. Phantom’s ability to constantly monitor and manage VMs is highly beneficial in a setup

such as aNTRuM’s.

44

Bibliography

[1] Nimbus. Accessed December 9, 2014. http://www.nimbusproject.org.
[2] olsrd. Accessed December 9, 2014. http://olsr.org.

[3] Soyata, Tolga, Rajani Muraleedharan, Jonathan Langdon, Colin Funai, Scott Ames, Minseok Kwon,
and Wendi Heinzelman. "COMBAT: Mobile-Cloud-based COmpute/coMmunications Infrastructure for
BATtlefield Applications." In Proceedings of SPIE 8403 (2012): 84030K-13.

[4] Miles, Alan, Yan Bai, Donald Chinn, and Bharat Bhargava. "An Experimental Study of Hybrid Energy-
aware Scheduling in a Cloud Testbed." In Global Information Infrastructure and Networking Symposium
(GlIS), 2014, 1-6. IEEE, 2014.

[5] Grossman, Robert, Yunhong Gu, Michal Sabala, Collin Bennett, Jonathan Seidman, and Joe
Mambretti. "The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing High
Performance Network Services." (2009). http://arxiv.org/abs/0907.4810.

[6] Avetisyan, Arutyun, Roy Campbell, Indranil Gupta, Michael Heath, Steven Ko, Gregory Ganger,
Michael Kozuch, David O’Hallaron, Marcel Kunze, Thomas Kwan, Kevin Lai, Martha Lyons, Dejan
Milojicic, Hing Yan Lee, Yeng Chai Soh, Ng Kwang Ming, Jing-Yuan Luke, and Han Namgoong. "Open
Cirrus: A Global Cloud Computing Testbed." Computer 43, no. 4 (2010): 35-43.

[7] Emulab. Accessed December 9, 2014. https://www.emulab.net.

[8] CloudLab. Accessed December 9, 2014. http://www.cloudlab.us.

[9] Chameleon Cloud. Accessed December 9, 2014. http://www.chameleoncloud.org.
[10] FutureGrid. Accessed December 9, 2014. https://portal.futuregrid.org.

[11] Von Laszewsk, Gregor, Javier Diaz, Fugang Wang, and Geoffrey Fox. "Comparison of Multiple Cloud
Frameworks." In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD), 734-741. |EEE,
2012.

[12] XEN Project. Accessed December 9, 2014. http://www.xenproject.org.
[13] KVM. Accessed December 9, 2014. http://www.linux-kvm.org.

[14] Nimbus Phantom Documentation. Accessed December 9, 2014.
http://www.nimbusproject.org/doc/phantom/latest/.

[15] OpenTSDB. Accessed December 9, 2014. http://opentsdb.net.
[16] Ubuntu. Accessed December 9, 2014. http://www.ubuntu.com.

[17] Keahey, Kate, Patrick Armstrong, John Bresnahan, David LaBissoniere, and Pierre Riteau.
"Infrastructure Outsourcing in Multi-cloud Environment." In Proceedings of the 2012 Workshop on Cloud
Services, Federation, and the 8th Open Cirrus Summit, 33-38. ACM, 2012.

45

[18] Duplyakin, Dmitry, Paul Marshall, Kate Keahey, Henry Tufo, and Ali Alzabarah. "Rebalancing in a
Multi-cloud Environment." In Proceedings of the 4th ACM Workshop on Scientific Cloud Computing, 21-
28. ACM, 2013.

[19] Hsu, Yuan-Ying, and Chien-Chao Tseng. "Prime DHCP: A Prime Numbering Address Allocation
Mechanism for MANETSs." In [EEE Communications Letters, 712-714. Vol. 9. No. 8. IEEE, 2005.

[20] Ahn, Sanghyun, and Yujin Lim. "A Modified Centralized DNS Approach for the Dynamic MANET
Environment." In 9th International Symposium on Communications and Information Technology, 2009,
1506-1510. IEEE, 2009.

46

Appendix A: Abbreviations

Abbreviation

Definition

aNTRuM
ARP
laas
MANET
OLSR
OLSRd
(01

VM
VMM

A Nimbus Test bed Running on a MANET
Address Resolution Protocol
Infrastructure-as-a-Service

Mobile Ad Hoc Network

Optimized Link State Routing Protocol
OLSR daemon

Operating System

Virtual Machine

Virtual Machine Manager

47

Appendix B: Test Bed Details

This appendix describes the details of the software that was used in the aNTRuM test bed, as well as its

network layout.

B.1 Software Versions

The following table lists the versions of the main software used in aNTRuM.

Software Version
Ubuntu 14.04.1
OLSRd 0.7.7.1
Nimbus laaS 2.10.1
Nimbus Cloud Client 022

B.2 Network Layout

Legend

Wired
Connection

Wireless
Connection

Master Node

aNTRuM Test Bed

Nann gl

Nimbus Cloud

VMM Node

Head Node

The Internet

h/_}_\

VMM Node

VMM Node

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

Client Node = f--------------"" =

Figure B.1: Network layout of aNTRuM

48

Figure B.1 presents the network layout of aNTRuM. aNTRuM uses both of the following network
structures:

* Alltest bed nodes are connected to a router, which has full connectivity to the Internet. This
network allows the master node to run the management scripts for all the test bed nodes, and it
allows the nodes to have access to the Internet for the purpose of downloading the necessary
software for set up.

* All test bed nodes (minus the master node) also have Linux kernel-compatible wireless cards (a
TP-LINK TL-WN722N N150 High Gain Wireless USB Adapter was used for each device in
aNTRuM), which are set up to run a MANET with OLSRd managing it. This network is used by the
cloud software running in the test bed. Although the nodes themselves have Internet
connectivity via the wired network, the VMs running in the test bed do not, unless one of the
nodes is set up as a gateway.

49

Appendix C: Test Bed Set Up Tutorial

The following sections describe how to set up a test bed similar to aNTRuM using the aNTRuM test bed
management scripts.

NOTE: These scripts are meant to be used for creating a test bed. It is recommended that dedicated
machines on a private network be used for this purpose since the aNTRuM scripts will modify system
files and will enable password-less super-user permissions. Some of the modifications made by the
scripts may introduce vulnerabilities to the system. Also, the scripts are written with workarounds for
bugs/issues in the version of Linux used in aNTRuM that may not be present on other operating systems
or OS versions, so they may not function properly on these.

C.1 Hardware Requirements

The network setup described in Appendix B is recommended. Two or more machines are required: one
to function as the master node and the rest to function as the nodes of the test bed. Additionally, all
machines must have:

* An administrator account with the same username as that of the other test bed nodes (except
for the master node). The default username in the main configuration file is “nimbus”.
¢ Static IP addresses.

Any machine that will function as a virtual machine manager (VMM) node will need:

* A processor that supports hardware virtualization. Hardware virtualization must be enabled in
the BIOS as well.
* A 64-bit processor and OS. A 32-bit OS may function but will limit the VM capacity.

C.2 Software Requirements

SSH server must be installed on all test bed nodes. A compatible operating system is required for the
scripts to work. The management scripts were designed to work with the particular versions of Ubuntu,
OLSRd, and Nimbus described in Appendix B. They include workarounds for certain bugs and issues
specific to these versions, thus, changing the version may or may not break the scripts.

C.3 Setting up the Master Node
The aNTRuM test bed management scripts can be found at: https://github.com/hipersys/antrum. Use
the git clone command on the machine that will serve as the master node to retrieve them. This

node will manage the test bed nodes via the management scripts.

Step 1 - Create the configuration file, an example of which can be found in
SANTRUM DIR/management/etc/: The configuration file must be named main.conf. The

easiest way to do this is to make a copy of the example configuration file. Note that for many of the
configuration parameters, especially those pertaining to file/folder paths, changes shouldn’t be made

50

once that part of the test bed has been set up, otherwise the scripts will not function properly. If the
VMs are to have connectivity to the Internet, a DNS server will need to be specified.

Step 2 - Run the setup script (SANTRUM DIR/management/setup/setup), which will set up the
master node, as well as download the files necessary for setting up OLSRd, Nimbus, and Phantom.

C.4 Setting up the Test Bed Nodes

The management scripts are contained in SANTRUM DIR/management/bin/. For details on each
script and their functionalities see Chapter 5. See Appendix D for the scripts as they appear in the
repository. Running the script with the —h parameter will show the available commands for that script.

C.4.1 Adding Hosts

Step 3 - Add a node to test bed: manage-hosts is for managing machines that are part of the test
bed. To add a node to the test bed, run . /manage-hosts -a <host ip>.The script prompts the
user for a password twice; once for the initial SSH connection to the host, and the other for running a
sudo command. The script sets up the authentication keys and password-less sudo, therefore, the
password will not be requested after that. It also adds the hostname to the list of test bed hosts, which
is used by the rest of the management scripts. This step is necessary for each machine that is to be part
of the test bed.

To list all the nodes in the test bed and their roles, run . /manage-hosts -1.To remove a node from
the test bed, run . /manage-hosts -r <host name> (or ./manage-hosts -f
<host name> if the host is no longer connected to the rest of the test bed).

NOTE: Because the test bed is set up to run on a MANET, there is no DNS server for the hosts and VMs in
the test bed. Because of this, the scripts are set up to modify the hosts file of each individual test bed
node as necessary. In this way, hostnames can be used as in a traditional network setup.

C.4.2 Setting up OLSRd

Step 4 - Add OLSRd to a host: manage-olsrd-hosts is for managing OLSRd on the test bed nodes.
To add OLSRd to a host, run . /manage-olsrd-hosts -a <host name>.The wireless card on
the machine is set up to run in ad-hoc mode with an appropriate IP address by the script. OLSRd is also
set up and run on the host, and it is set up to run on startup; in this way, it always will be running. Note
that OLSRd is expected to be running on all machines that are part of the test bed, thus, this step is also
necessary. This is because all communication within the cloud infrastructure will be via the MANET on
which OLSRd runs.

The files in SANTRUM DIR/management/dist/olsrd/ can be modified to change how OLSRd
runs. Run . /manage-olsrd-hosts -u to propagate changes to all the test bed nodes. To remove
OLSRd from a host, run . /manage-olsrd-hosts -r <host name>.

More information regarding OLSRd can be found at http://olsr.org/.

51

NOTE: Due to each host having two IP addresses, one for connectivity to the master node and the
Internet, and the other for the MANET that the test bed uses for connectivity, the hosts files on all the
test bed nodes are set up to have the wireless IP address paired with the hostname of each machine,
and for the other IP address to be associated with the hostname with a string (“x” by default) tagged on
to the end.

C.4.3 Setting up Nimbus
The Nimbus infrastructure is the 1aaS cloud used on the aNTRuM test bed. For more information
regarding Nimbus visit http://www.nimbusproject.org/.

Note that all of the following can be set up on one or more nodes, but there can only be one service
(head) node.

C.4.3.1 Setting up the Service Node

Step 5 - Set up the service node: manage-nimbus-head-node is for managing the host that will
serve as the Nimbus service node (head node). Run . /manage-nimbus-head-node -s

<host name> to set up a host as the service node. The script sets up the host to run the Nimbus laa$S
software, which includes the cloud resource provisioner and which interfaces with clients (see Chapter 3
for more details).

The configuration files for the service node can be found in

SANTRUM DIR/management/dist/nimbus/head/. To propagate configuration changes to the
head node once it is set up, use the . /manage-nimbus-head-node -ucommand. To remove the
Nimbus service node software from the head node, run . /manage-nimbus-head-node -r.

Once the service node is set up, cloud administrator features can be found on the service node in
SHOME /nimbus/bin/ (unless the default install location has been changed). For example, nimbus-
admin is for managing VMs, nimbus-nodes is for managing VMM nodes, and nimbusct1 is for
managing the Nimbus and Cumulus services. For further information, the Nimbus cloud administrator
guide can be found at http://www.nimbusproject.org/docs/2.10.1/admin/index.html.

C.4.3.2 Setting up the VMM nodes

Step 6 - Set up VMM nodes: manage-nimbus-vmm-nodes is for managing the hosts that will
function as the Nimbus virtual machine manager (VMM) nodes. Running . /manage-nimbus-vmm-
nodes -a <host name> sets up the specified host to serve as a VMM node. The Nimbus cloud
control software is installed on the host, as well as KVM, libvirt, and DHCP server (since there is no
central DHCP server in the setup), to name a few. The host is also set up to use wireless bridging for VM
connectivity. Furthermore, the host will be automatically connected to the Nimbus head node.

Note that the setup script additionally sets up a script on the host that collects information regarding
certain system resources and outputs them to a file (this script is called cutput-resource-
status.py and can be found in SANTRUM DIR/management/dist/nimbus/vmm/). This
information is available for future incorporation into the cloud scheduler on the service node.

52

The configuration files for the service nodes can be found in

SANTRUM DIR/management/dist/nimbus/vmm/.Running ./manage-nimbus-vmm-nodes
—-u will propagate configuration changes to those files to all VMM nodes that are set up. To remove the
VMM software from a test bed node, run . /manage-nimbus-vmm-nodes -r <host name>.

C.4.3.3 Setting up the Client Nodes

Step 7 - Set up client nodes: manage-nimbus-client-nodes is for managing the hosts that will
run the Nimbus client software. The Nimbus client software is set up on a host by running . /manage-
nimbus-client-nodes -a <host name>.The client is automatically connected to the service
node by the script. The client software can be set up on as many hosts as desired (each will function as a
separate client). Although it is possible to set up more than one client on a single host, the scripts are
only set up to handle one client per host.

To remove the Nimbus client software from a host, run . /manage-nimbus-client-nodes -r

<host name>.

Once the cloud client software is set up, the client can be used with the cloud. The client is called
cloud-client.sh and can be found in SHOME/nimbus/nimbus—-cloud-client-022/bin/
(unless the default install location or client version has been changed). Running . /cloud-
client.sh -h will cause a list of available commands to be printed. These include running a VM and
transferring a new VM image. An advanced user reference for the Nimbus client software can be found
at http://www.nimbusproject.org/docs/2.10.1/clouds/appendix.html.

C.4.4 Testing the setup
To ensure that everything is properly set up, the following actions should be taken on a client node:

1. Adda VM image to the cloud’s image repository using the command
SHOME/nimbus/nimbus-cloud-client-022/bin/cloud-client.sh —-

transfer --sourcefile <image location>.Forthe sake of the test, the VM image
file used for setting up Phantom can be used; it can be found on the master node at
SANTRUM DIR/management/dist/phantom/phantom-ubuntu.gz. Tolearn how to
generate VM images, see http://scienceclouds.org/ecosystem/generation-of-virtual-machine-
images/ (note that the VM images must be compatible with KVM).

2. Create a VM on the cloud using the command $HOME /nimbus/nimbus-cloud-client-

022/bin/bin/cloud-client.sh --run --name <image name> --hours 1.
Because of the network structure of this setup, the transfer of the image may take a while, but
this is normal.

3. Wait about a minute after the VM is created for it to boot up, then try to SSH into the VM using
ssh root@<vm name>orssh root@<vm ip>.

4. If everything works without error, the setup is working properly. To terminate the VM that was
created, use SHOME /nimbus/nimbus-cloud-client-022/bin/cloud-client.sh

——-terminate --handle <vm-handle>.

53

NOTE: As mentioned previously, for VMs to have connectivity to the Internet, a DNS server must be
specified in the main configuration file on the master node. Additionally, a host must be setup as a
gateway node. A script is available in the sbin folder called setup-adhoc-gateway, which can be
used to set up a host as the gateway (the host that will function as the gateway is also specified in the
main configuration file). Note that the VMMs that the VMs are running on must also be configured to
route to this gateway, or the VMs will not be able to reach it.

Note also that aNTRuM was set up and tested using particular versions of software. Because of this,
using other versions of the core or prerequisite software could cause issues. Steps 1-7 were last tested
in their entirety in December 2014. Any changes made after this test were tested enough to ensure they
worked properly. The first part of step 8 was last tested in March 2015, but, because of technical issues,
the rest of step 8 was last tested in December 2014. Thus, step 8 has not been tested in its entirety. The
following are issues that presented themselves during testing:

1. Ad hoc connectivity issue: Sometimes, when one of the test bed nodes was restarted, it was
assigned a cell number (for the ad hoc connection) that was different than that of the rest of the
test bed nodes and, therefore, it could not communicate with them via the ad hoc network. This
problem can be fixed by running . /manage-olsrd-hosts -u, which will reset the ad hoc
connection on all the nodes in the test bed, causing all of them to have the same cell number.

2. Phantom VM setup issues: Various errors can occur when cloudinit.dis runto set up
Phantom on a VM. Sometimes these errors are not consistent, making their cause difficult to
pinpoint. Hence, this portion of the setup can be difficult and unreliable. These errors are the
reason that step 8 was not tested in its entirety.

C.4.5 Setting up Phantom (Optional)

Step 8 - Set up Nimbus Phantom: manage-phantom-vm is used to set up a host with the Nimbus
client software on it and to set up and run Phantom. Before this, a VM image must be created and
placed in the location specified in the main configuration file. This image should be a KVM compatible
Ubuntu 13.10 server VM image with Git and Chef installed on it. The host is set up to run cloudinit.d,
which launches and sets up a VM to run Phantom, by running . /manage-phantom-vm -s

<host name>.Next, . /manage-phantom-vm -c is executed to run cloudinit.d. This creates a VM
that is running Phantom, and the user is added to Phantom. If an error occurs while running the launch
plan, the cloudinit.d logs, located at SHOME/ . cloudinitd/<run value>/, can be checked. If the
error is an issue with VM connectivity, ensure that the VM has access to the Internet. If not, try running
./manage-phantom-vm -c again, (unless the error occurs on level 9 of the launch plan, in which
case everything should work). Note that when an error occurs, the VM for Phantom will be left running,
and can to be terminated via nimbus-admin on the service node (see Section C.4.3.1).

To remove the Phantom setup, run . /manage—-phantom-vm -r (this will not terminate the
Phantom VM if it is already running).

54

Even though Phantom is open-source software, it is currently not released as software, but rather is
available as a service. As such, its functionality as provided by the setup script is limited in the following
ways:

¢ Alimited run time: The Phantom VM will run as long as allowed by the test bed cloud’s default
VM run time limit configuration. For the test bed cloud, this limit has been changed to one
month. To adjust this (and other EC2 interface settings), modify the appropriate configuration
filesin SANTRUM DIR/management/dist/nimbus/head/elastic/ onthe master
node.

* Alack of persistence: The Phantom launch configuration, which provides persistence to the data
in Phantom, did not work in the setup. Therefore, the launch plan that is used does not provide
this persistence. Hence, the Phantom service cannot be restarted, or the data will be lost.

* Alack of VM image generation: Although Phantom does provide image generators, there were
issues installing that portion of Phantom in the test bed, thus, this feature is not available in the
test bed.

* Alack of hostname resolution for VMs created using Phantom: As mentioned above, there is no
DNS server in the test bed, and a workaround has not been implemented for the test bed
cloud’s EC2 interface as it was for the client software. Therefore, VMs created using Phantom
must be accessed using their IP addresses.

* Alack of SSH access into the VMs created by Phantom.

To check if Phantom is running properly, try accessing Phantom through its web interface. From a
browser on a host in the test bed (excluding the master node), gotohttp://<phantom vm ip>,
and attempt to log in with the credentials printed when . /manage-phantom-vm -c completes
running. Upon logging in, notice that multiple clouds are listed, along with aNTRuM, as available to use
with Phantom. This is because, as mentioned previously, Phantom does not have a formal release, and
so all the other clouds are added during its setup. However, they cannot be used without the proper
credentials for them.

Phantom also can be accessed programmatically through its autoscale and HTTP APIs. For information
on using those interfaces, on collecting metrics from VMs using Phantom, and on building a decision
engine to use with Phantom, see http://www.nimbusproject.org/doc/phantom/latest/advanced.html.
Note that this documentation refers to Phantom service available as part of the Nimbus project, thus,
the URLs must be changed to those of the Phantom VM in the test bed.

More information regarding Phantom can be found at http://www.nimbusproject.org/phantom. More
information regarding cloudinit.d (a Nimbus platform tool) can be found at
http://www.nimbusproject.org/doc/cloudinitd/latest/.

C.4.6 Beyond aNTRuM

Nimbus also provides a “Context Broker” for coordinating large groups of VMs. Although this software is
beyond the scope of aNTRuM, it is potentially useful for future work. For more information, visit
http://www.nimbusproject.org/docs/current/fag.html#ctxbroker.

55

Appendix D: Test Bed Management Scripts

This Appendix provides the aNTRuM management scripts found at https://github.com/hipersys/antrum.

D.1 Primary Scripts
The following are the primary scripts, contained in antrum/management/bin/.

D.1.1 manage-hosts

#!/bin/bash
TESTBED MGT DIR="$(cd "$(dirname "S${BASH SOURCE[O0]}")/.." && pwd)"

show help () {

echo -e " General:"
echo -e "\t-h, --help\t\t\tDisplay this help information"
echo -e " Actions:"

echo -e "\t-a, --add [host ip address]\tAdd a host"

echo -e "\t-1, --list\t\t\tList current hosts"

echo -e "\t-r, --remove [hostname]\t\tRemove a host"

echo -e "\t-f, --force-remove [hostname]\tRemove a host without
removing files from host"

echo -e "\t-u, --update\t\t\tUpdate all hosts"

exit 1

}

ARGS=S$ (getopt -0 a:lr:f:uh -1 add:,list,remove:, force-
remove:,update,help -n $0 -- $@)

if [$? -ne 0]; then
exit 1
fi

eval set —-- SARGS

while true; do
case S$1 in

-a|--add)
/bin/bash STESTBED MGT DIR/sbin/add-host $2
exit O
-1|--1list)
/bin/bash $TESTBED MGT DIR/sbin/list-hosts
exit O
-r | —-—remove)

/bin/bash STESTBED MGT DIR/sbin/remove-host $2

56

exit O

r

-f|--force-remove)

/bin/bash STESTBED MGT DIR/sbin/remove-host $2 "-f"

exit O

-u|--update)

/bin/bash STESTBED MGT DIR/sbin/update-hosts

exit O
-h|--help)
show _help
exit O
*) r s

echo "No action specified

exit 1
7
esac
done

(-—help for help)"

D.1.2 manage-nimbus-client-nodes

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

show help () {

echo -e " General:"
echo -e "\t-h, --help\t\t\tDisplay this help information"
echo -e " Actions:"
echo -e "\t-a, --add [hostname]\t\tAdd a Nimbus client node"
echo -e "\t-1, --list\t\t\tList current Nimbus client nodes"
echo -e "\t-r, --remove [hostname]\t\tRemove a Nimbus client node"
echo -e "\t-u, --update\t\t\tUpdate the Nimbus client nodes"
exit 1
}
ARGS=$ (getopt -o a:lr:uh -1 add:,list,remove:,update,help -n $0 -- $Q@)
if [$? -ne 0]; then
exit 1
fi
eval set -- S$SARGS

while true;

do

57

case

S1 in

-al|--add)

/bin/bash STESTBED MGT DIR/sbin/add-nimbus-client-node $2
exit O

r

-1]--1ist)

/bin/bash STESTBED MGT DIR/sbin/list-nimbus-client-nodes
exit O

r

-r|-—-remove)

/bin/bash STESTBED MGT DIR/sbin/remove-nimbus-client-node $2
exit O

r

-u|--update)

/bin/bash STESTBED MGT DIR/sbin/update-nimbus-client-nodes
exit O

r

-h|--help)
show _help
exit O
*) r s
echo "No action specified (--help for help)"
exit 1
esac

done

D.1.3 manage-nimbus-head-node

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

show help () {

echo
echo
echo
echo
echo
echo
echo
exit

" General:"

-e "\t-h, --help\t\t\tDisplay this help information"

-e " Actions:"

-e "\t-s, --setup [hostname]\t\tSetup the Nimbus head node"
-e "\t-1, --list\t\t\tList current Nimbus head node"

-e "\t-r, --removelt\t\tRemove the Nimbus head node"

-e "\t-u, --update\t\t\tUpdate the Nimbus head node"

ARGS=$ (getopt -0 s:lruh -1 setup:,list,remove,update,help -n SO0 -- $Q@)

58

if [$? -ne 0]; then
exit 1
fi
eval set -- S$ARGS
while true; do
case $1 in
-s|-—-setup)
/bin/bash STESTBED MGT DIR/sbin/setup-nimbus-head-node $2
exit O
-1|--1ist)
/bin/bash STESTBED MGT DIR/sbin/list-nimbus-head-node
exit O
-r | —-—remove)
/bin/bash STESTBED MGT DIR/sbin/remove-nimbus-head-node
exit O

r

-u|--update)
/bin/bash STESTBED MGT DIR/sbin/update-nimbus-head-node
exit O

r

-h|--help)
show _help
exit O

P
*)

echo "No action specified

exit 1

I
esac
done

(-—help for help)"

D.1.4 manage-nimbus-vmm-nodes

#!/bin/bash

TESTBED MGT DIR="S$(cd "$(dirname "S{BASH SOURCE[O]}")/.."

show help ()
echo -e
echo -e
echo -e
echo -e
echo -e

{
" General:"
"\t—h,
" Actions:"

"\t-a, --add
"\t—l,

--help\t\t\tDisplay this help information"

[hostname] \t\tAdd a Nimbus VMM node"

—-list\t\t\tList current Nimbus VMM nodes"

59

&& pwd

echo -e "\t-r, --remove [hostname]\t\tRemove a Nimbus VMM node"
echo -e "\t-u, --update\t\t\tUpdate the Nimbus VMM nodes"

echo -e " Nimbus:"

echo -e "\t-c¢, --connect [hostname]\tConnect a Nimbus VMM node to
the Nimbus head node"

echo -e "\t-d, --disconnect [hostname]\tDisconnect a Nimbus VMM
node from the Nimbus head node"

echo -e "\t-i, --is-connected [hostname]\tCheck if a Nimbus VMM
node is connected to the Nimbus head node"

exit 1

ARGS=$ (getopt -0 a:lr:uc:d:i:h -1
add:, list, remove:,update, connect:,disconnect:,is-connected:,help -n $0

-- 5@Q)

if [$? -ne 0]; then
exit 1

fi

eval set -- S$ARGS

while true; do
case $1 in

-al|--add)

/bin/bash STESTBED MGT DIR/sbin/add-nimbus-vmm-node $2
exit O

-1|--1ist)
/bin/bash STESTBED MGT DIR/sbin/list-nimbus-vmm-nodes
exit O

-r | —-—remove)
/bin/bash STESTBED MGT DIR/sbin/remove-nimbus-vmm-node $2
exit O

-u|--update)
/bin/bash STESTBED MGT DIR/sbin/update-nimbus-vmm-nodes

exit O
-c|--connect)
/bin/bash STESTBED MGT DIR/sbin/connect-nimbus-vmm-to-head $2
exit O
-d|--disconnect)
/bin/bash STESTBED MGT DIR/sbin/disconnect-nimbus-vmm-from-
head $2
exit O
-i|--is-connected)
/bin/bash STESTBED MGT DIR/sbin/is-nimbus-vmm-connected-to-
head $2

60

exit O

r

-h|--help)
show _help
exit O
*) r s
echo "No action specified (--help for help)"
exit 1
esac

done

D.1.5 manage-olsrd-hosts

#!/bin/bash
TESTBED MGT DIR="$(cd "$(dirname "S${BASH SOURCE[O0]}")/.." && pwd)"

show help () {

echo -e " General:"
echo -e "\t-h, --help\t\t\tDisplay this help information"
echo -e " Actions:"

echo -e "\t-a, --add [hostname]\t\tAdd an OLSRd host"
echo -e "\t-1, --list\t\t\tList current OLSRd hosts"

echo -e "\t-r, --remove [hostname]\t\tRemove an OLSRd host"
echo -e "\t-u, --update\t\t\tUpdate all OLSRd hosts"
exit 1
}
ARGS=$ (getopt -0 a:lr:uh -1 add:,list,remove:,update,help -n $0 -- $Q@)
if [$? -ne 0]; then
exit 1
fi
eval set -- S$ARGS

while true; do
case $1 in

-al|--add)
/bin/bash STESTBED MGT DIR/sbin/add-olsrd-host $2
exit O
-1|--1ist)
/bin/bash STESTBED MGT DIR/sbin/list-olsrd-hosts
exit O

61

r

-r | —-—remove)

/bin/bash STESTBED MGT DIR/sbin/remove-olsrd-host $2
exit O

r

-u|--update)

/bin/bash STESTBED MGT DIR/sbin/update-olsrd-hosts
exit O

r

-h|--help)
show help
exit O
*) r s
echo "No action specified (--help for help)"
exit 1
esac

done

D.1.6 manage-phantom-vim

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

show help () {

echo
echo
echo
echo
VM using
echo
echo
exit

}

-e " General:"

-e "\t-h, --help\t\t\tDisplay this help information"

-e " Actions:"

-e "\t-s, --setup [hostname]\t\tSetup to create the Phantom
the specified host"

-e "\t-c, --create\t\t\tCreate the Phantom VM"

-e "\t-r, --remove\t\t\tRemove the Phantom VM setup"

1

ARGS=$ (getopt -0 s:crh -1 setup:,create,remove,help -n $0 -- $Q@)
if [$? -ne 0]; then

exit 1
fi

eval set

-- SARGS

while true; do

case

S1 in

62

-s|-—-setup)

/bin/bash STESTBED MGT DIR/sbin/setup-for-phantom-vm $2
exit O

-c|--create)
/bin/bash STESTBED MGT DIR/sbin/create-phantom-vm
exit O

-r | —-—remove)
/bin/bash STESTBED MGT DIR/sbin/remove-phantom-vm-setup
exit O

-h|--help)
show help
exit O

*) r s
echo "No action specified (--help for help)"
exit 1

esac
done

D.2 Core Scripts

The following are the core scripts, contained in antrum/management/sbin/.

D.2.1 add-host

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

NEW_HOST IP=$1

if ! is valid ip SNEW HOST IP; then
echo "Invalid IP address"
exit 1

fi

if is testbed host SNEW HOST IP; then
echo "Host already added"
exit 1

fi

63

echo "adding public key to authorized keys of new host..."
cat SHOME/.ssh/id rsa.pub | ssh $TB HOSTS USERNAMEQ@SNEW HOST IP \

"[-d \SHOME/.ssh] || mkdir \SHOME/.ssh

[-f \SHOME/.ssh/authorized keys] || touch
\SHOME/.ssh/authorized keys

sed -i \"/”.*$(echo SUSER)(@S$ (hostname) \S$/d\"
\SHOME/.ssh/authorized keys;

cat - >> \S$HOME/.ssh/authorized keys;"

echo "modifying sudoers file for passwordless sudo..."
scp —-g $STB MGT DIR/dist/set-pwdless-sudo

$TB_HOSTS USERNAMEQSNEW HOST IP:/tmp/sps

ssh -t $STB HOSTS USERNAME@SNEW HOST IP "sudo /tmp/sps
$TB_HOSTS USERNAME"

echo "adding new host to hosts lists..."
NEW HOST NAME='ssh $TB HOSTS USERNAME@SNEW HOST IP "hostname"’

if is testbed host SNEW HOST NAME; then
echo "Host already added"
exit 1

fi

echo "updating host files..."

add testbed host SNEW HOST NAME

set tb host wired ip SNEW HOST NAME S$NEW HOST IP

grep -Fgw "SNEW_HOST IPS$TB HOSTS WIRED IP APPEND" /etc/hosts || \
sudo sed -i "/testbed wired network/a

SNEW_HOST_ IP\t$NEW HOST NAMESTB HOSTS WIRED IP APPEND" /etc/hosts

echo "cleaning up..."
ssh $TB HOSTS USERNAME@SNEW HOST IP "rm -f /tmp/sps"

echo "new host \"SNEW HOST NAME\" added to testbed"

echo "updating hosts..."
$BASH_EXE $TB_MGT DIR/sbin/update-hosts

exit O

D.2.2 add-nimbus-client-node

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf

64

source $TB BASH FUNCTIONS LIB FILE
HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host has olsr ip SHOST NAME; then
echo "OLSRd not set up on the host"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

if tb host is client node $HOST NAME; then
echo "Nimbus client already set up on host"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE IP=S(get tb host wired ip $(get testbed head node))

echo "copying nimbus client files..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"mkdir -p $TB HOSTS NIMBUS DIR
mkdir -p $TB HOSTS HOME DIR/.nimbus"
scp -g $TB_NIMBUS CLIENT TAR FILE
$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS CLIENT DIR.tar.gz

echo "installing dependencies..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"$TB_PKG_MGR_UPDATE_ CMD
$TB_PKG MGR_INSTALL CMD openjdk-6-jre" &> /dev/null
reboot and wait if needed SHOST NAME

echo "setting up rsa keys on host..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"[-f \SHOME/.ssh/id rsa] || ssh-keygen -f \SHOME/.ssh/id rsa -N
''"> /dev/null

echo "creating new user on head node..."
tmp newuser dir="mktemp -d /tmp/tbmancn.XXXXXXX"
ssh $TB_HOSTS USERNAME@S$SHEAD NODE IP \
"STB HOSTS NIMBUS HEAD DIR/bin/nimbus-new-user -d $tmp newuser dir
$HOST_NAME@$TB_NIMBUS_CLIENT_DOMAIN" \

65

> /dev/null

echo "setting up nimbus client..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"tar -xf $TB_HOSTS NIMBUS CLIENT DIR.tar.gz -C
$TB_HOSTS NIMBUS DIR"

echo "copying cloud files..."
scp —gq $STB HOSTS USERNAMEQSHEAD NODE IP:S$tmp newuser dir/*
$tmp newuser dir/
scp —-q Stmp newuser dir/cloud.properties \
$TB_HOSTS USERNAME@S$HOST IP:$TB _HOSTS NIMBUS CLIENT DIR/conf/
scp —-q Stmp newuser dir/*.pem
$TB_HOSTS USERNAME@SHOST IP:$TB_HOSTS HOME DIR/.nimbus/
tmp certs dir="mktemp -d /tmp/tbmancn.XXXXXXXX"
scp -9
$TB_HOSTS USERNAME@SHEAD NODE IP:$TB HOSTS NIMBUS HEAD DIR/var/ca/trus
ted-certs/* \
Stmp certs dir/
scp —-q Stmp certs dir/*
$TB_HOSTS USERNAME@SHOST IP:$TB_HOSTS NIMBUS CLIENT DIR/lib/certs/

echo "updating hosts file..."
echo -e "\n# testbed vms" | ssh STB HOSTS USERNAME@SHOST IP \
"cat - | sudo tee -a /etc/hosts > /dev/null"

echo "updating host list..."
set tb host as client node $SHOST NAME

echo "cleaning up..."

ssh STB HOSTS USERNAME@SHEAD NODE IP "rm -rf $Stmp newuser dir"
rm -rf Stmp newuser dir

rm -rf Stmp certs dir

echo "nimbus client set up on \"SHOST NAME\""

echo "updating client node settings..."
$BASH EXE $TB MGT DIR/sbin/update-nimbus-client-node SHOST NAME

exit O

D.2.3 add-nimbus-vmm-node

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

66

source STESTBED MGT DIR/etc/main.conf
source $TB_BASH_FUNCTIONS_LIB_FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host has olsr ip SHOST NAME; then
echo "OLSRd not set up on the host"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

if tb host is vmm node S$HOST NAME; then
echo "Nimbus vmm already set up on host"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S$ (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

if [[$(ssh $STB HOSTS USERNAME@SHOST IP "egrep -c ' (vmx|svm)'
/proc/cpuinfo") == 0]1]; then
echo "Error: Host does not support hardware virtualization"
exit 1
fi
if [[$(ssh $STB HOSTS USERNAME@SHOST IP "egrep -c ' Im '
/proc/cpuinfo") == 0 1] && \
! prompt accepted "WARNING: Host does not have 64-bit CPU!
Continue anyway?"; then
exit 1
fi

if ! $(ssh STB HOSTS USERNAME@SHOST IP "uname -m | grep -Fqw
\"x86 64\"") && \

! prompt accepted "WARNING: Host does not have 64-bit OS
installed! Continue anyway?"; then

exit 1
fi

echo "copying nimbus client files..."

67

ssh $TB_HOSTS USERNAMEQS$HOST IP "mkdir -p $TB_HOSTS NIMBUS SRC_DIR"
scp -q $TB_NIMBUS VMM TAR FILE
$TB_HOSTS USERNAME@SHOST IP:$TB _HOSTS NIMBUS VMM DIR.tar.gz
echo "installing dependencies..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"$TB_PKG_MGR_UPDATE CMD

$TB_PKG_MGR_INSTALL CMD python-dev

command -v kvm > /dev/null 2>&l || $TB PKG MGR INSTALL CMD gemu-
kvm

command -v libvirtd > /dev/null 2>&1 || $TB PKG MGR INSTALL CMD
libvirt-bin

command -v ubuntu-vm-builder > /dev/null 2>&l1 ||
$TB_PKG_MGR_INSTALL CMD ubuntu-vm-builder

command -v tunctl > /dev/null 2>&1 || $TB PKG MGR INSTALL CMD
uml-utilities
command -v dhcpd > /dev/null 2>&l1 || STB PKG MGR INSTALL CMD isc-

dhcp-server
$TB_PKG MGR INSTALL CMD pm-utils" \
&> /dev/null
reboot and wait if needed SHOST NAME

echo "adding user to libvirt and kvm groups..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"sudo adduser $STB HOSTS USERNAME libvirtd
sudo adduser $TB HOSTS USERNAME kvm" > /dev/null

if ! $S(ssh $TB HOSTS USERNAME@SHOST IP "kvm-ok | grep 'KVM
acceleration can be used' > /dev/null"); then

echo "Error: Hardware virtualization not enabled in the BIOS"

ssh $TB_HOSTS USERNAME@S$HOST IP "kvm-ok"

exit 1
fi
echo "copying kvm/libvirtd configuration files..."
tmp libvirt dir=$(ssh STB HOSTS USERNAME@SHOST IP "mktemp -d
/tmp/tbmanvn . XXXXXXX")
scp —-q $STB MGT DIR/dist/nimbus/vmm/libvirt/*
$TB_HOSTS_USERNAME@$HOST_IP:$tmp_libvirt_dir/
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo cp S$tmp libvirt dir/* /etc/libvirt/

sudo restart libvirt-bin"
echo "setting up nimbus vmm..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"tar -xf $TB_HOSTS_NIMBUS_VMM_DIR.tar.gz -C
$TB_HOSTS NIMBUS SRC_DIR

sudo mkdir -p /opt/nimbus

sudo mv $TB HOSTS NIMBUS VMM DIR/workspace-control/*
/opt/nimbus/"

echo "updating vmm node settings..."

68

set tb host as vmm node SHOST NAME
$SBASH EXE $TB MGT DIR/sbin/update-nimbus-vmm-node $HOST NAME
unset tb host as vmm node SHOST NAME

echo "setting permissions..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"cd /opt/nimbus/
sudo chown -R root bin etc lib libexec src
sudo chown —-R $TB HOSTS USERNAME var

sudo find . -type d -exec chmod 775 {} \;
sudo find . -type f -exec chmod 664 {} \;
sudo find bin sbin libexec -iname \"*sh\" -exec chmod 755 {} \;"

echo "testing dependencies..."
if ! ssh $TB HOSTS USERNAMEQSHOST IP "/opt/nimbus/sbin/test-
dependencies.sh" > /dev/null; then
echo "Error: Dependency script failed"
exit 1
fi

Workaround for issue described here (except Ubuntu uses apparmor
instead of SELinux) :
http://wiki.libvirt.org/page/Guest won%27t start -
_warning: could not open /dev/net/tun %28%27generic ethernet%27 interf
aces29
echo "removing apparmor..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"command -v apparmor status > /dev/null 2>&l &&
$TB PKG MGR REMOVE CMD apparmor
true" &> /dev/null
reboot and wait $SHOST NAME

echo "testing VM creation..."
ssh $TB_HOSTS_USERNAME@$HEAD_NODE_IP \

"cat
S$TB_HOSTS NIMBUS HEAD DIR/services/var/nimbus/control.netsample.txt" |
\

ssh $TB HOSTS USERNAMEQ@SHOST IP \

"cat - > /tmp/control.netsample.txt"
scp —-q $STB MGT DIR/dist/nimbus/vmm/ubuntul0.10.gz
$TB_HOSTS USERNAME@$SHOST IP:/tmp/
ssh $TB HOSTS USERNAMEQ@SHOST IP \

"cd /tmp/

gunzip -f ubuntul0.10.gz"
if ! $(ssh $TB HOSTS USERNAME@SHOST IP \

"/opt/nimbus/sbin/control-test.sh --image /tmp/ubuntul0.10 --
netsample \

/tmp/control.netsample.txt —--memory 256 —--mountpoint hda" &>

/dev/null); then

ssh $TB HOSTS USERNAME@SHOST IP "/opt/nimbus/sbin/destroy-control-
test.sh" &> /dev/null

echo "Error: control-test.sh failed to run properly"

69

exit 1
fi
sleep 10 # Wait for VM to boot
if ! $(ssh $TB_HOSTS USERNAME@SHOST IP \

"ping -c¢ 1 \S$(grep ip /tmp/control.netsample.txt | awk '{print
\$2}')" > /dev/null); then

ssh $TB HOSTS USERNAME@SHOST IP "/opt/nimbus/sbin/destroy-control-
test.sh" &> /dev/null

echo "Error: Failed to ping test VM"

exit 1
fi
ssh $TB HOSTS USERNAME@SHOST IP "/opt/nimbus/sbin/destroy-control-
test.sh" &> /dev/null

echo "updating host list..."
set tb host as vmm node SHOST NAME

echo "cleaning up..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf Stmp libvirt dir
rm -f /tmp/control.netsample.txt
rm -f /tmp/ubuntul0.10"
echo "nimbus vmm set up on \"$SHOST NAME\""
$BASH EXE $TB MGT DIR/sbin/connect-nimbus-vmm-to-head SHOST NAME

exit O

D.2.4 add-olsrd-host

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if tb host has olsr ip SHOST NAME; then
echo "OLSRd already set up on host"

70

exit 1
fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

echo "copying olsrd files..."

ssh $TB_HOSTS USERNAME@SHOST IP "mkdir -p $TB_HOSTS OLSR DIR"
scp -q $TB_OLSRD TAR FILE

$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS OLSRD DIR.tar.gz

echo "installing dependencies..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"$TB_PKG_MGR_UPDATE_ CMD

command -v make > /dev/null 2>&1 || $TB PKG MGR INSTALL CMD make

command -v bison > /dev/null 2>&l1 || $TB PKG MGR INSTALL CMD
bison

command -v flex > /dev/null 2>&1 || $TB _PKG MGR INSTALL CMD flex"

&> /dev/null
reboot and wait if needed SHOST NAME

echo "setting up olsrd..."
ssh $TB_HOSTS USERNAME@SHOST IP \
"tar -xf $TB_HOSTS_OLSRD_DIR.tar.gz -C $TB_HOSTS_OLSR_DIR
cd $TB HOSTS OLSRD DIR; make;
sudo 1n $TB HOSTS OLSRD DIR/olsrd /usr/bin/olsrd" > /dev/null

echo "updating host..."
set tb host olsr ip SHOST NAME "TMPNE"
$BASH EXE $TB MGT DIR/sbin/update-olsrd-host SHOST NAME

echo "olsrd set up on \"S$SHOST NAME\""

echo "updating hosts..."
$BASH_EXE $TB_MGT DIR/sbin/update-hosts

exit O

D.2.5 connect-nimbus-vmm-to-head

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

71

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is vmm node SHOST NAME; then
echo "Nimbus vmm not set up on host"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

if is vmm connected to head $HOST NAME; then
echo "host \"SHOST NAME\" already connected to head node"
exit 1

fi

echo "exchanging public keys..."
ssh $TB_HOSTS_USERNAME@$HEAD_NODE_IP \

"echo -e \"Host SHOST NAME\n\tStrictHostKeyChecking no\" >>
\$SHOME/.ssh/config"
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"echo -e \"Host SHEAD NODE NAME\n\tStrictHostKeyChecking no\" >>
\SHOME/.ssh/config

[-f \SHOME/.ssh/id rsa] || ssh-keygen -f \SHOME/.ssh/id rsa -N
''" > /dev/null
ssh $TB HOSTS USERNAMEQ@SHEAD NODE IP "cat \S$HOME/.ssh/id rsa.pub" | \

ssh $TB HOSTS USERNAME@SHOST IP \

"sed -i \"/”.*$TB HOSTS USERNAME@SHEAD NODE NAME\$/d\"
\SHOME/.ssh/authorized keys

cat - >> \$HOME/.ssh/authorized keys"
ssh $TB_HOSTS USERNAMEQSHOST IP "cat \$HOME/.ssh/id rsa.pub" | \

ssh $TB HOSTS USERNAME@SHEAD NODE IP \

"sed -i \"/”~.*$TB_HOSTS USERNAME@S$SHOST NAME\S/d\"
\SHOME/.ssh/authorized keys

cat - >> \$HOME/.ssh/authorized keys"

echo "connecting host \"$HOST NAME\" to head node..."
host mem="echo $(($(ssh $STB HOSTS USERNAME@SHOST IP "cat
/proc/meminfo" \

| grep 'MemTotal' | awk '{print $2}') / 1024))"

72

read -p "Enter the amount of memory to allocate to VMs (maximum is
Shost mem): " input host mem
if [[$input host mem -1t S$host mem && $input host mem -gt O]]; then

host mem=Sinput host mem
else

echo "Invalid response, defaulting to Shost mem"
fi
if ! $(ssh $TB_HOSTS USERNAMEQ@SHEAD NODE IP \

"[-f $TB HOSTS NIMBUS HEAD DIR/services/share/nimbus-
autoconfig/autoconfig-decisions.sh]"); then

tmp autoconf vals='mktemp /tmp/tbmcnvth.XXXXXXX"

cp $TB MGT DIR/dist/nimbus/head/autoconfig-decisions.sh.template
Stmp autoconf vals

sed -i "s/QUSER@/STB_HOSTS USERNAME/g" S$tmp autoconf vals

sed -i "s/QHOST@/SHEAD NODE NAME/g" S$tmp autoconf vals

sed -i "s/QVMM HOST@/SHOST NAME/g" S$tmp autoconf vals

sed -i "s/@MAX RAM@/Shost mem/g" S$tmp autoconf vals

scp —-q Stmp autoconf vals \

$TB_HOSTS USERNAME@SHEAD NODE IP:$TB_HOSTS NIMBUS HEAD DIR/servic

es/share/nimbus—-autoconfig/autoconfig-decisions.sh

ssh $ TB_HOSTS_USERNAME@ $HEAD_NODE_I P \

"[[\$(STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services status |

awk '"{print \$3}') == \"running\" 1] || \
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services start
$TB_HOSTS NIMBUS HEAD DIR/services/share/nimbus-
autoconfig/autoconfig-adjustments.sh > /dev/null
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services restart"
else
ssh $TB_HOSTS USERNAME@S$SHEAD NODE IP \
"[[\$(STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services status |

awk '"{print \$3}') == \"running\" 1] || \
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services start
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbus-nodes --add $HOST NAME -
-memory S$host mem" > /dev/null
fi

echo "cleaning up..."
rm -f $tmp autoconf vals

echo "vmm node \"SHOST NAME\" connected to head node"

exit O

D.2.6 create-phantom-vm

73

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "S$(dirname "${BASH SOURCE[O]}")/..

source STESTBED MGT DIR/etc/main.conf
source $TB_BASH_FUNCTIONS_LIB_FILE

if ! tb _host phantom vm exists; then
echo "Phantom vm not set up"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"

exit 1

fi

if ! tb _host vmm node exists; then
echo "No vmm node found in testbed"
exit 1

fi

if [[$TB_NIMBUS VMS DNS SERVER == 'none']]; then
echo "No DNS server specified (in main.conf)"
exit 1

fi

HOST NAME=S (get testbed phantom vm node)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

echo "setting up all VMM nodes as gateways for their VMs...

for host in $(get testbed vmm nodes); do
$SBASH EXE $TB MGT DIR/sbin/setup-adhoc-gateway S$host
done

echo "setting up the credentials file..."
tmp creds="mktemp /tmp/tbmcpv.XXXXXXX"

cp $TB MGT DIR/dist/phantom/phantom-creds.template Stmp creds

sed -i "s/QHOST@/SHEAD NODE NAME/g" $tmp creds

sed -i "s/QUSER@/STB_HOSTS USERNAME/g" Stmp creds

cat $tmp creds | ssh $TB HOSTS USERNAMEQ@SHOST IP \
"cat - > $TB _HOSTS PHANTOM DIR/phantom-creds"

echo "setting up the python virtual environment..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"cd $TB_HOSTS PHANTOM DIR
virtualenv .phantom
source STB HOSTS PHANTOM DIR/.phantom/bin/activate
pip install -U boto==2.34.0

74

&& pwd)"

pip install cloudinitd" > /dev/null
echo "registering a nimbus keypair for phantom..."
scp —-q $STB MGT DIR/dist/phantom/nimbus-register-keypair
$TB_HOSTS USERNAME@SHOST IP:/tmp/nrkp
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"source S$TB HOSTS PHANTOM DIR/.phantom/bin/activate

NIMBUS_HOSTNAME=\"$HEAD_NODE_NAME\" \

NIMBUS IAAS ACCESS KEY=\$ (cat
\SHOME/.secrets/NIMBUS ACCESS KEY ID) \

NIMBUS IAAS SECRET KEY=\$ (cat
\$HOME/ .secrets/NIMBUS SECRET ACCESS KEY) \

/tmp/nrkp \"phantom\" \"\$HOME/.ssh/id rsa.pub\"" > /dev/null

echo "setting up hosts files..."
tmp vm info="mktemp /tmp/tbmcpv.XXXXXXXX"
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"STB HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh --run --name
phantom.gz --hours 1" \
> Stmp vm_ info

vm_handle=$ (cat Stmp vm info | grep "Creating workspace" | awk '{print
$3r" 1A\

sed -e 's/""//' -e 's/"...$//")
vm_ip=S(cat $tmp vm info | grep "IP address" | awk '{print $3}"')
vm_hostname=$ (cat $tmp vm info | grep "Hostname" | awk '{print $2}'")

sleep 60 # wait for VM to boot
ssh $TB_HOSTS USERNAMEQS$SHOST IP \
"echo -e \"\n$vm ip\t$vm hostname\" | \
ssh -o StrictHostKeyChecking=no root@$vm ip \"cat - >>
/etc/hosts\"
$TB_HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh \
--save --handle $vm handle --newname phantom-ready.gz &>
/dev/null
sudo sed -i \"/testbed vms/a $vm ip\t$vm hostname\t# phantom-vm\"
/etc/hosts™"

echo "extra prep..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"grep -q \"#.*packer\.conf\" $TB HOSTS PHANTOM CONF FILE ||
sudo sed -1 \"s/\ (".*packer\.confs\)/# \1/\"

$TB_HOSTS PHANTOM CONF_FILE"

echo "running cloudinit.d..."
ssh $TB HOSTS USERNAME@SHOST IP \

"source S$TB HOSTS PHANTOM DIR/.phantom/bin/activate

source STB HOSTS PHANTOM DIR/phantom-creds && cloudinitd -v boot
$TB_HOSTS PHANTOM CONF_FILE" ||

if $(ssh $TB_HOSTS USERNAMEQ@S$HOST IP \
"ssh -o StrictHostKeyChecking=no root@$vm ip \
\"[-f /tmp/nimbusready/newuser/newuser.sh]J\""); then
echo "configuring Phantom to work with Nimbus on test bed..."

75

nimbus factory id=$(ssh $TB HOSTS USERNAME@SHOST IP \
"cat $TB HOSTS NIMBUS CLIENT DIR/conf/cloud.properties" | \
grep vws.factory.identity | sed 's/vws.factory.identity=//")
tmp vm files="mktemp -d /tmp/tbmcpv.XXXXXXXXX"
cp $TB MGT DIR/dist/phantom/vm/* $tmp vm files
sed -i "s/QHEAD NODE@/S (get tb host olsr ip $HEAD NODE NAME)/g" \
$tmp vm files/*.template
sed -i "s|@FACTORY IDQ|$nimbus factory id|g"
Stmp vm files/antrum.yml.template
mv Stmp vm files/test add user.py.template
$tmp vm files/test add user.py
mv Stmp vm files/add users.py.template Stmp vm files/add users.py
mv Stmp vm files/antrum.yml.template Stmp vm files/antrum.yml
tmp vm files remote=$(ssh $TB HOSTS USERNAME@SHOST IP "mktemp -d
/tmp/thmcpv . XXXXXXXXXX")
scp -g $tmp vm files/*
$TB_HOSTS USERNAME@S$HOST IP:$tmp vm files remote/
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"scp —-g -0 StrictHostKeyChecking=no \
Stmp vm files remote/*
root@$vm ip:/home/epu/phantom/sandbox/FG/
ssh -o StrictHostKeyChecking=no root@Svm ip \
\"cd /tmp/nimbusready/newuser
./newuser.sh > /dev/null\"" \
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"echo \"Your Phantom credentials are:\"
scp -q -o StrictHostKeyChecking=no \
root@svm ip:/tmp/nimbusready/newuser/bootconf.json
Stmp vm files remote/
echo -n \"username: \"

cat $tmp vm files remote/bootconf.json | grep
PHANTOM USERNAME | \
tr '"\"'" ' ' | awk '{ print \$3 }'
echo -n \"password: \"
cat $tmp vm files remote/bootconf.json | grep
PHANTOM IAAS SECRET KEY | \
tr l\"l v v | awk l{ print \$3 }l"

fi

echo "cleaning up..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"STB HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh --delete --name
phantom-ready.gz" > /dev/null
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -f /tmp/nrkp
rm -rf Stmp vm files remote"
rm -f $tmp vm info
rm -rf Stmp vm files

echo "script complete”
exit O

76

D.2.7 disconnect-nimbus-vimmm-from-head

#!/bin/bash
set -e

TESTBED MGT DIR="S$(cd "$(dirname "S{BASH SOURCE[O]}")/.."
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is vmm node SHOST NAME; then
echo "Nimbus vmm not set up on host"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

if ! is vmm connected to head $SHOST NAME; then
echo "host \"SHOST NAME\" not connected to head node"
exit 1

fi

echo "removing host \"$HOST NAME\" from head node list..."
if [[$(ssh $TB_HOSTS USERNAME@S$SHEAD NODE_IP \

"STB HOSTS NIMBUS HEAD DIR/bin/nimbus-admin --list --host
SHOST NAME 2>&1") != \

&& pwd)"

"No vms with host $HOST_NAME found”™]]; then
if ! prompt accepted "WARNING: VMs running on host \"$HOST NAME\"!
Continue anyway (and destroy VMs)?"; then
exit 1
fi

ssh STB HOSTS USERNAMEQSHEAD NODE IP \

77

"[[\$(STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services status |

awk '"{print \$3}') == \"running\" 1] || \
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services start
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbus-admin --shutdown --host
SHOST NAME --force"
fi
ssh $TB_HOSTS_USERNAME@$HEAD_NODE_IP \
"[[\$(STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services status | \
awk '"{print \$3}') == \"running\" 1] || \
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services start
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbus-nodes --remove SHOST NAME" >
/dev/null
echo "removing public keys from authorized keys of hosts..."
ssh $TB_HOSTS_USERNAME@$HEAD_NODE_IP \
"sed -i \"/”~.*$TB_HOSTS USERNAME@S$SHOST NAME\S/d\"
\SHOME/.ssh/authorized keys
sed -i \"/ SHOST NAMES/,+1d\" \S$HOME/.ssh/config
[! -f \SHOME/.ssh/known hosts] || ssh-keygen -R $HOST NAME" &>
/dev/null
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"sed -i \"/”.*$TB HOSTS USERNAME@SHEAD NODE NAME\S$/d\"
\SHOME/.ssh/authorized keys
sed -i \"/ SHEAD NODE NAMES/,+1d\" \SHOME/.ssh/config
[! -f \SHOME/.ssh/known hosts] || ssh-keygen -R
$SHEAD NODE NAME" &> /dev/null

echo "vmm node \"SHOST NAME\" disconnected from head node"

exit O

D.2.8 is-nimbus-vmm-connected-to-head

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1
if ! is testbed host SHOST NAME; then
echo "Host not found in testbed"

exit 1
fi

78

if ! tb host is vmm node SHOST NAME; then
echo "Nimbus vmm not set up on host"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

if is vmm connected to head $HOST NAME; then

echo "Host \"$HOST NAME\" connected to head node"
else

echo "Host \"S$HOST NAME\" not connected to head node"
fi

exit O

D.2.9 list-hosts

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf

echo —-e "HOST\tWIRED IP\tOLSR IP\t\tOLSR IFACE\tNODE TYPE"

cat $TB_HOSTS FILE

exit O

D.2.10 list-nimbus-client-nodes

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

source STESTBED MGT DIR/etc/main.conf

echo —-e "HOST\tWIRED IP\tOLSR IP\t\tOLSR IFACE\tNODE TYPE"
cat $TB HOSTS FILE | grep —-Fw "CLIENT"

79

exit O

D.2.11 list-nimbus-head-node

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf

echo —-e "HOST\tWIRED IP\tOLSR IP\t\tOLSR IFACE\tNODE TYPE"

cat $TB HOSTS FILE | grep —-Fw "HEAD"

exit O

D.2.12 list-nimbus-vimm-nodes

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf

echo —-e "HOST\tWIRED IP\tOLSR IP\t\tOLSR IFACE\tNODE TYPE"

cat $TB HOSTS FILE | grep —-Fw "VMM"

exit O

D.2.13 list-olsrd-hosts

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

source STESTBED MGT DIR/etc/main.conf

echo —-e "HOST\tWIRED IP\tOLSR IP\t\tOLSR IFACE\tNODE TYPE"
cat $TB _HOSTS FILE | grep "172.29"

exit O

80

D.2.14 remove-host

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

HOST NAME=S (get tb host name $HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

if ! prompt accepted "Remove host \"S$HOST NAME\" from testbed?"; then
exit 1
fi

if [[$2 != "-f"]]; then

if tb host has olsr ip SHOST NAME; then
$SBASH EXE $TB MGT DIR/sbin/remove-olsrd-host SHOST NAME | |
fi

echo "updating hosts file..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"sudo sed -i \"/testbed wired network/,/"[[:blank:]1]1*$/d\"
/etc/hosts
sudo sed -1 \"/testbed olsr network/,/"[[:blank:]]1*$/d\"
/etc/hosts™"

echo "removing passwordless sudo option..."

ssh STB HOSTS USERNAME@SHOST IP "sudo rm -f
/etc/sudoers.d/$TB_HOSTS USERNAME"

echo "removing public key from authorized keys of host..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sed -i \"/".*$(echo SUSER)@S$ (hostname)\$/d\"

\SHOME/.ssh/authorized keys"
fi

echo "removing host from hosts lists..."

81

sudo sed -i "/~.*$HOST NAMESTB HOSTS WIRED IP APPEND\?$/d" /etc/hosts

ssh-keygen -R $HOST NAME &> /dev/null
ssh-keygen -R $HOST IP &> /dev/null

remove testbed host SHOST NAME

echo "host \"$HOST NAME\" removed from testbed"

echo "updating hosts..."
$BASH_EXE $TB_MGT DIR/sbin/update-hosts

exit O

D.2.15 remove-nimbus-client-node

#!/bin/bash
set -e

TESTBED MGT DIR="S$S(cd "$(dirname "S${BASH SOURCEI[O]}")/.
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is client node $HOST NAME; then
echo "Nimbus client not set up on host"
exit 1

fi

HOST NAME=S (get tb host name $HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

" & pwd)"

HEAD NODE IP=S(get tb host wired ip $(get testbed head node))

if ! prompt accepted "Remove Nimbus client from host \"$HOST NAME\"?";

then
exit 1

fi

echo "removing files..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf $TB_HOSTS NIMBUS CLIENT DIR
rm -rf STB HOSTS HOME DIR/.nimbus

82

rm -rf $TB HOSTS NIMBUS CLIENT DIR.tar.gz
sudo rm —-f $TB HOSTS EXTRA SCRIPTS DIR/*-host-entry"

if tb host head node exists; then
echo "removing user from head node...
ssh $TB_HOSTS_USERNAME@$HEAD_NODE_IP \
"STB HOSTS NIMBUS HEAD DIR/bin/nimbus-remove-user
$HOST NAME@S$STB NIMBUS CLIENT DOMAIN"
fi

"

echo "updating hosts file..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo sed -i \"/testbed vms/,/"[[:blank:]]1*$/d\" /etc/hosts"

echo "updating host list..."
unset tb host as client node $SHOST NAME

echo "nimbus client removed from \"$HOST NAME\""

echo "script complete”
exit O

D.2.16 remove-nimbus-head-node

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

HOST NAME=S (get testbed head node)
HOST IP=S(get tb host wired ip SHOST NAME)

if ! prompt accepted "Remove Nimbus head node?"; then
exit 1
fi

if tb host vmm node exists && prompt accepted "VMM nodes exist,
them?"; then
for host in $(get_testbed_vmm_nodes); do
echo "removing Nimbus VMM from host \"$host\""

83

remove

$BASH EXE $TB MGT DIR/sbin/remove-nimbus-vmm-node Shost
done
else
for host in $(get_testbed_vmm_nodes); do
if is vmm connected to head $HOST NAME; then
echo "for host \"Shost\":"
$BASH EXE $TB MGT DIR/sbin/disconnect-nimbus-vmm-from-head

Shost
fi

done
fi
if tb host client node exists && (prompt accepted "Client nodes
exist, remove them?" || \

prompt accepted "Current client nodes cannot be reconnected to a
new head node. Remove them?"); then

for host in $(get testbed client nodes); do
echo "removing Nimbus client from host \"$host\""
$SBASH EXE $TB MGT DIR/sbin/remove-nimbus-client-node S$host
done
fi

if tb host phantom vm exists && (prompt accepted "Phantom setup
exists, remove it?" || \

prompt accepted "Current Phantom setup will not work with a new
head node. Remove it?"); then

echo "removing phantom vm setup"

$SBASH EXE $TB MGT DIR/sbin/remove-phantom-vm-setup
fi

echo "stopping nimbus..."
ssh $TB_HOSTS_USERNAME@$HOST_IP
"STB HOSTS NIMBUS HEAD DIR/bin/nimbusctl stop"

echo "unsetting up nimbus to run on startup..."
ssh $TB HOSTS USERNAME@SHOST IP "sudo sed -i \"/nimbusctl start/d\"
/etc/rc.local"

echo "removing files..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf $TB_HOSTS NIMBUS HEAD DIR
rm -rf $TB HOSTS NIMBUS SRC DIR"

echo "removing dependencies..."
if prompt accepted "ant-optional was installed for Nimbus, but is no
longer needed. Remove?"; then

echo "removing ant-optional..."

ssh $TB_HOSTS USERNAME@SHOST IP "STB PKG MGR REMOVE CMD ant-
optional" &> /dev/null

reboot and wait if needed SHOST NAME
fi

84

echo "updating host list..."
unset tb host as head node $HOST NAME

echo "nimbus removed from \"$HOST NAME\""

echo "script complete”
exit O

D.2.17 remove-nimbus-vmm-node

#!/bin/bash
set -e

TESTBED MGT DIR="S$(cd "$(dirname "S{BASH SOURCE[O]}")/.."
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is vmm node SHOST NAME; then
echo "Nimbus VMM not set up on host"
exit 1

fi

HOST NAME=S (get tb host name $HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

&& pwd)"

if ! prompt accepted "Remove Nimbus vmm from host \"SHOST NAME\"?";

then
exit 1
fi

if tb host head node exists && is _vmm connected to head $HOST NAME;

then

$BASH EXE $TB MGT DIR/sbin/disconnect-nimbus-vmm-from-head

$HOST NAME
£i

echo "removing files..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf $TB_HOSTS NIMBUS VMM DIR
sudo rm -rf /opt/nimbus

85

rm -rf $TB HOSTS NIMBUS VMM DIR.tar.gz

sudo rm -f $TB_HOSTS_EXTRA_SCRIPTS_DIR/*—Vm—network
sudo rm -f /usr/bin/ors

sudo update-rc.d -f ors remove > /dev/null

sudo rm -f /etc/init.d/ors"

if prompt accepted "apparmor was removed for Nimbus VMM. Reinstall it
(Recommended) ?"; then

echo "reinstalling apparmor..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \

"$TB PKG_MGR_UPDATE CMD
$TB_PKG MGR_INSTALL CMD apparmor" &> /dev/null

reboot and wait if needed SHOST NAME

fi

echo "removing dependencies..."
if prompt accepted "libvirt, kvm, ubuntu-vm-builder, libcap, tunctl,
and isc-dhcp-server were installed for Nimbus VMM, but are no longer
needed. Remove?"; then
echo "removing libvirt, kvm, ubuntu-vm-builder, libcap, tunctl,
and isc-dhcp-server..."
ssh $TB HOSTS USERNAMEQ@SHOST IP \
"STB PKG MGR REMOVE CMD ubuntu-vm-builder libvirt-bin gemu-kvm
libcap2-bin isc-dhcp-server uml-utilities" \
&> /dev/null
reboot and wait if needed SHOST NAME
fi

echo "updating host list..."
unset tb host as vmm node SHOST NAME

echo "nimbus vmm removed from \"SHOST NAME\""

echo "script complete”
exit O

D.2.18 remove-olsrd-host

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

86

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host has olsr ip SHOST NAME; then
echo "OLSRd not set up on the host"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

if ! prompt accepted "Remove OLSRd from host \"$HOST NAME\"?"; then
exit 1
fi

echo "killing olsrd..."

ssh $TB HOSTS USERNAME@SHOST IP "pgrep olsrd > /dev/null && sudo
killall olsrd" || true

echo "updating network interfaces file..."

ssh $TB HOSTS USERNAME@SHOST IP "sudo sed -i \"/olsr network
interface/,/"[[:blank:]1]1*S$/d\" /etc/network/interfaces"

echo "removing files..."
ssh $TB_HOSTS_USERNAME@ $HOST_IP \
"sudo rm -f /usr/bin/olsrd
sudo update-rc.d -f olsrd remove
sudo rm -f /etc/init.d/olsrd
rm -rf STB HOSTS OLSR DIR" > /dev/null

echo "removing dependencies..."
if prompt accepted "bison and flex were installed for OLSRd, but are
no longer needed. Remove?"; then

echo "removing bison and flex..."

ssh $TB_HOSTS USERNAME@SHOST IP "STB PKG MGR REMOVE CMD bison
flex" &> /dev/null

reboot and wait if needed SHOST NAME
fi
echo "removing host olsrd data from hosts lists..."
set tb host olsr ip SHOST NAME "NONE"
set tb host wifi iface $HOST NAME "NONE"
sudo sed -i "/7.*SHOST NAMES$/d" /etc/hosts

echo "olsrd removed on \"$SHOST NAME\""

echo "updating hosts..."
$BASH_EXE $TB_MGT DIR/sbin/update-hosts

exit O

87

D.2.19 remove-phantom-vm-setup

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

if ! tb _host phantom vm exists; then
echo "Phantom vm not set up"
exit 1

fi

HOST NAME=S (get testbed phantom vm node)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

if ! prompt accepted "Remove Phantom VM setup?"; then
exit 1
fi

echo "removing files..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf $TB_HOSTS PHANTOM DIR
rm -rf \SHOME/.secrets"

if tb host head node exists; then
echo "removing the phantom vm images from nimbus..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"STB HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh --delete --name
phantom.gz —--common" > /dev/null
fi

echo "removing dependencies..."
if prompt accepted "virtualenv and git were installed for Phantom, but
are no longer needed. Remove?"; then
echo "removing virtualenv..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"STB PKG MGR REMOVE CMD python-virtualenv git" \
&> /dev/null
reboot and wait if needed SHOST NAME
fi

88

echo "updating host list..."
unset tb host as phantom vm node $HOST NAME

echo "phantom vm setup has been removed from \"$HOST NAME\""

echo "script complete”
exit O

D.2.20 setup-adhoc-gateway

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

if [$# -eqg 0]; then
GW_IP=$TB_NIMBUS_VMS_GATEWAY
else
GW_IP=$1
fi
if [[$GW _IP == "default"]]; then

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1
fi
HOST NAME=S (get testbed head node)
HOST IP=S(get tb host wired ip SHOST NAME)
else
if ! is testbed host $GW IP; then
echo "Host to be gateway not found in testbed"
exit 1
fi
HOST NAME=S (get tb host name $SGW IP)
HOST IP=S(get tb host wired ip SHOST NAME)
fi

echo "setting up gateway..."
iface=$ (ssh $TB HOSTS USERNAME@SHOST IP \
"ifconfig | grep -B 1 SHOST IP | head -1 | awk '{print \S1}'™)
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"sudo sysctl -w net.ipv4.ip forward=1l > /dev/null
sudo iptables -t nat -C POSTROUTING -s 172.29.0.0/14 -o S$iface -7
MASQUERADE &> /dev/null ||

89

sudo iptables -t nat -A POSTROUTING -s 172.29.0.0/14 -o

MASQUERADE"

echo "host \"$HOST NAME\" set up as adhoc gateway"

exit O

Siface —-j

D.2.21 setup-for-phantom-vm

#!/bin/bash

set

-e

TESTBED MGT DIR="S$(cd "$(dirname "S{BASH SOURCE[O]}")/.."
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

&& pwd)"

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is client node $HOST NAME; then
echo "The host is not a client node"
exit 1

fi

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

if ! tb _host vmm node exists; then
echo "No vmm node found in testbed"
exit 1

fi

if tb host phantom vm exists; then
echo "Phantom vm already running”
exit 1

fi

if [! -f $TB_PHANTOM VM IMAGE FILE]; then
echo "ERROR: The image file to be used for Phantom does not exist.

Please

create a KVM compatible,

90

Ubuntu 13.10 64-bit server VM image,

and

place it at the following location:

$TB_PHANTOM VM IMAGE FILE

The image must have git and chef installed on it."
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

HEAD NODE NAME=S (get testbed head node)
HEAD NODE_IP=$(get tb host wired ip $HEAD NODE NAME)

echo "creating the phantom folder..."
ssh $TB _HOSTS USERNAME@S$SHOST IP "mkdir -p $TB HOSTS PHANTOM DIR"

echo "installing dependencies..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"$TB_PKG_MGR_UPDATE_ CMD

$TB_PKG MGR INSTALL CMD python-dev

$TB_PKG _MGR INSTALL CMD git

command -v virtualenv > /dev/null 2>&1 || $TB_ PKG MGR INSTALL CMD
python-virtualenv" \

&> /dev/null

reboot and wait if needed SHOST NAME

echo "downloading the Phantom setup files..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"cd $TB _HOSTS PHANTOM DIR
git clone -g https://github.com/nimbusproject/Phantom.git
cd $TB_HOSTS_PHANTOM_DIR/Phantom
git checkout -g ubuntu"

Workaround for bug described here:
https://bugs.launchpad.net/ubuntu/+source/openjdk-6/+bug/1006776
if ! $(ssh $TB _HOSTS USERNAME@SHOST IP \

"grep -g \"#.*security.provider.9\" /etc/java-*-
openjdk/security/java.security"); then

ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo sed -1 \"s/\ ("security.provider.9.*$\)/# \1/\" /etc/java-*-

openijdk/security/java.security"

reboot and wait S$SHOST NAME
fi

echo "adding the phantom vm image to nimbus..."
scp -q $TB_PHANTOM VM IMAGE FILE
$TB_HOSTS USERNAME@SHOST IP:/tmp/phantom.gz
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"STB HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh --transfer --
sourcefile /tmp/phantom.gz —--common" > /dev/null

echo "setting up access keys..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

91

"[-d \SHOME/.secrets] || mkdir \SHOME/.secrets"

ssh $TB _HOSTS USERNAME@SHOST IP "cat

$TB_HOSTS NIMBUS CLIENT DIR/conf/cloud.properties" | \
grep s3id | sed 's/.*=//' | ssh $TB_HOSTS USERNAMEQ@S$HOST IP \
"cat - | tee \SHOME/.secrets/NIMBUS ACCESS KEY ID > /dev/null"
ssh $TB HOSTS USERNAME@SHOST IP "cat
$TB_HOSTS NIMBUS CLIENT DIR/conf/cloud.properties" | \
grep s3key | sed 's/.*=//' | ssh $TB HOSTS USERNAME@S$HOST IP \
"cat - | tee \SHOME/.secrets/NIMBUS SECRET ACCESS KEY > /dev/null"

echo "cleaning up..."
ssh $TB HOSTS USERNAME@SHOST IP "rm -f /tmp/phantom.gz"
rm -f $tmp creds

echo "updating host list..."
set tb host as phantom vm node $HOST NAME

echo "phantom is setup to run using \"SHOST NAME\""

exit O

D.2.22 setup-nimbus-head-node

#!/bin/bash

set

-e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if

fi

if

fi

! is testbed host SHOST NAME; then
echo "Host not found in testbed"
exit 1

! tb host has olsr ip S$HOST NAME; then
echo "OLSRd not set up on the host"
exit 1

if tb host head node exists; then

fi

echo "Head node already exists"
exit 1

92

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

echo "copying nimbus iaas files..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"mkdir -p $TB HOSTS NIMBUS DIR
mkdir -p $TB_HOSTS NIMBUS HEAD DIR
mkdir -p $TB_HOSTS NIMBUS SRC_DIR"
scp -g $TB_NIMBUS HEAD TAR FILE
$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS HEAD SRC DIR.tar.gz

echo "installing dependencies..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"$TB_PKG_MGR_UPDATE_ CMD
$TB_PKG MGR INSTALL CMD openjdk-6-jdk
$TB_PKG MGR INSTALL CMD python-dev
$TB_PKG MGR INSTALL CMD python-twisted-web
$TB_PKG MGR INSTALL CMD sqglite3
$TB_PKG MGR INSTALL CMD gcc
$TB_PKG MGR INSTALL CMD libssl-dev
$TB_PKG MGR_INSTALL CMD ant-optional" &> /dev/null

reboot and wait if needed SHOST NAME

Workaround for bug described here:
https://bugs.launchpad.net/ubuntu/+source/python2.7/+bug/1115466
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo 1ln -s /usr/lib/python2.7/plat-*/ sysconfigdata nd.py
/usr/lib/python2.7/" &> /dev/null ||

echo "installing nimbus..."
Workaround for issue where prompts aren't outputted until input is
received
while ! prompt accepted \

"During the following setup, the script will pause to wait for
input
(right after \"Configuring installed services\"), but will not output
a prompt.
Simply press Enter twice at this point to allow the script to proceed.
Understand?"; do

loop until prompt is accepted

done
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"tar -xf $TB HOSTS NIMBUS HEAD SRC DIR.tar.gz -C
$TB_HOSTS NIMBUS SRC DIR

cd $TB_HOSTS NIMBUS HEAD SRC DIR; ./install
$TB_HOSTS NIMBUS HEAD DIR"

echo "setting up rsa key pair..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"[-f \SHOME/.ssh/id rsa] || ssh-keygen -f \SHOME/.ssh/id rsa -N
"' > /dev/null

93

echo "updating host list..."
set tb host as head node $SHOST NAME

echo "\"SHOST NAME\" set up as head node"

echo "setting up nimbus to run on startup..."
ssh $TB HOSTS USERNAMEQSHOST IP \
"sudo sed -i \"s|%exit 0$|su STB HOSTS USERNAME -c
'STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl start'\né&|\" /etc/rc.local"

echo "updating head node settings..."
$BASH EXE $TB MGT DIR/sbin/update-nimbus-head-node

if tb host vmm node exists && prompt accepted "VMM nodes exist,
connect to them?"; then
for host in $(get_testbed_vmm_nodes); do
echo "for host \"Shost\":"
$BASH EXE $TB MGT DIR/sbin/connect-nimbus-vmm-to-head Shost
done
fi

exit O

D.2.23 update-hosts

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

echo "updating hosts files..."
for host in $(cut -f1 $STB HOSTS FILE); do

echo "updating Shost's host file..."

host ip=$(get tb host wired ip Shost)

tmp hosts="mktemp /tmp/tbmuh.XXXXXXX"

scp —q $STB HOSTS USERNAME@Shost ip:/etc/hosts $tmp hosts

sed -i "/testbed wired network/,/”[[:blank:]]*$/d" Stmp hosts

sed -i "/testbed olsr network/,/"[[:blank:]]*$/d" Stmp hosts

sed -1 '"/"[[:space:]1]1*S$/{:a;3d;N;/\n[[:space:]]*$/ba}' Stmp hosts

echo >> Stmp hosts

sed -n "/testbed wired network/,/~[[:blank:]]1*$/p" /etc/hosts >>
Stmp hosts

sed -n "/testbed olsr network/,/"[[:blank:]1]1*$/p" /etc/hosts >>
Stmp hosts

cat $tmp hosts | ssh $TB HOSTS USERNAME@Shost ip "cat - | sudo tee
/etc/hosts > /dev/null"

94

echo "cleaning up..."
rm -f $tmp hosts
done

echo "script complete”
exit O

D.2.24 update-nimbus-client-node

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is client node $HOST NAME; then
echo "Nimbus client not set up on host"
exit 1

fi

HOST NAME=S (get tb host name $HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

echo "updating cloudclient.sh..."
tmp cc dir=$(ssh $TB HOSTS USERNAME@SHOST IP "mktemp -d
/tmp/tbmuncn . XXXXXXXX")
scp —-q $STB MGT DIR/dist/nimbus/client/cloud-client.sh
$TB_HOSTS USERNAME@SHOST IP:$tmp cc_dir/
scp —-q $STB MGT DIR/dist/nimbus/client/*-host-entry
$TB_HOSTS USERNAME@SHOST IP:$tmp cc_dir/
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo cp S$tmp cc dir/cloud-client.sh
$TB_HOSTS NIMBUS CLIENT DIR/bin/cloud-client.sh

sudo cp $tmp cc dir/*-host-entry $TB HOSTS EXTRA SCRIPTS DIR"

echo "cleaning up..."
ssh STB HOSTS USERNAME@SHOST IP "rm -rf $tmp cc dir"

95

echo "script complete”
exit O

D.2.25 update-nimbus-client-nodes

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

echo "updating client node settings..."
for host in $(get testbed client nodes); do

echo "updating host \"Shost\"..."

$BASH EXE S$TB MGT DIR/sbin/update-nimbus-client-node S$host
done

exit O

D.2.26 update-nimbus-head-node

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

if ! tb _host head node exists; then
echo "No head node found in testbed"
exit 1

fi

HOST NAME=S (get testbed head node)
HOST IP=$(get tb host wired ip $HOST NAME)

echo "creating network pool files..."

echo "creating public..."

[-d $STB _MGT DIR/dist/nimbus/head/network] || mkdir
$TB_MGT DIR/dist/nimbus/head/network

echo "# DNS IP address (or 'none'):" >

$TB_MGT DIR/dist/nimbus/head/network/public

96

echo $TB NIMBUS VMS DNS_SERVER >>
$TB_MGT DIR/dist/nimbus/head/network/public
echo -e "\n# hostname ipaddress gateway broadcast subnetmask [MAC]\n"
\
>> $TB MGT DIR/dist/nimbus/head/network/public
vm_gw=$TB NIMBUS VMS GATEWAY
if [[$vm gw == "default"]]; then
vm_gw=$ (get tb host olsr ip $HOST NAME)
fi
no_ips=$(get no_ips in network $TB_NIMBUS VMS PUBLIC IP NETWORK)
vm_ no=1
for vm _ip in $(get ips _in network $TB NIMBUS VMS PUBLIC IP NETWORK) ;
do

if [[$vm no == 1 1] || [[$Svm no -gt $(($no_ips-1)) 1]; then
vm_no=S ((Svm_no+1))
continue

fi

echo "$TB NIMBUS VMS PUBLIC HOST PREFIXS (printf %02d Svm no)
$vm_ip $vm gw none $TB OLSR NETMASK" \
>> $TB MGT DIR/dist/nimbus/head/network/public
vm_no=S ((Svm_no+1))
print status bar Svm no S$no_ips

done
echo "creating private..."
echo "# DNS IP address (or 'none'):" >

$TB_MGT DIR/dist/nimbus/head/network/private
echo "none" >> S$STB MGT DIR/dist/nimbus/head/network/private
echo -e "\n# hostname ipaddress gateway broadcast subnetmask [MAC]\n"
\
>> $TB MGT DIR/dist/nimbus/head/network/private
no_ips=$(get no_ips_in network $TB NIMBUS VMS PRIVATE IP NETWORK)
vm_ no=1
for vm ip in $(get ips in network $TB NIMBUS VMS PRIVATE IP NETWORK) ;
do

if [[$vm no == 1 1] || [[Svm no -gt $(($no_ips-1)) 1]; then
vm_no=S ((Svm_no+1))
continue

fi

echo "S$TB NIMBUS VMS PRIVATE HOST PREFIXS (printf $03d $vm no)
$vm_ip none none $TB OLSR NETMASK" \
>> $TB MGT DIR/dist/nimbus/head/network/private
vm_no=S ((Svm_no+1))
print status bar Svm no S$no_ips
done

echo "updating files..."
scp —-gq $STB MGT DIR/dist/nimbus/head/network/* \

$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS HEAD DIR/services/etc/nim

bus/workspace-service/network-pools/
scp —-gq $STB MGT DIR/dist/nimbus/head/var/cloud.properties.in \

97

$TB_HOSTS USERNAME@$HOST IP:$TB HOSTS NIMBUS HEAD DIR/var/cloud.proper
ties.in

tmp md conf='mktemp /tmp/tbmunhn.XXXXXXX"

cp $TB MGT DIR/dist/nimbus/head/conf/metadata.conf.template
Stmp md conf

sed -1 "s/@HOST@/$HOST IP/g" $Stmp md conf

scp —-q Stmp md conf \

$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS HEAD DIR/services/etc/nim
bus/workspace-service/metadata.conf
scp —-q $STB MGT DIR/dist/nimbus/head/conf/*.conf \

$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS HEAD DIR/services/etc/nim
bus/workspace-service/
scp —-g $STB MGT DIR/dist/nimbus/head/elastic/other/other-elastic.conf \

$TB_HOSTS USERNAME@S$SHOST IP:$TB HOSTS NIMBUS HEAD DIR/services/etc/nim
bus/elastic/other/other-elastic.conf
scp —-q $TB MGT DIR/dist/nimbus/head/elastic/elastic.conf \

$TB_HOSTS USERNAME@SHOST IP:$TB HOSTS NIMBUS HEAD DIR/services/etc/nim
bus/elastic/elastic.conf
ssh $TB_HOSTS_USERNAME@$HOST_IP "sed -1
\"s/"details.hostname=.*$/details.hostname=true/\" \

$TB_HOSTS NIMBUS HEAD DIR/services/etc/nimbus/workspace-
service/other/common.conf"
echo "restarting nimbus..."
ssh $TB_HOSTS_USERNAME@$HOST_IP
"STB HOSTS NIMBUS HEAD DIR/bin/nimbusctl restart"

if [[$TB_NIMBUS VMS DNS SERVER == 'none']]; then
echo "updating netsample file..."
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"echo \"dns: 1.1.1.1\" >>
$TB_HOSTS NIMBUS HEAD DIR/services/var/nimbus/control.netsample.txt"
fi

echo "cleaning up..."
rm -f $tmp md conf

echo "script complete”
exit O

D.2.27 update-nimbus-vmm-node

98

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host is vmm node SHOST NAME; then
echo "Nimbus vmm not set up on host"
exit 1

fi

HOST NAME=S (get tb host name S$HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

echo "updating workspace-control.sh, dhcp-config.sh, and
dhcpd.conf..."
tmp wscs dir=$(ssh $TB HOSTS USERNAME@SHOST IP "mktemp -d
/tmp/tbmunvn . XXXXXXXX")
scp —-q $STB MGT DIR/dist/nimbus/vmm/workspace-control.sh
$TB_HOSTS USERNAME@SHOST IP:S$tmp wscs dir/
scp —-q $STB MGT DIR/dist/nimbus/vmm/dhcp-config.sh
$TB_HOSTS USERNAME@SHOST IP:S$tmp wscs dir/
scp —-g $STB MGT DIR/dist/nimbus/vmm/dhcp/dhcpd.conf
$TB_HOSTS USERNAME@SHOST IP:S$Stmp wscs dir/
scp —-gq $TB MGT DIR/dist/nimbus/vmm/*-vm-network
$TB_HOSTS USERNAME@SHOST IP:S$Stmp wscs dir/
ssh $TB _HOSTS USERNAME@SHOST IP \
"sudo cp $tmp wscs dir/workspace-control.sh
/opt/nimbus/bin/workspace-control.sh
sudo cp $tmp wscs dir/dhcp-config.sh
/opt/nimbus/libexec/workspace-control/dhcp-config.sh
sudo cp $tmp wscs dir/dhcpd.conf /etc/dhcp/dhcpd.conf
sed -1 \"s/wlan0/$(get tb host wifi iface S$HOST NAME)/g\"
$tmp_wscs_dir/setup—vm—network
sudo cp $tmp wscs dir/*-vm-network $TB HOSTS EXTRA SCRIPTS DIR"

echo "copying nimbus vmm configuration files..."
scp —-q S$STB MGT DIR/dist/nimbus/vmm/conf/* \
$TB_HOSTS USERNAME@SHOST IP:/opt/nimbus/etc/workspace-control/

echo "updating and starting resource information collector script..."
tmp orss dir=$(ssh $TB HOSTS USERNAME@SHOST IP "mktemp -d
/tmp/tbmunvn . XXXXXXXXX")

scp —-gq $STB MGT DIR/dist/nimbus/vmm/output-resource-status.py \

99

$TB_HOSTS USERNAMEQ@$HOST IP:$tmp orss dir/
scp —-q $TB MGT DIR/dist/nimbus/vmm/ors-startup-script
$TB_HOSTS USERNAMEQ@$HOST IP:$tmp orss dir/
ssh $TB HOSTS USERNAME@SHOST IP \

"sudo cp $tmp orss dir/output-resource-status.py /usr/bin/ors
sudo cp $tmp orss dir/ors-startup-script /etc/init.d/ors
sudo chmod +x /etc/init.d/ors
sudo update-rc.d ors defaults 99
sudo service ors restart" > /dev/null

echo "cleaning up..."

ssh $TB_HOSTS_USERNAME@$HOST_IP \
"rm -rf Stmp wscs dir
rm -rf Stmp orss dir"

echo "script complete”
exit O

D.2.28 update-nimbus-vmm-nodes

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE
echo "updating vmm node settings..."
for host in $(get_testbed_vmm_nodes); do

echo "updating host \"Shost\"..."

$BASH EXE $TB MGT DIR/sbin/update-nimbus-vmm-node Shost
done

exit O

D.2.29 update-olsrd-host

#!/bin/bash
set -e

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O]}")/.." && pwd)"

source STESTBED MGT DIR/etc/main.conf
source $TB BASH FUNCTIONS LIB FILE

100

HOST NAME=$1

if ! is testbed host S$HOST NAME; then
echo "Host not found in testbed"
exit 1

fi

if ! tb host has olsr ip SHOST NAME; then
echo "OLSRd not set up on the host"
exit 1

fi

HOST NAME=S (get tb host name $HOST NAME)
HOST IP=S(get tb host wired ip SHOST NAME)

echo "setting up network..."
scp —-q $STB MGT DIR/dist/olsrd/olsrd-adhoc-setup \

$TB_HOSTS USERNAME@SHOST IP:$TB_HOSTS OLSRD DIR/files/olsrd-adhoc-
setup
tmp network info="mktemp /tmp/tbmuoh.XXXXXXX’
ssh $TB_HOSTS_USERNAME@$HOST_IP \

"sudo $TB _HOSTS OLSRD DIR/files/olsrd-adhoc-setup \"\"
$TB_OLSR_CHANNEL $TB_OLSR _ESSID $TB OLSR BSSID " \

&> S$tmp network info

HOST OLSR IP="cat $tmp network info | grep "with IP" | sed 's/.*with
e //"

HOST WIFI IFACE='cat Stmp network info | grep "with IP" | sed
's/.*setup on //' | awk '{print $1;}'"

echo "adding olsr data to hosts lists..."
set tb host olsr ip SHOST NAME S$HOST OLSR IP
set tb host wifi iface $HOST NAME SHOST WIFI IFACE
grep -Fgw "S$HOST OLSR IP" /etc/hosts || \
sudo sed -i "/testbed olsr network/a SHOST OLSR IP\tSHOST NAME"
/etc/hosts

echo "killing olsrd..."
ssh $TB HOSTS USERNAME@SHOST IP "pgrep olsrd > /dev/null && sudo
killall olsrd" || true

echo "updating configuration files..."
scp —-g $TB_MGT_DIR/diSt/Olsrd/$TB_OLSRD_CONFIG_FILE_NAME \
$TB_HOSTS USERNAME@SHOST IP:$TB_HOSTS OLSRD DIR/
ssh $TB_HOSTS_USERNAME@$HOST_IP \
"sudo mkdir -p /etc/olsrd
sudo cp $TB_HOSTS_OLSRD DIR/$TB OLSRD CONFIG_FILE_ NAME
/etc/olsrd/olsrd.conf"

echo "starting olsrd..."

ssh $TB_HOSTS USERNAMEQS$HOST IP "sudo $TB_HOSTS OLSRD DIR/olsrd -i
$HOST WIFI_ IFACE" &> /dev/null

101

echo "updating network interfaces file..."
tmp network ifaces="mktemp /tmp/tbmuoh.XXXXXXXX"
scp —q STB HOSTS USERNAMEQSHOST IP:/etc/network/interfaces
Stmp network ifaces
sed -i "/auto $HOST WIFI IFACE/,/"[[:blank:]]*$/d" S$tmp network ifaces
sed -i "/olsr network interface/,/”[[:blank:]1]1*$/d"
Stmp network ifaces
sed -1 '"/"[[:space:]]*$/{:a;$d;N;/\n[[:space:]]1*$/ba}"’
Stmp network ifaces
echo -e "\n# The olsr network interface" >> $tmp network ifaces
echo -e "auto SHOST WIFI IFACE\niface SHOST WIFI IFACE inet static" >>
Stmp network ifaces
echo -e "\taddress SHOST OLSR IP" >> Stmp network ifaces
echo -e "\tnetmask S$STB OLSR NETMASK" >> Stmp network ifaces
echo -e "\twireless-channel $TB OLSR CHANNEL" >> S$tmp network ifaces
echo -e "\twireless-essid $TB OLSR ESSID" >> S$tmp network ifaces
echo -e "\twireless-mode ad-hoc" >> Stmp network ifaces
cat $tmp network ifaces | ssh STB HOSTS USERNAME@SHOST IP \
"cat - | sudo tee /etc/network/interfaces > /dev/null"

echo "updating startup script..."
tmp olsrd startup="mktemp /tmp/tbmuoh.XXXXXXXXX"
cp $TB MGT DIR/dist/olsrd/olsrd-startup-script.template
Stmp olsrd startup
sed -i "s/@IFACEQ/$HOST WIFI IFACE/g" $tmp olsrd startup
cat $tmp olsrd startup | ssh $TB HOSTS USERNAME@SHOST IP \
"cat - | sudo tee /etc/init.d/olsrd > /dev/null
sudo chmod +x /etc/init.d/olsrd
sudo update-rc.d olsrd defaults 99" > /dev/null

echo "cleaning up..."

rm -f $tmp network info
rm -f $tmp network ifaces
rm -f $tmp olsrd startup

echo "script complete”
exit O

D.2.30 update-olsrd-hosts

#!/bin/bash

TESTBED MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"
source STESTBED MGT DIR/etc/main.conf

source $TB BASH FUNCTIONS LIB FILE

echo "updating olsrd hosts settings..."

102

for host in $(get_olsr_testbed_hosts); do

echo "updating host \"Shost\"..."

$SBASH EXE $TB MGT DIR/sbin/update-olsrd-host Shost
done

echo "updating hosts..."
$BASH_EXE $TB_MGT DIR/sbin/update-hosts

exit O

D.3 Other Scripts

D.3.1 setup
This script is contained in antrum/management/setup/.

#!/bin/bash

TESTBED MGT DIR="S$(cd "$(dirname "S{BASH SOURCEI[O]}")/..

&& pwd)"

if S (source $TESTBED MGT DIR/etc/main.conf &> /dev/null); then

source STESTBED MGT DIR/etc/main.conf
else
source STESTBED MGT DIR/etc/main.conf.example

fi

if [-f $TB HOSTS FILE]; then
echo "Setup already run"
exit 1;

fi

echo "setting up passwordless sudo..."
sudo STB MGT DIR/dist/set-pwdless-sudo $(whoami)

echo "installing necessary software..."
$TB_PKG MGR UPDATE CMD
$TB PKG MGR INSTALL CMD python-dev python-netaddr

if [! -f SHOME/.ssh/id rsa]; then
echo "setting up rsa keys..."
ssh-keygen -f $HOME/.ssh/id rsa -N "'
fi

if [! -f STESTBED MGT DIR/etc/main.conf]; then
echo "creating config file..."
cp $TESTBED MGT DIR/etc/main.conf.example
STESTBED MGT DIR/etc/main.conf
fi

103

if ! $(grep -Fgqw "# testbed wired network" /etc/hosts); then

echo "adding heading to /etc/hosts file..."

echo -e "\n# testbed wired network\n\n# testbed olsr network" |
sudo tee -a /etc/hosts > /dev/null
fi

echo "creating testbed hosts file..."
mkdir S$TESTBED MGT DIR/var
touch $TB HOSTS FILE

echo "downloading OLSRd setup files..."

cd $TB MGT DIR/dist/olsrd/

curl -0 http://www.olsr.org/releases/0.6/olsrd-

$TB OLSRD VERSION.tar.gz

echo "downloading Nimbus setup files..."

cd $TB_MGT DIR/dist/nimbus/

curl -0 http://www.nimbusproject.org/downloads/nimbus-iaas-
$TB_NIMBUS_IAAS_VERSION—src.tar.gz

curl -0 http://www.nimbusproject.org/downloads/nimbus-iaas-controls-
$TB_NIMBUS IAAS VERSION.tar.gz

curl -0 http://www.nimbusproject.org/downloads/nimbus-cloud-client-
$TB_NIMBUS CLIENT VERSION.tar.gz

echo "downloading test VMM image..."

cd $TB MGT DIR/dist/nimbus/vmm/

curl -0 http://www.nimbusproject.org/downloads/ubuntul0.10.gz

echo "script complete”
exit O

D.4 Configuration Files
These configuration files are contained in antrum/management/sbin/.

D.4.1 main.conf.example
This is an example configuration file for the test bed management scripts.

BHEGH A A AR A

Master configuration file for aNTRuM

BHESH A A AR A

#

FH AR R R

Username for all nodes of the testbed
TB_HOSTS USERNAME="nimbus"

104

This string will be appended to the non-adhoc IP address of each
testbed

host

TB_HOSTS_WIRED IP APPEND="x"

For the scripts that require rebooting a host, this is the port that
will

be used to listen for the host to signal that the reboot is complete
TB_REBOOT WAIT PORT="9876"

File and directory paths on the master node

#
The path for antrum
TB MGT DIR="$(cd "$(dirname "${BASH SOURCE[O0]}")/.." && pwd)"

The function libraries paths

TB_BASH FUNCTIONS LIB FILE="$TB MGT DIR/lib/functions.sh"
TB_PYTHON FUNCTIONS LIB FILE="STB MGT DIR/lib/functions.py"

The path to the file that contains the testbed host information
TB HOSTS FILE="3$TB MGT DIR/var/testbed hosts"

The testbed nodes home directory
TB_HOSTS_ HOME DIR="/home/$TB HOSTS USERNAME"

The path to bash
BASH EXE="/bin/bash"

Package manager commands

(Changing these may break the scripts, as the names of the sofware
may

be different for different package managers)

TB_PACKAGE MANAGER="apt-get"

TB_PKG_MGR _UPDATE CMD="sudo $TB PACKAGE MANAGER -g -y update"

TB_PKG MGR_INSTALL CMD="sudo $TB PACKAGE MANAGER -g -y install"
TB_PKG MGR REMOVE CMD="sudo $TB PACKAGE MANAGER -g -y remove"

The path for the auxillary scripts running on the testbed nodes

If changed, the path specified in the scripts that call the auxilary
scripts must be changed

TB_HOSTS EXTRA SCRIPTS DIR="/usr/local/bin"

S i i
#

OLSRd Scripts Configurations

#

Version of OLSRd to use
TB_OLSRD_VERSION="0.6.7.1"

The name of the OLSRd configuration file to use (found in
dist/olsrd/)
TB_OLSRD CONFIG FILE NAME="tb olsrd.conf"

105

OLSRd network configuration

The ad hoc network on which OLSRd will run. IP addresses will be
assigned to the wireless cards from this network.

Do not change this value, as it is hardcoded into other scripts
TB_OLSR NETWORK="172.29.0.0/16"

The ad hoc network netmask, set to include the network for the VMs
TB_OLSR NETMASK="255.252.0.0"

The ad hoc network wirless channel

TB_OLSR_CHANNEL="1"

The ad hoc network ESSID

TB _OLSR_ESSID="nimbusnodes"

The ad hoc network BSSID

TB OLSR BSSID="02:ca:ff:ee:ba:be"

+H H H HF

The path to the OLSRd software on the master node
TB_OLSRD TAR FILE="$TB MGT DIR/dist/olsrd/olsrd-
$TB OLSRD VERSION.tar.gz"

Paths to the OLSR and OLSRd directories on the testbed nodes
TB_HOSTS OLSR_DIR="$TB HOSTS HOME DIR/olsr"
TB_HOSTS_ OLSRD DIR="S$TB HOSTS HOME DIR/olsr/olsrd-$TB OLSRD VERSION"

S i i
#
Nimbus Scripts Configurations

#

Versions of Nimbus software to use
TB_NIMBUS IAAS VERSION="2.10.1"
TB_NIMBUS CLIENT VERSION="022"

Domain name to use for Nimbus client setup
TB_NIMBUS CLIENT DOMAIN="nimbustb"

Nimbus VM network configuration

#

The hostname prefixes to use for for the public and private VM
network pools

TB_NIMBUS VMS PUBLIC HOST PREFIX="pub"

TB_NIMBUS VMS PRIVATE HOST PREFIX="priv"

The public and private networks from which IP addresses will be
assinged to the VMs. The public network is set so as to be

accessible from the testbed nodes ad hoc network

Mask bits value (/x) should be between 16 and 32

TB_NIMBUS VMS PUBLIC IP NETWORK="172.30.0.0/23"

TB_NIMBUS VMS PRIVATE IP NETWORK="10.30.0.0/23"

DNS server to use for access outisde the ad hoc network

If set to "none", VMs will have not internet connectivity

If this value is changed after the Nimbus head node is set up,
the nimbus head node update script will need to be run

106

TB_NIMBUS VMS DNS_ SERVER="none"

Testbed node to use as gateway for access outside the ad hoc
network

"default" is Nimbus head node. If changed, use an IP address
(e.g. 172.29.99.99)

TB_NIMBUS VMS GATEWAY="default"

The paths to the Nimbus Head, VMM, and Client node softwares on

the master node

TB_NIMBUS HEAD TAR FILE="$TB MGT DIR/dist/nimbus/nimbus-iaas-
$TB_NIMBUS_IAAS_VERSION—src.tar.gz"

TB NIMBUS VMM TAR FILE="S$TB MGT DIR/dist/nimbus/nimbus-iaas-controls-
$TB_NIMBUS IAAS VERSION.tar.gz"

TB_NIMBUS CLIENT TAR FILE="$TB MGT DIR/dist/nimbus/nimbus-cloud-
Client—$TB_NIMBUS_CLIENT_VERSION .tar.gz"

Nimbus directory paths on the testbed nodes

(Changing these may break the scripts, as some are interdependent)
#

Nimbus directory

TB_HOSTS NIMBUS DIR="$TB HOSTS HOME DIR/nimbus"

Nimbus software source files directory

TB_HOSTS_ NIMBUS SRC_DIR="S$TB HOSTS HOME DIR/nimbus-src"

Nimbus head node software directory

TB_HOSTS NIMBUS HEAD DIR="$TB HOSTS NIMBUS DIR"

Nimbus head node software source files directory

TB_HOSTS NIMBUS HEAD SRC_DIR="S$TB HOSTS NIMBUS SRC DIR/nimbus-iaas-
$TB_NIMBUS IAAS VERSION-src"

Nimbus VMM node software directory

TB_HOSTS NIMBUS VMM DIR="$TB HOSTS NIMBUS SRC DIR/nimbus-iaas-
controls-$TB NIMBUS IAAS VERSION"

Nimbus Client software directory

TB_HOSTS NIMBUS CLIENT DIR="$TB HOSTS NIMBUS DIR/nimbus-cloud-client-
$TB_NIMBUS CLIENT VERSION"

S i i
#
Phantom Scripts Configurations

#

Path to the VM image file to be used to set up phantom
TB_PHANTOM VM IMAGE FILE="STB MGT DIR/dist/phantom/phantom-ubuntu.gz"

Phantom file and directory paths on the testbed nodes

#

Phantom directory

TB_HOSTS_ PHANTOM DIR="$TB HOSTS HOME DIR/phantom"

Configuration file to be used to set up Phantom

TB_HOSTS_ PHANTOM CONF FILE="$TB HOSTS PHANTOM DIR/Phantom/plan/test.co
nf"

107

D.5 Libraries

These functions libraries are contained in antrum/management/lib/.

D.5.1 functions.py

from netaddr import IPNetwork, IPAddress
import socket

def inNetwork (addr, network):
if IPAddress (addr) in IPNetwork (network) :
return True
return False

def i1sValidIP (addr) :
try:
socket.inet aton (addr)
return True
except socket.error:
return False

def getIPsInNetwork (iprange) :
for ipaddr in IPNetwork (iprange) :
print ipaddr

def getNoIPsInNetwork (iprange) :
return len (IPNetwork (iprange))

D.5.2 functions.sh

PYTHON FUNCTIONS ##4#

calls a python function $1 with params $2,...,$n (passed as strings)
_call python function()
{

local params=${Q@:2}

python -c "import imp; functions = imp.load source (\"functions\",
\"$TB_PYTHON FUNCTIONS LIB FILE\"); print functions.$1 ($ (echo
\'S${params// /\', \'"}I\"));" | sed '${/None/d;}'

}

checks if $1 is in the network $2
in network()

{
[[$(call python function inNetwork $1 $2) == "True"]]

108

checks if $1 is a valid ip address
is valid ip ()
{
[$(_Call_python_function isValidIP $1) == "True" 1]
}

returns a list of ip addresses in the network (separated by a
newline)
get ips in network()
{
_call python function getIPsInNetwork $1

returns the number of ip addresses in the network
get no ips in network()
{

_call python function getNoIPsInNetwork $1

TESTBED HOSTS LIST FUNTIONS #4##

adds new host $1 to the testbed hosts list (no values set)
add_testbed host ()

{
echo -e "S1\tNONE\tNONE\tNONE\tNONE" >> STB HOSTS FILE

removes host $1 from the testbed hosts list
remove testbed host ()

{
sed -1 "/~$1\t.*$/d" $TB_HOSTS_ FILE

checks if $1 belongs to the testbed
is testbed host()

{
[-n $1] || return 1

if is valid ip $1; then

grep -Fgw "$1" STB HOSTS FILE
else

cut -f1 STB HOSTS FILE | grep -Fgw "$1"
fi

returns all testbed host names
get testbed hosts()
{
for host in $(cut -f1 $STB HOSTS FILE); do
echo Shost

109

done

returns all testbed host names with olsr IP addresses
get olsr testbed hosts()
{
for host in $(cut -f1 $STB HOSTS FILE); do
if tb host has olsr ip $host; then
echo S$host
fi
done

returns the host name of the testbed head node
get testbed head node ()
{
for host in $(cut -f1 $STB HOSTS FILE); do
if tb host is head node Shost; then
echo S$host
return 0
fi
done

returns all the host names of the testbed vmm nodes
get testbed vmm nodes ()
{
for host in $(cut -f1 $STB HOSTS FILE); do
if tb host is vmm node $host; then
echo S$host
fi
done

returns the host name running the phantom vm
get testbed phantom vm node ()
{
for host in $(cut -f1 $STB HOSTS FILE); do
if tb host is phantom vm node S$host; then
echo S$host
return O
fi
done

}

returns all the host names of the testbed client nodes
get testbed client nodes ()
{
for host in $(cut -f1 $STB HOSTS FILE); do
if tb host is client node S$host; then
echo S$Shost
fi

110

done

}

gets the host name of host $1
get tb host name ()
{
echo “awk '/'$1'/{ print $1 }' $TB HOSTS FILE"
}

sets the wired IP address of host $1 to $2
set tb _host wired ip()
{
sed -i "/8$1/s/["\t]1*["\t]/$2/2" STB_HOSTS FILE
}

gets the wired IP address of host $1
get tb host wired ip()
{
echo “awk '/'$1'/{ print $2 }' $TB HOSTS FILE"
}

sets the olsr IP address of host $1 to $2
set tb host olsr ip()
{
sed -i "/8$1/s/["\t]1*["\t]/$2/3" STB_HOSTS FILE
}

gets the olsr IP address of host $1
get tb host olsr ip()
{
echo “awk '/'$1'/{ print $3 }' $TB HOSTS FILE"
}

checks if host $1 has an olsr ip address
tb host has olsr ip{()
{
[[$(awk '/'$1'/{ print $3 }' $TB HOSTS FILE) != "NONE" 1]
}

sets the wireless interface name of host $1 to $2
set tb host wifi iface()
{

sed -i "/81/s/["\t]1*["\t]/$2/4" STB_HOSTS FILE
}

gets the wireless interface name of host $1
get tb host wifi iface()
{
echo “awk '/'$1'/{ print $4 }' $TB HOSTS FILE"
}

sets the nimbus node type of host $1 to $2

111

_set tb host node type()
{

if [[$(get tb host node types $1) == "NONE"]]; then
sed -i "/$1/s/["\t]1*["\t]/$2/5" STB_HOSTS FILE

else
sed -i "/$1/s/["\t1*["\t]/&,$2/5" $TB HOSTS FILE

fi

}

unsets the nimbus node type $2 of host $1
_unset tb host node type ()
{
if [[$(get tb host node types $1) == *,*]]; then
tmp host node types=$(echo ' get tb host node types $1° | \
sed -e "s/$2,\?//" -e "s/*,//" -e "s/,$//")
sed -1 "/$1/s/["\t]*["\t]/$tmp host node types/5" $TB HOSTS FILE
else
sed -i "/$1/s/["\t]1*["\t]/NONE/5" $TB HOSTS FILE
fi
}

gets the nimbus node types of host $1
_get tb host node types()
{
echo “awk '/'$1'/{ print $5 }' $TB HOSTS FILE"
}

checks if host $1 i1s the head node
tb host is head node ()
{
[[$(get tb host node types $1) == *HEAD*]]
}

sets host 31 as the head node
set tb host as head node()
{
_set tb host node type $1 "HEAD"
}

unsets host $1 as the head node
unset tb host as head node()

{
_unset tb host node type $1 "HEAD"

}

checks if head node exists
tb host head node exists /()

{
cut -f5 $STB HOSTS FILE | grep -Fgw "HEAD"

}
checks 1f host $1 is a client node

112

tb host is client node()
{
[[$(get tb host node types $1) == *CLIENT*]]

sets host $1 as a client node
set tb host as client node ()

{
_set tb host node type $1 "CLIENT"

unsets host $1 as a client node
unset tb host as client node()
{
_unset tb host node type $1 "CLIENT"

checks if at least one client node exists
tb host client node exists()
{
cut -f5 $TB HOSTS FILE | grep -Fgw "CLIENT"

checks if host $1 is a vmm node
tb host is vmm node ()
{
[[$(get tb host node types $1) == *VMM*]]

sets host $1 as a vmm node
set tb host as vmm node ()

{
_set tb host node type $1 "VMM"

unsets host $1 as a vmm node
unset tb host as vmm node ()

{
_unset tb host node type $1 "VMM"

checks if at least one vmm node exists
tb host vmm node exists()

{
cut -f5 $STB HOSTS FILE | grep -Fgw "VMM"

checks if host $1 is running the phantom vm
tb host is phantom vm node ()
{
[[$(get tb host node types $1) == *PHAN*]]

113

sets host $1 as running the phantom vm
set tb host as phantom vm node ()
{
_set tb host node type $1 "PHAN"
}

unsets host $1 as running the phantom vm
unset tb host as phantom vm node ()

{
_unset tb host node type $1 "PHAN"

checks if the phantom vm is running on a node
tb host phantom vm exists()
{
cut -f5 $STB HOSTS FILE | grep -Fgw "PHAN"
}

TESTBED HOSTS FUNTIONS

checks 1f nimbus vmm node ($S1) 1is connected to the nimbus head node
in the testbed
a head node must exist in the testbed, or the function will not work
properly
is_vmm connected to head()
{

local vmm node name=$ (get tb host name $51)

local head node name=$ (get testbed head node)

local head node ip=S(get tb host wired ip Shead node name)

ssh $TB HOSTS USERNAMEGShead node ip \
"[[\$(STB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services status |

awk '"{print \$3}') == \"running\" 1] || \
$TB_HOSTS NIMBUS HEAD DIR/bin/nimbusctl services start"
ssh $TB_HOSTS USERNAME@S$head node ip \
"$TB HOSTS_ NIMBUS HEAD DIR/bin/nimbus-nodes --list | \
grep -gw \"hostname.*[[:space:]]Svmm node name\""

MISC FUNCTIONS ##4#

prompts for y/n answer to $1
prompt accepted()
{
while true; do
read -p "S$1 " yn
case $Syn in

[Yy]l*) return 0; break;;
[Nn]*) return 1; break;:;
*) echo "Please answer yes or no (y/n)";;

114

esac
done

}

reboots host $1 and waits for it to start
reboot and wait ()
{
local host=$(get tb host wired ip $1)
local local ip=$(ip route get Shost | awk '{ print S$NF; exit }'")

echo "rebooting host..."
ssh $TB HOSTS USERNAME@Shost \
"sudo sed -i \"/"$/{s/.*/echo 'done' | nc $local ip
$TB_REBOOT WAIT PORT\n/;:a;n;ba}\" /etc/rc.local
sudo reboot"
nc -1 $TB_REBOOT WAIT PORT -g 5
ssh $TB HOSTS USERNAME@Shost \
"sudo sed -i \"/echo 'done' | nc $local ip
$TB_REBOOT_WAIT PORT/d\" /etc/rc.local"
}

reboots host $1 and waits for it to start only if a reboot is
required
reboot and wait if needed()

{
local host=$(get tb host wired ip $1)

if ssh $STB HOSTS USERNAME@Shost "[-f /var/run/reboot-required]";
then
reboot and wait S$host
fi
}

prints a status bar for a loop using $1 (iteration #) of $2 (total)
print status bar ()
{
p _complete=$(($1*100/$52))
if [[$p complete == 100]]; then
echo -ne "\r\033[0Kdone\n"
return 0
fi
stat bar=""
for i in $(seq 1 $(($p _complete/2))); do
stat bar="Sstat bar#"
done
for i in $(seq $((Sp complete/2+1)) 50); do
stat bar="S$stat bar."
done
echo -ne "\r[$ (printf %$-50s S$stat bar)][Sp complete%]"

115

prints an error for the following trap function with exit code $1,
line number $2,
absolute path of scripts $3, and script arguments $4
does not print error on exit code 1, as that is used to exit the
scripts on purpose
handle error ()
{
if [[$1 !'= 1 11; then
echo "ERROR: An error occurred in $3 on line $2 (exit code $1)"
echo "To debug, run 'bash -x $3 ${@:4}'"
fi
}
trap 'handle error $? SLINENO \
"$(cd "$(dirname "${BASH SOURCE[O]}")" && pwd)/$ (basename $0)"

S@' ERR

116

Appendix E: Test Bed Scripts and Software Modifications

This Appendix provides the scripts that run on the hosts that are a part of aNTRuM, as well as the
software files that were modified to work with aNTRuM, found at
https://github.com/hipersys/antrum/tree/master/management/dist.

E.1 Test Bed Management Helper Scripts

E.1.1 set-pwdless-sudo
This script is contained in dist/.

#!/bin/bash
set -e

if [[SEUID -ne 0]]; then
echo "$0 must be run as root"
exit 1

fi

if [-z "$1"]; then
echo "No user specified"
exit 1

fi

USER=51

Set passwordless sudo for USER

echo -e "$USER\tALL= (ALL)NOPASSWD:ALL" > /tmp/S$USER
chmod 0440 /tmp/S$SUSER

visudo -c¢ -f /tmp/SUSER

cp /tmp/SUSER /etc/sudoers.d/$USER

rm -f /tmp/SUSER

E.2 Test Bed Scripts

E.2.1 output-resource-status.py
This is the script that collects and outputs system resource information. It can be found in
dist/nimbus/vmm/.

#!/usr/bin/python
#

117

Created by: Joshua McKee
Outputs resource information to a file

These are the resource metrics provided:
For memory information:

- Total memory (in kB): memory.memtotal
- Free memory (in kB) : memory.memfree
For device information:
- Device has battery(s) (0]1): device.hasbattery

(The following will be provided only if the device has a battery)
- Device is plugged in (0]1): device.pluggedin
For battery information:
- For each battery:
- Battery status ('full']|'charging']|'discharging'):
attery [bat no].status
- Battery capacity (in %): battery [bat no].capacity

H= FH O o FH o o o o 3

import os
import re
import time
import glob

COLLECTION INTERVAL = 30 # seconds
DESTINATION FILE = "/tmp/resource info"

if os.listdir("/sys/class/power supply"):
dev_hasbattery = 1

else:
dev_hasbattery = 0

while True:
f output = open (DESTINATION FILE,"w")
f meminfo = open("/proc/meminfo"”, "r")
if dev_hasbattery:
path acinfo = glob.glob("/sys/class/power supply/A*/online")
with open(path acinfo[0], "r") as f acinfo:
if £ acinfo.readline():
dev_pluggedin
else:
dev_pluggedin = 0

(
1

f batteryinfo = dict([])
for bat in glob.glob("/sys/class/power supply/BAT[0-
9] */uevent") :
m = re.match("/sys/class/power supply/BAT([0-9]%*)/uevent",

bat)
if not m:
continue
bat no = m.group (1)

118

f batteryinfol[bat no] =
open ("/sys/class/power supply/BAT%$s/uevent" % bat no, "r")

memory information
f meminfo.seek (0)
for line in f meminfo:
m = re.match (" (\w+) :\s+ (\d+) \s+ (\w+)", line)
if m and (m.group(l).lower () == 'memtotal' or
m.group (1) .lower () == 'memfree'):
f output.write("memory.%s $%$s\n" % (m.group(l).lower (),
m.group (2)))

device information
f output.write("device.hasbattery %$s\n" % dev hasbattery)
if dev_hasbattery:

f output.write("device.pluggedin %s\n" % dev pluggedin)

battery information (if available)
if dev_hasbattery:
for bat no in f batteryinfo.keys():
f = f batteryinfo[bat no]
f.seek (0)
for line in f:
m = re.match("POWER SUPPLY (\w+)=(\w+)", line)
if m and (m.group(l).lower () == 'capacity' or
m.group (1) .lower () == 'status'):
f output.write("battery %$s.%s $%$s\n"
% (bat no, m.group(l).lower(),
m.group (2) .lower()))

f output.close()
time.sleep(COLLECTION_INTERVAL)

E.3 Modified Software Files

This section contains files that were modified to work with the aNTRuM test bed, as well as auxiliary

scripts called by them.

E.3.1 cloud-client.sh

This script is from the Nimbus cloud client software package. It was modified to call add-host-entry

and remove-host-entry. It can be foundindist/nimbus/client/.

#!/bin/bash

Modified by Joshua McKee

119

BASEDIR REL="'dirname $0°/.."
BASEDIR="cd $BASEDIR_REL; pwd‘
BASEDIR=S{BASEDIR/ /\\ }

EMBEDDED_GL="$BASEDIR/lib/globus"

USER PROPFILE="$BASEDIR/conf/cloud.properties"
HISTORY_DIRI"$BASEDIR/history"
EMBEDDED_CADIR="$BASEDIR/lib/CertS"

if [-n "$NIMBUS_X509_TRUSTED_CERTS" 1; then
XSO9_CERT_DIR="$NIMBUS_X509_TRUSTED_CERTS"
else
XSO9_CERT_DIR="$EMBEDDED_CADIR"
fi

export X509 CERT DIR

OLD_GLOBUS_LOCATION=""

if [-n "$GLOBUS_LOCATION"]; then
OLD_GLOBUS_LOCATION="S$GLOBUS LOCATION"

fi

GLOBUS_LOCATION=$EMBEDDED_GL
export GLOBUS LOCATION

if [-n "$OLD_GLOBUS_ LOCATION"]; then
if ["$OLD GLOBUS LOCATION" != "$GLOBUS LOCATION"]; then
echo " (Overriding old GLOBUS LOCATION 'S$OLD GLOBUS LOCATION')"
echo -e " (New GLOBUS LOCATION: '$GLOBUS_LOCATION')"
fi
fi

needsconf="y"
needshist="y"

for 1 in "$@"; do
if ["--conf" == "$i"]; then
needsconf="n"
fi
if ["--history-dir" == "$i"]; then
needshist="n"
fi
done

INCLUDED_COMMANDLINE_STRING=""

if ["X$needsconf" == "Xy"]; then
INCLUDED_COMMANDLINE_STRING="$INCLUDED_COMMANDLINE_STRING -—-conf

$USER_PROPFILE"

fi

if ["XS$needshist" == "Xy"]; then
INCLUDED_COMMANDLINE_STRING="$INCLUDED_COMMANDLINE_STRING --history-

dir $HISTORY_DIR"

fi

120

####4#4 JAVA CHECK ######4#44

if ["XS$JAVA HOME" = "X"] ; then
_RUNJAVA=java

else
_RUNJAVA="$JAVA_HOME"/bin/java

fi

#H##### Generated globus client sh script follows.

DELIM="#"
EXEC="org.globus.bootstrap.Bootstrap
org.globus.workspace.cloud.client.CloudClient"

DEF_OPTIONS=""
DEF_CMD_OPTIONSI"$INCLUDED_COMMANDLINE_STRING"
EGD DEVICE="/dev/urandom"

updateOptions () {

if ["X$2" != "X"] ; then
GLOBUS OPTIONS="$GLOBUS OPTIONS -D$1=$2"
£i

HHEHFHHE MAIN BODY ######4444

if [! -d $SGLOBUS LOCATION] ; then

echo "Error: GLOBUS LOCATION invalid or not set: S$GLOBUS LOCATION"
1>&2

exit 1
fi

LOCALCLASSPATH=$GLOBUS LOCATION/lib/bootstrap.jar:$GLOBUS LOCATION/1lib
/cog-url.jar:$GLOBUS LOCATION/lib/axis-url.jar

SETUP OTHER VARIABLES ###4#

updateOptions "GLOBUS LOCATION" "SGLOBUS LOCATION"
updateOptions "java.endorsed.dirs" "$GLOBUS LOCATION/endorsed"
updateOptions "X509 USER PROXY" "$X509 USER PROXY"
updateOptions "X509 CERT DIR" "$X509 CERT DIR"

updateOptions "GLOBUS HOSTNAME" "SGLOBUS HOSTNAME"
updateOptions "GLOBUS TCP PORT RANGE" "SGLOBUS TCP PORT RANGE"
updateOptions "GLOBUS TCP SOURCE PORT RANGE"

"$GLOBUS_ TCP_SOURCE_ PORT RANGE"

updateOptions "GLOBUS UDP SOURCE PORT RANGE"
"$GLOBUS_UDP_SOURCE PORT RANGE"

if [-c "SEGD DEVICE" -a -r "SEGD DEVICE"]; then
updateOptions "java.security.egd" "file://$EGD DEVICE"

121

fi

if ["X$IBM_JAVA_OPTIONS" = "X"] ; then
IBM JAVA OPTIONS=-Xquickstart
export IBM JAVA OPTIONS

fi

if [$# -gt 0]; then
if ["X${DEF _CMD OPTIONS}" != "X"]; then
set - ${GLOBUS_OPTIONS} -classpath ${LOCALCLASSPATH} S${EXEC}
${DEF_CMD_OPTIONS} "$@"
else
set - ${GLOBUS_OPTIONS} -classpath ${LOCALCLASSPATH} S${EXEC} "s@"
fi
else
if ["X${DEF _CMD OPTIONS}" != "X"]; then
set - ${GLOBUS_OPTIONS} -classpath ${LOCALCLASSPATH} S${EXEC}
${DEF_CMD_ OPTIONS}
else
set - ${GLOBUS_OPTIONS} -classpath ${LOCALCLASSPATH} S${EXEC}
fi
fi

OLD IFS=${IFS}

IFS=S${DELIM}

for 1 in S{DEF OPTIONS} ; do
IFS=${OLD IFS}

DEFINE=echo $i|cut -d'=' -f1°

if ["S$DEFINE" != "3i"]; then
VALUE=""echo $i|cut -d'=' -f2-""
set - S$DEFINE="SVALUE" "s$@"

else
set - SDEFINE "s$@"

fi

IFS=S${DELIM}

done

IFS=${0LD_IFS}
EXECUTE ########4444

FHEEHHHHE A

BEGIN MODIFICATION

FHEEHHHHE A

#

DESCRIPTION:

Runs the appropriate script for adding/removing an entry for the new
VM to

the hosts file

the location of the host list addition/removal scripts
SCRIPTS DIR="/usr/local/bin"

122

if $(echo "$Q@" | grep -gw "\-\-run") && ! $(echo "S$@" | grep -gw "\-\-
cluster"); then

tmp vm info="mktemp /tmp/tbmcc.XXXXXXX"

$SCRIPTS DIR/add-host-entry $tmp vm info &

exec $ RUNJAVA "3$@" | tee $Stmp vm info

exit O
elif $(echo "$@" | grep -gw "\-\-terminate") || $(echo "$@" | grep -gw
"\-\-save"); then

vm_handle=$ (echo "$@" | tr ' ' '\n' | sed -n '/--handle/{n;p}")

$SCRIPTS DIR/remove-host-entry $vm handle
fi

exec $ RUNJAVA "3@"
FHAFH A AR AR RATARAS

END MODIFICATION
FHAHHHH RS

E.3.2 add-host-entry
This script is called by cloud-client.sh. It can befoundindist/nimbus/client/

#!/bin/bash

Created by: Joshua McKee
#
Adds an entry to the hosts file for a VM created by the cloud client
by
reading a file generated by the cloud client script (cloud-
client.sh). Once
the file exists, the entry is added.
Meant to be used with cloud-client.sh
Meant to be paired with remove-host-entry
Arguments:
$1 - The file generated by the cloud client

=

+H H H H H S

NOTE: Passwordless sudo required for script to run properly!
sourcefile=$1

wait until file with vm info exists
while [! -f S$sourcefile]
do
sleep 1
done
sleep 10 # wait for file to be written to

123

vm_handle=$ (cat Ssourcefile | grep "Creating workspace" | awk '{print

$31" 1A

sed -e 's/""//'" —e 's/"...S$//")
vm_ip=S (cat $sourcefile | grep "IP address" | awk '{print $3}'")
vm_hostname=$(cat Ssourcefile | grep "Hostname" | awk '{print $2}'")

sudo sed -1 "/7Svm_ip\t.*$/d" /etc/hosts
sudo sed -1 "/testbed vms/a $vm ip\tS$vm hostname\t# Svm handle"
/etc/hosts

clean up
rm —-f S$sourcefile

exit O

E.3.3 remove-host-entry
This script is called by cloud-client.sh. It can befoundindist/nimbus/client/

#!/bin/bash

Created by: Joshua McKee
#
Removes an entry from the hosts file for a VM terminated by the
cloud client.
Meant to be used with cloud-client.sh
Meant to be paired with remove-host-entry
Arguments:
$1 - The vm handle

H H H H HE

NOTE: Passwordless sudo required for script to run properly!
vm_handle=$1
sudo sed -1 "/7.*\t# S$vm handle.*$/d" /etc/hosts

exit O

E.3.4 workspace-control.sh
This script is from the Nimbus control agent software package. This script was modified to call setup-
vim-network and cleanup-vm-network. It can be found indist/nimbus/vmm/.

124

#!/bin/bash
Modified by: Joshua McKee
PYTHON EXE="/usr/bin/env python"

NIMBUS CONTROL DIR REL="‘dirname $0°/.."
NIMBUS CONTROL DIR="cd $NIMBUS CONTROL DIR REL; pwd’

NIMBUS CONTROL MAINCONF="$NIMBUS CONTROL DIR/etc/workspace-
control/main.conf"

if [V -f "$NIMBUS_CONTROL_MAINCONF" 1; then

echo mwn

echo "Cannot find main conf file, exiting. (expected at
'$NIMBUS_CONTROL_MAINCONF')"

exit 1
fi

NIMBUS_CONTROL_PYLIB="$NIMBUS_CONTROL_DIR/lib/python"
NIMBUS_CONTROL_PYSRC="$NIMBUS_CONTROL_DIR/Src/python"
PYTHONPATH="SNIMBUS CONTROL PYSRC:$NIMBUS CONTROL PYLIB:$SPYTHONPATH"
export PYTHONPATH

HHAFHEH AR EH AR A H AR E AR HH

BEGIN MODIFICATION

FHAFHEH AR AH AR EH SRS H SRS SH

#

DESCRIPTION:

Aquires a few values from the available paramters, and runs the vm
network

setup/cleanup scripts as appropriate.

the location of the vm network setup/cleanup scripts
SCRIPTS DIR="/usr/local/bin"

action="echo $Q@ | tr ' ' '\n' | sed -n '/--action/{n;p}'"
if [-z "Saction"]; then

action="echo $Q@ | awk '{print S$1}' | sed 's/--//'"
fi
vm_name="echo $@ | tr ' ' '\n' | sed -n '/--name/{n;p}"'"
if [[$Saction == create]]; then

vm_ips="echo $€ | tr ' ' '\n' | sed -n '/--network/{n;p}' | tr ';'
'"\n' | sed -n '6~16p' | egrep
"[[:digit:11{1,3}\.[[:digit:]11{1,3}\.[[:digit:]]1{1,3}\.[[:digit:]11{1,3
poe

i=0

for vm ip in $vm ips; do

125

$SCRIPTS DIR/setup-vm-network $vm name-3$i $vm ip
let i++
done
fi

FHAHHHH RS
PAUSE MODIFICATION
FHAHHHH RS

SPYTHON EXE S$NIMBUS CONTROL PYSRC/workspacecontrol/main/wc _cmdline.py
-C $NIMBUS_CONTROL_MAINCONF "s@n

FHAFHFHAHAHAH A A S EEE44
CONT' MODIFICATION
I E SR R R E R EEEEEE R

if [[$Saction == remove]]; then
nics="/sbin/ifconfig -a | grep -w "$vm name" | awk '{print S$1}'’
for nic in $nics; do
$SCRIPTS DIR/cleanup-vm-network S$nic
done
fi

FHAHHH RS S
END MODIFICATION
FHAHHH RS S

E.3.5 setup-vm-network
This script is called by workspace-control. sh. It can be foundindist/nimbus/vmm/.

#!/bin/bash

Created by: Joshua McKee

#

Sets up a TAP interface for a VM to use to bridge a wireless
interface. The

interface is created and assigned an IP address in the same network
as the

VM's Ip address. IP forwarding is enabled, and proxy ARP is enabled
for the

TAP and wifi interfaces. A route for the VM's IP address is created
for the

TAP device. Needs to run

(1) before the VM is created and

(2) before Nimbus restarts the local dhcp server.

Meant to be paired with cleanup-vm-network.

126

Arguments:
$1 - The name of the TAP device
$2 - The IP address of the VM

H H H H HE

NOTE: Passwordless sudo required for script to run properly!

nic=s$1
vm_ip=S52

sudo tunctl -u $EUID -t $nic

sudo sysctl -w net.ipv4.ip forward=l

sudo sysctl -w net.ipvé4.conf.Snic.proxy arp=1

sudo sysctl -w net.ipv4.conf.wlan0O.proxy arp=1

#Use an IP address outside the range of available VM IPs
nic ip="echo Svm ip | awk -F '.'

"{printf ("%d.%d.%d.%d",$1,52+1,83,54)}"'"

sudo ip addr add Snic ip dev $nic
sudo ip link set $nic up

sudo route add -host $vm ip dev Snic

exit O

E.3.6 cleanup-vm-network
This script is called by workspace-control. sh. It can be foundindist/nimbus/vmm/.

#!/bin/bash

Created by: Joshua McKee

#

Removes the TAP interface used by a VM for bridging a wireless
interface.

Needs to run after the VM is destroyed.

Meant to be paired with setup-vm-network.

Arguments:

S$1 - The name of the TAP device

#

#

NOTE: Passwordless sudo required for script to run properly!
nic=$1

sudo ifconfig $nic down
sudo tunctl -u $EUID -d $nic

127

Note that route and proxy ARP for interface are automatically
removed.

Note that IP forwarding and proxy ARP are not disabled, since
another VM may

be running.

exit O

E.4 Other Files

The test bed management scripts propagate many modified software configuration files and additional
scripts to allow aNTRuM to run properly. Because these are not original work and most come from the
various software packages used in aNTRuM, and for the sake of brevity, only pointers to their locations
are included here.

E.4.1 Nimbus Service Node Files
The directory dist/nimbus/head/ contains modified configuration files from the Nimbus software

that runs on the Nimbus service (head) node, specifically:

* autoconfig-decisions.sh.template, atemplate for a Nimbus configuration file
sourced by autoconfig-adjustments. sh, from
SNIMBUS INSTALL DIR/services/share/nimbus-autoconfig/.
* Inthe conf subdirectory, Nimbus configuration files from
SNIMBUS INSTALL DIR/services/etc/nimbus/workspace-service/, including:
0 accounting.conf
0 admin.conf
0 async.conf
0 global-policies.conf
0 logging.conf
0 metadata.conf.template (serves asatemplate for the actual metadata.conf
file)
network.conf
pilot-authz.conf

pilot.conf

©c ©o © ©

repository.conf
0o vmm.conf
* Inthe elastic subdirectory, Nimbus configuration files from
SNIMBUS INSTALL DIR/services/etc/nimbus/elastic/, including:
0 elastic.conf

0o other/other-elastic.conf

128

In the var subdirectory, a Nimbus configuration file from $SNIMBUS INSTALL DIR/var/,
namely:

0 cloud.properties.in

E.4.2 Nimbus VMM Node Files
The directory dist/nimbus/vmm/ contains modified configuration files and scripts from and for the

software that runs on the Nimbus VMM nodes, specifically:

In the conf subdirectory, Nimbus VMM configuration files from

SNIMBUS INSTALL DIR/services/etc/nimbus/workspace-service/, including:
0 dirs.conf

images.conf

internal.conf

kernels.conft

libvirt.conf

libvirt template.xml

logging.conf

main.conf

mount.conf

networks.conf

propagation.conf

©c © © 0 0 0 0o 0O ©0 o o

sudo.conf

0 xen.conf
dhcp-config.sh, a Nimbus VMM script for modifying DHCP for Nimbus, from
SNIMBUS INSTALL DIR/libexec/workspace-control/.
In the dhcp subdirectory, the DHCPd configuration file from /etc/dhcp/, namely:

0 dhcpd.conf
Inthe 1ibvirt subdirectory, libvirt and gemu configuration files from /etc/libvirt/,
including:

0o libvirtd.conf

0 gemu.conf
ors-startup-script, ascriptfor /etc/init.d/ to allow the system resource collector
script in Section E.2.1 to run on startup.

E.4.3 OLSRd Software Files
The directory dist/olsrd/ contains modified configuration files and scripts from and for the OLSRd

software, specifically:

olsrd-adhoc-setup, a script for setting up an ad hoc connection on a wireless card, from
$OLSRD DIR/files/.
olsrd-startup-script.template, atemplate for a script for /etc/init.d/ toallow
OLSRd to run on startup.

129

* tb olsrd.conf, the configuration file for OLSRd, to be placed in /etc/olsrd/.

E.4.4 Nimbus Phantom Files
The directory dist/phantom/ contains modified files and scripts from and for setting up a VM

running Phantom, specifically:

* nimbus-register-keypair, ascript for registering a key with the Nimbus cloud, from
https://gist.github.com/oldpatricka/3752775.
* phantom-creds.template, template for a file containing values for environment variables

that need to be set to set up Phantom using cloudinit.d.

* phantom-ubuntu.gz,a VM image ready to be used to set up Phantom. Essentially, it is a
Nimbus cloud and KVM compatible 64-bit Ubuntu Server 13.10 VM image with git and chef
installed on it.

* Inthe vm subdirectory, modified scripts and a configuration file for use in finalizing the Phantom
VM setup, from /home/epu/phantom/sanbox/FG/ on the Phantom VM, including:

o add sites.sh

o add users.py.template (servesasatemplate for the actual add users.py
script)

o antrum.yml.template (serves as a template for the actual antrum. ym1 file)

o test add user.py.template (servesasatemplate for the actual
test add user.py script)

130

Appendix F: Test Bed Scripts Directory Structure

This appendix describes the directory structure of the test bed management scripts found at
https://github.com/hipersys/antrum. It also lists the directories of ant rum in a tree like structure.

F.1 Directory Structure Description
In antrum, there is a directory called management, which contains the following directories:

* Dbin, adirectory containing the primary scripts for setting up the test bed.
* dist, adirectory containing the files distributed to the devices in the test bed by the
management scripts. The directories in dist are:
o nimbus, a directory containing files relating to the Nimbus software. The directories in
nimbus are:
= client, adirectory containing the files relating to the Nimbus client software.
= head, adirectory containing the files relating to the Nimbus software that runs
on the Nimbus service (head) node. The directories in head are:
* conf, adirectory containing the main configuration files for the
Nimbus service node software.
* elastic, adirectory containing the configuration files related to
Nimbus’ EC2 interface. (elastic contains a directory called other,
which also contains a configuration file for the EC2 interface).
* network, a directory containing the VM network pool files for the
Nimbus service node software.
* var, adirectory containing the configuration file used when creating a
new Nimbus cloud user.
= vmm, a directory containing the files relating to the Nimbus VMM software. The
directories in v are:
* conf, adirectory containing the main configuration files for the
Nimbus VMM software.
* dhcp, a directory containing the configuration file for the DHCP server
software that runs on Nimbus VMM nodes.
¢ libvirt, adirectory containing the configuration files for the libvirt
and gemu software that runs on Nimbus VMM nodes.
o olsrd, adirectory containing files relating to the OLSRd software.
o phantom, a directory containing files relating to the Phantom software. The directories
in phantom are:
= vm, a directory containing files used in the Phantom VM.
* etc, adirectory containing the configuration file for the management scripts.
* 1ib, adirectory containing functions used by the management scripts.
* sbin, adirectory containing the core scripts called by the primary scripts in bin.

131

* setup, a directory containing the script for setting up the host that will run the management
scripts.
* var, adirectory containting the list of hosts in the test bed.

F.2 Directory Tree

antrum
— management

— bin

|-— dist

F— nimbus

|-— client
|-— head
| |-— conf
|-— elastic

|
| | L— other
|
|

|-— network

rrrr—

<
[V}
-

132

