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Abstract—After Zadeh and Bellman explained how to optimize
a function under fuzzy constraints, there have been many
successful applications of this optimization. However, in many
practical situations, it turns out to be more efficient to precisiate
the objective function before performing optimization. In this
paper, we provide a possible explanation for this empirical fact.
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I. FORMULATION OF THE PROBLEM

Objectives are usually imprecise (fuzzy). In many real-life
situations, our objectives are imprecise (fuzzy). A company
may want to have a good growth rate, an excellent level of
customer satisfaction, etc. A university program may seek
excellent quality of graduates, steady growth of the program,
more good students and faculty in the program, etc. Many
such statements use imprecise (fuzzy) words like “good”,
“excellent”, etc.

At first glance, it makes sense to work with imprecise ob-
jectives. Situations when experts use imprecise (fuzzy) words
from natural language are ubiquitous in many application
areas. To handle such situations, L. Zadeh came up with fuzzy
set and fuzzy logic techniques [10]. These techniques has been
successfully applied to many application areas, in particular, to
many practical situations in which both the system itself and
the corresponding objective function are fuzzy; see, e.g., [1],
[2], [5], [8].

From this viewpoint, to solve a real-life problem with fuzzy
objectives, it seems reasonable to use these fuzzy techniques.

Somewhat surprisingly, in many practical situations, it is
better to first precisiate goals. While a natural idea is to
deal directly with the fuzzy objectives, business experience
shows that in many cases, it is beneficial to instead “precisiate”
the goals – i.e., make them precise – and then solve the
optimization problem with the resulting crisp constraints; see,
e.g., [6], [9].

Comment. This empirical fact relates to situations when we
can precisiate, e.g., in business situations, when we can replace
crude expert estimates with more precise computation results.

In some practical situations, however, precisiation is not
possible: e.g., when the objective function describes such
hard-to-crisply-gauge quantities as customer satisfaction (in
particular, driving comfort).

In such situation, it is necessary to perform optimization
under a fuzzy objective function.

What we do in this paper. In this paper, we provide a possible
explanation for the above empirical fact – namely, for the fact
that it is often beneficial to precisiate goals.

II. ANALYSIS OF THE PROBLEM AND THE MAIN RESULT

Case of interval uncertainty. We will explain the advantage
of precisiation on the example of the simplest possible types
of fuzzy objective functions – namely, objective functions with
interval uncertainty, when for each x:

• we know the interval [f(x), f(x)] of possible values
of the objective function f(x), but

• we have no information about which values from
this interval are more probable and which are less
probable; see, e.g., [3], [7].

Each interval [f(x), f(x)] can be represented in the form

[f̃(x)− ε, f̃(x)+ ε], where x̃
def
=

f(x) + f(x)

2
is the midpoint

of this interval and ε
def
=

f(x)− f(x)

2
is the interval’s half-

width.

In these terms, knowing the interval [f̃(x) − ε, f̃(x) + ε]
means that for every alternative x, the value f(x) of the
actual (unknown) objective function belongs to this interval,
i.e., equivalently, this value is ε-close to the given approximate
value f̃(x):

|f̃(x)− f(x)| ≤ ε.

A general case of fuzzy uncertainty can be reduced to the
interval case. Interval uncertainty is the simplest possible –
but, on the other hand, it is general enough. Indeed, every fuzzy
number x can be described as a nested family of intervals
– its α-cuts x(α)

def
= {x : µ(x) ≥ α}. Under reasonable

assumptions, processing fuzzy data, i.e., computing the value
y = f(x1, . . . ,xn), is equivalent to computing, for each α, the
corresponding α-cut y(α) as the range of the given function
f(x1, . . . , xn) over the corresponding α-cuts:

y(α) = f(x1(α), . . . ,xn(α)) =

{f(x1, . . . , xn) : x1 ∈ x1(α), . . . , x1 ∈ x1(α)};



see, e.g., [5], [8].

Empirical fact: case of interval uncertainty. We consider
the situation in which, instead of the actual objective function
f(x), we only know an approximate objective function f̃(x)
for which |f̃(x)− f(x)| ≤ ε for all x.

We have two options:

• the first option is to select an alternative x based on
the approximate objective function f̃(x);

• the second option is to elicit the actual objective
function f(x), and then select the alternative x which
is the best according to the actual objective function.

Of course, if the second option is possible, then its return
should be somewhat better – but eliciting the actual objective
function often requires a lot of efforts. So, a natural question
is whether this time-consuming precisiation is worth the effort.

Intuitively, we expect that since we know the objective
function f(x) with accuracy ε, the result of using the first
optimization option is ε-close to the actual maximum. So, if
we have a reasonably accurate approximation f̃(x), with a
small ε, the first option should lead to a very goof solution.
In other words, it seems that precisiation should not be worth
the effort.

In practice, however, the result of applying the second
option are much better than expected, the advantage is much
higher than the intuitive estimate ε. To understand why this
happens, let us analyze the corresponding optimization prob-
lem.

Optimization: reminder. Ideally, we want to find a value x
at which the actual objective function f(x) attains its largest
possible value, i.e., for which f(x) ≥ f(y) for all y ̸= x.

If there are several alternatives x which have the same value
of the objective function f(x), we would like to obtain all
such alternatives – so that we would be able to select, among
them, the one that maximizes some other desired characteristic.
For example, if we are selecting trajectories of a manned
spaceflight to Mars that provide the maximum possible safety,
and there are several such trajectories, then we use this non-
uniqueness to select a trajectory which requires the smallest
possible amount of fuel, or, alternatively, that minimizes the
flight time.

From this viewpoint, we would like not to miss all alterna-
tives x for which f(x) ≥ f(y) for all y.

How do we describe all desired optimal alternatives based
on the approximate objective function. In real life, we do not
know the exact values of the objective function, we only know
the approximate objective function f̃(x) which is known to be
ε-close to f(x). How can we make sure that we do not miss
any f -optimal alternatives if all we know is this approximate
objective function?

The answer to this question is given by the following
proposition.

Proposition 1. For each function f̃(x) and for each alternative
x0, the following two conditions are equivalent to each other:

• the alternative x0 is optimal relative to some function
f(x) which is ε-close to f̃(x);

• for every y ̸= x, we have

f̃(x0) ≥ f̃(y)− 2ε.

Comment. For reader’s convenience, all the proofs are placed
in the special Proofs section.

Based on the Proposition, the only way not to miss any f -
optimal alternative is to consider all possible alternatives for
which f̃(x0) ≥ f̃(y)− 2ε for all y ̸= x0.

How good are the selections based on the approximate
objective function? As we have argued in the previous text,
if all we know is an ε-approximate objective function, then we
should select an alternative x0 for which

f̃(x0) ≥ f̃(y)− 2ε (1)

for all y ̸= x0.

How good is this selection? How close is the value f(x0)
corresponding to the actual (initially unknown) objective func-
tion f(x) the actual maximum

Mf
def
= max

x
f(x). (2)

The answer to this question is given by the following result.

Proposition 2.

• Let f(x) be a function, let f̃(x) be ε-close to f(x),
and let x0 be an alternative for which f̃(x0) ≥ f̃(y)−
2ε for all y ̸= x0. Then,

f(x0) ≥ Mf − 4ε.

• Let f̃(x) be a function, and let x0 be an alternative
for which:

• f̃(x0) ≥ f̃(y)− 2ε for all y ̸= x0, and
• f̃(x0) = f̃(y0)− 2ε for some y0 ̸= x0.

Then there exists a function f(x) which is ε-close to
f̃(x) and for which

f(x0) = Mf − 4ε.

This result explains the empirical fact. This result shows
that if we start with an ε-accurate objective function f̃(x), we
may end up with an alternative which is 4ε-smaller than the
desired maximum.

This possible four-times amplification of uncertainty ex-
plains why it is often beneficial to precisiate the objective
function: for example, even if we have a reasonably accurate
description of the objective function, with the accuracy of 20%,
the resulting solution may be 80% different from the optimal
one – i.e., really bad.



III. WHAT IF WE CONSIDER AVERAGE-CASE ACCURACY
INSTEAD OF THE WORST-CASE ONE? WHAT IF WE

CONSIDER NAIVE APPROACH INSTEAD OF A GUARANTEED
ONE?

What if we consider average-case accuracy: formulation of
the problem. The quality of a selection x0 can be gauged by
the difference d

def
= Mf−f(x0) between the absolute optimum

and what we achieve by selecting the alternative x0.

This difference is always non-negative. In the previous
section, we showed that this difference cannot exceed 4ε, and
that in the worst-case situation, it can be equal to 4ε.

It is also possible to have d = 0: e.g., when f̃(x) is actually
equal to the actual objective function, and we happened to
select an f -optimal alternative as x0. This is the best-case
situation.

In real life, we rarely encounter the best-case and the worst-
case situations, so what is the average value of the difference d?

Estimating the average-case accuracy. All we know about
the actual difference d is that it is located somewhere on the
interval [0, 4ε]. We have no information about the probability
of different possible values within this interval. In such a
situation, when we have several probability distributions con-
sistent with the available information, it is reasonable to select
the most uncertain one, i.e., the one for which the entropy
S

def
= −

∫
ρ(x) · ln(ρ(x)) dx attains the largest possible value;

see, e.g., [4].

It is known that among all possible probability distributions
on an interval, the uniform distribution has the largest entropy.
For this distribution, the mean value is the midpoint of the
interval. For our interval [0, 4ε], the midpoint is 2ε. Thus, we
arrive at the following conclusion.

Average-case accuracy: result. The average value of the
difference d

def
= Mf − f(x0) between:

• the absolute optimum Mf and

• the value f(x0) that we achieve by selecting the
alternative x0

is equal to 2ε.

Discussion. So, even if we consider average-case inaccuracy,
the inaccuracy caused by the use of imprecise objective func-
tion doubles. This doubling may not be as bad as multiplying
by a factor of four, but it can still lead from a reasonable accu-
racy of the objective function to an unreasonable inaccuracy of
the resulting decision. For example, for 20% accuracy in the
objective function, we get a 40% accuracy in the resulting
alternative – i.e., instead of the optimal value, we get, on
average, only 60% of this optimal value: more than 50% less
than desired.

Thus, even when we consider average difference, there is
still a motivation to preciciate the objective function before
performing optimization.

What is we use a naive approach. Instead of trying not to
miss all f -optimal alternatives, we can instead naively find
an alternative which is optimal relative to the approximate
objective function f̃(x), i.e., an alternative x0 for which
f̃(x0) ≥ f̃(y) for all y ̸= x0. What is the quality of such
a naive selection?

The answer to this equation is provided by the following
result.

Proposition 3.

• If the functions f(x) and f̃(x) are ε-close, and x0 is
a f̃ -optimal alternative, then

f(x0) ≥ Mf − 2ε.

• For every non-constant continuous function f̃(x) on a
connected compact set, there exists an ε-close function
f(x) for which for all f̃ -optimal alternatives x0, we
have

f(x0) = Mf − 2ε.

Discussion. In other words, if we use the naive approach, then:

• on the one hand, we may miss all actual optima, but

• on the other hand, the worst-case difference Mf −
f(x0) decreases to a half of what it was before: e.g.,
to only 2ε.

Similarly to what we mentioned above, this is still too high.

If, similar to the above, we use the maximum entropy
approach to estimate the average difference, we conclude that
for the naive approach, the average difference is equal to
ε. This is tolerance – and in line with the original intuitive
expectation – but this is only on average. In half of the cases,
we get the difference larger than ε – and this is not so good.
In other words, the need for precisiation remains even if we
consider average case of the naive approach.

IV. PROOFS

Proof of Proposition 1.

1◦. Let us first prove that if the alternative x0 is f -optimal
relative to some function f(x), then f̃(x0) ≥ f̃(y)−2ε for all
y ̸= x0.

Indeed, f -optimality means that

f(x0) ≥ f(y) (3)

for all y ̸= x0. Now, from the fact that the function f(x) is
ε-close to f̃(x), we can conclude that

f̃(x0) ≥ f(x0)− ε, (4)

which, together with (3), implies that

f̃(x0) ≥ f(y)− ε (5)

for all y ̸= x0. Similarly, from the fact that the function f(x)
is ε-close to f̃(x), we conclude that

f(y) ≥ f̃(y)− ε. (6)



With (5), this implies that

f̃(x0) ≥ f(y)− ε ≥ (f̃(y)− ε)− ε = f̃(y)− 2ε. (7)

This is exactly what we want to prove.

2◦. Vice versa, let us assume that for some x0, we have

f̃(x0) ≥ f̃(y)− 2ε (8)

for all y ̸= x0. Let us then construct a function f(x) which is
ε-close to f̃(x) and for which x0 is f -optimal.

This function f(x) can be constructed as follows:

• for x = x0, we take

f(x0)
def
= f̃(x0) + ε; (9)

• for all other alternatives y ̸= x0, we take

f(y)
def
= f̃(y)− ε. (10)

From this construction, it is clear that the newly constructed
function f(x) is ε-close to the original function f̃(x). Let us
prove that the given alternative x0 is indeed f -optimal, i.e.,
that

f(x0) ≥ f(y) (11)

for all y ̸= x0.

Indeed, from (8) and (9), we conclude that

f(x0) = f̃(x0) + ε ≥ (ỹ − 2ε) + ε = ỹ − ε, (12)

i.e., that
f(x0) ≥ f̃(y)− ε (13)

for all y ̸= x0. But for these y, we have f(y) = f̃(y)− ε, so
(13) becomes the desired inequality (11).

The proposition is proven.

Proof of Proposition 2.

1◦. Let us first prove that if the function f̃(x) is ε-close to the
function f(x), and

f̃(x0) ≥ f̃(y)− 2ε (14)

for all y ̸= x0, then

f(x0) ≥ Mf − 4ε. (15)

Indeed, from the fact that the functions f̃(x) and f(x) are
ε-close, we can conclude that

f(x0) ≥ f̃(x0)− ε, (16)

and thus, taking (14) into account, that

f(x0) ≥ f̃(x0)− ε ≥ (f̃(y)− 2ε)− ε = f̃(y)− 3ε, (17)

i.e.,
f(x0) ≥ f̃(y)− 3ε (18)

for all y ̸= x0.

Similarly, from the ε-closeness of f(x) and f̃(x), we
conclude that

f̃(y) ≥ f(y)− ε (19)

for all y ̸= x0. In view of (18), this implies that

f(x0) ≥ f̃(y)− 3ε ≥ (f(y)− ε)− 3ε = f(y)− 4ε, (20)

i.e.,
f(x0) ≥ f(y)− 4ε (21)

for all y ̸= x0. This same inequality is clearly true for y =
x0 as well. Thus, (21) holds for all y, and we can therefore
conclude that f(x0) is larger than or equal to the largest of
the right-hand sides of the inequality (21), i.e., that

f(x0) ≥ Mf − 4ε. (22)

This is exactly what we wanted to prove.

2◦. Let us now assume that for some function f̃(x) and for
some alternative x0, we have

f̃(x0) ≥ f̃(y)− 2ε (23)

for all y ̸= x0 and

f̃(x0) = f̃(y0)− 2ε (24)

for some y0 ̸= x0. Let us prove that there exists a function
f(x) which is ε-close to f̃(x) and for which

f(x0) = Mf − 4ε. (25)

Indeed, let us define the function f(x) as follows:

• for x = x0, we take

f(x0)
def
= f̃(x0)− ε; (26)

• for all other alternatives y ̸= x0, in particular, for
y = y0, we take

f(y)
def
= f̃(y) + ε. (27)

It is easy to see that thus constructed function f(x) is ε-close
to the given function f̃(x).

We will prove the desired equality (25) by proving two
separate inequalities:

f(x0) ≥ Mf − 4ε (28)

and
f(x0) ≤ Mf − 4ε. (29)

2.1◦. Let us first prove the inequality (28). By combining the
formulas (23) and (26), we conclude that

f(x0) = f̃(x0)− ε ≥ (f̃(y)− 2ε)− ε = f̃(y)− 3ε, (30)

i.e., that
f(x0) ≥ f̃(y)− 3ε (31)

for all y ̸= x0.



From the formula (27), we now conclude that f̃(y) =
f(y)− ε, and thus, (31) turns into

f(x0) ≥ f̃(y)− 3ε = (f(y)− ε)− 3ε = f(y)− 4ε, (32)

i.e., that
f(x0) ≥ f(y)− 4ε (33)

for all y ̸= x0. The inequality (33) is clearly also true for
y = x0, so we conclude that f(x0) ≥ Mf − 4ε. This is the
desired inequality (28).

2.2◦. Let us now prove the inequality (29). By combining the
formulas (24) and (26), we conclude that

f(x0) = f̃(x0)− ε = (f̃(y0)− 2ε)− ε = f̃(y0)− 3ε, (34)

i.e., that
f(x0) = f̃(y0)− 3ε. (35)

From the formula (27) for y = y0, we conclude that f̃(y0) =
f(y0)− ε, and thus, (35) turns into

f(x0) = f̃(y0)− 3ε = (f(y0)− ε)− 3ε = f(y0)− 4ε. (36)

Here,
f(y0) ≥ max

x
f(x) = Mf , (37)

thus, (36) implies that f(x0) ≥ Mf − 4ε. This is the desired
inequality (29).

2.3◦. The inequalities (28) and (29) imply the desired equal-
ity!(25).

The proposition is proven.

Proof of Proposition 3.

1◦. Let us first prove that if the functions f(x) and f̃(x) are
ε-close, and the alternative x0 is f̃ -optimal, then

f(x0) ≥ Mf − 2ε. (38)

Indeed, f̃ -optimality of x0 means that

f̃(x0) ≥ f̃(y) (39)

for all y. From the fact that the functions f(x) and f̃(x) are
ε-close, we conclude that

f(x0) ≥ f̃(x0)− ε. (40)

Combining this inequality with (39), we conclude that

f(x0) ≥ f(ỹ)− ε (41)

for all y.

Similarly, from the fact that the functions f(x) and f̃(x)
are ε-close, we can conclude that

f̃(y) ≥ f(y)− ε. (42)

Combining this inequality with (41), we conclude that

f(x0) ≥ f(ỹ)− ε ≥ (f(y)− ε)− ε = f(y)− 2ε, (43)

i.e., that
f(x0) ≥ f(y)− 2ε (44)

for all y. Since this inequality holds for all y, we conclude
that f(x0) ≥ Mf − 2ε. This is the desired formula (38).

2◦. Let us now assume that f̃(x) is a non-constant function
continuous on a connected compact set. Let us construct an
ε-close function f(x) for which, for all f̃ -optimal values x0,
we have

f(x0) = Mf − 2ε. (45)

This function will be constructed as follows:

• for each f̃ -optimal alternative x0, we take

f(x0) = f̃(x0)− ε; (46)

• for all other alternatives y, we take

f(y) = f̃(y) + ε. (47)

Since the function f̃(x) is continuous on a compact set,
there exists at least one point xM on which its maximum is
attained, i.e., for which f̃(xM ) = M

f̃

def
= max

x
f̃(x).

Since the function f̃(x) is not constant, there exists values
which are smaller than its maximum M

f̃
. Since the function

f̃(x) is continuous, and its domain is connected, for every
δ > 0, there exists an alternative xδ for which

M
f̃
− δ < f̃(xδ) < M

f̃
. (48)

Since f̃(xδ) ̸= M
f̃

, by our construction of the function
f(x) (formula (47)), we get

f(xδ) = f̃(xδ) + ε. (49)

By combining (48) and (49), we conclude that

f(xδ) ≥ M
f̃
− δ + ε. (50)

Thus, for the maximum Mf ≥ f(xδ) of the new function f(x),
we get

Mf ≥ M
f̃
− δ + ε. (51)

This inequality holds for all δ > 0. By tending to the limit
δ → 0, we conclude that

Mf ≥ M
f̃
+ ε, (52)

thus
M

f̃
≤ Mf − ε. (53)

On the other hand, for the f̃ -optimal alternative xM , i.e.,
the alternative for which f̃(xM ) = M

f̃
, our construction (46)

implies that

f(xM ) = f̃(xM )− ε = M
f̃
− ε. (54)

With (53), this implies that

f(xM ) ≤ (Mf − ε)− ε = Mf − 2ε. (55)



We already know, from Part 1 of this proof, that we have

f(xM ) ≥ Mf − 2ε. (56)

The two inequalities (55) and (56) imply that f(xM ) = Mf −
2ε, which is exactly the desired equality (45).

The proposition is proven.
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