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Abstract—In many practical situations, we monitor a system
by continuously measuring the corresponding quantities, to make
sure that an abnormal deviation is detected as early as possible.
Often, we do not have ready algorithms to detect abnormality, so
we need to use machine learning techniques. For these techniques
to be efficient, we first need to compress the data. One of the
most successful methods of data compression is the technique of
Symbolic Aggregate approXimation (SAX). While this technique
is motivated by measurement uncertainty, it does not explicitly
take this uncertainty into account. In this paper, we show that
we can further improve upon this techniques if we explicitly take
measurement uncertainty into account.

I. FORMULATION OF THE PROBLEM

Need for diagnostics. In many practical situations, we are
monitoring a certain process for possible problems:

e  We may be monitoring a mechanical system to check
if there are mechanical problems that require correc-
tion: e.g., whether the observed vibrations indicate
some abnormality.

e We may be monitoring the vital signs of a patient to
see if an urgent medical interference is needed.

Need for machine learning. In some cases, we have an
algorithm that, based on the observed time series, tells us
whether the interference is necessary — and what kind of
interference is needed. However, such situations are rare. In
most practical applications — especially in medicine — no such
ready algorithm is available.

What we have instead is numerous past data series cor-
responding both to the cases when situation turned out to be
normal and situations in which further developments revealed
abnormality. We thus need to extract such an algorithm from
all these examples, i.e., use one of the machine learning
algorithms; see, e.g., [1].

Need for data compression. Most machine learning algo-
rithms work well if we have up to dozens of inputs. However,
as a result of monitoring, we get hundreds and thousands of
values z(t) corresponding to different moments of time.

So, to efficiently apply machine learning algorithms, we
first need to compress the input data.
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Symbolic Aggregate approXimation (SAX): main idea. The
main reason why we have a large number of inputs is that we
keep track of the values z(t) for many different moments of
time. The main objective of monitoring is to catch deviations
from the normal regimes as early as possible. As a result,
monitoring is performed at a high rate, so that we will be able
to catch a deviation while this deviation is small, way before
this deviation may lead to catastrophic consequences. Thus, in
a properly set monitoring, values change very little from one
moment to the next.

Hence, during the periods of normal functioning, the func-
tion is almost constant for a significant number of values, i.e.,
we have a sequence of values x(t) which are practically equal
to each other. So, instead of keeping all these almost-equal
values, we can simply keep an average and a duration of this
almost-constant period. In mathematical terms, we replace the
original function z(t) with a piece-wise constant one. This
replacement indeed leads to a drastic reduction in data size;
see, e.g., [3].

After applying this reduction, we replace the original time
series with a sequence of average values and corresponding
time intervals. Often, this sequence still requires too many bits,
so it needs to be compressed further. Such further compression
is definitely possible since each average value is a computer-
represented real number, and such numbers require dozens
of bits to store, corresponding to potential accuracy of up to
ten decimal digits. In some computations, we need that many
digits, but for usual monitoring measurements, the accuracy
usually ranges from 1% to 10%, so two decimal digits is more
than enough. Symbolic Aggregate approXimation (SAX) is a
technique for such a reduction.

In this technique, on the interval [z, Z] of possible values
of x(t), we select thresholds z¢p = z,x1,x2,...,Z,,. These
thresholds divide the interval [x,Z] into m + 1 subintervals
[, it1], ¢ = 0,1,...,m. Then, for each moment of time
t, instead of keeping the original value z(t), we simply keep
the index ¢ of the subinterval that contains this value [10]. At
present, SAX is the most efficient data compression technique.

SAX: details and successes. To maximize the amount of
information after compression, current implementation of SAX
methods take into account that the maximum amount of



m
Shannon’s information — Y p; - log,(p;), where p; is the

=0
frequency with which we get the i-th subinterval, is attained
when all the probabilities p; are equal to each other — and is,
thus, equal to p;, = ——; see, e.g., [7]. Thus, the thresholds
m+1

x; are selected in such a way that for each i, the proportion
of moments of time for which z(t) is between x; and x;; is

equal to .
4 m+1

SAX techniques led to many practical applications ranging
from engineering [5], [6], [9] to medicine [4].

Problem. The problem is that while measurement errors were
a motivation for SAX techniques, the actual implementation
does not take measurement errors into account. As a result,
for an almost-constant signal x(t), when most of the observed
values are concentrated on a very small interval, we may get
thresholds x; and x;1 which are much closer to each other
than the measurement accuracy: e.g., differ by 5% while the
measurement accuracy is 10%. In this case, because of the
measurement inaccuracy, we cannot really tell whether the
actual value z(t) was in the i-th interval or in the next interval,
so the division into subintervals does not make any physical
sense.

This problem was noticed, e.g., in [2]. It is therefore desir-
able to explicitly take measurement uncertainty into account
when applying SAX techniques.

What we do in this paper. In this paper, we describe how to
take measurement uncertainty into account when selecting the
thresholds x;.

Structure of the paper. In Section 2, we recall the motivations
for the usual SAX selection of thresholds — and for similar
threshold selection techniques. In Section 3, we show how the
corresponding optimization problems can be modifies to take
into account measurement uncertainty, and we show how to
solve the corresponding optimization problems.

II. How TO OPTIMIZE THRESHOLD SELECTION: CASE
WHEN MEASUREMENT INACCURACY CAN BE IGNORED
(REMINDER)

Towards a formal description of the problem. In this section,
we describe how we can select optimal thresholds in the usual
setting, when the measurement inaccuracy is ignored.

To formulate the corresponding optimization problem, we
need to describe:

e what is known,
e what we want, and

e how we decide which threshold selection is better.

Let us answer these questions one by one.

What we know. We have a large number of observed values
x(t) corresponding to different moments of time ¢. Based on
these values, we can find the frequencies (probabilities) with
which different values of x occur. These probabilities can be
naturally described by a probability density function p(z).

Here, the probabilities should add up to one, i.e., we should
have [ p(z)dz =1.

Comment. In many practical situations, the observed signal is
a joint effect of many different independent processes. In such
situations, the Central Limit Theorem implies that the resulting
distribution should be close to Gaussian; see, e.g., [12]. An
indeed, in many practical situations, the empirical distribution
is close to Gaussian, with appropriate mean p and standard
deviation o} see, e.g., [4], [5], [6], [9]

What we want. We want to select the appropriate thresholds
1, Ta, ...Since there are many thresholds, a reasonable way
to describe them is to describe the distribution of thresholds,
i.e., to describe, for every value x, the density p;(x) of the
thresholds — how many thresholds we have per unit length.

Here, the overall number of selected thresholds is m, so
we should have [ p;(z)dz = m.

How to decide which threshold selection is better: first
idea. After the data compression, the only information that we
have about each value z(t) in the index 4 of the subinterval
that contains this value. So, if we want to reconstruct the
value z(t) based on this information, the best we can do
is to select a midpoint Z(t) of this subinterval. This re-
construction is approximate, there is an approximation error

e(t) ¥ F(t) — 2(t) £ .

Ideally, we would like to have all these errors to be as close
to 0 as possible. In other words, we would like to have the
vector € = (&(t1),e(t2),...) consisting of all these error to be
as close to the zero vector 0 = (0,0,...) as possible.

It is natural to use the usual Euclidean distance between
these two vectors to estimate how close they are. In this
Euclidean case, the distance has the form

d(e,0) = [> (e(tr))2.

k

Since the square root is a monotonic function, minimizing
this sum is equivalent to minimizing the sum of the squares
> (e(tx))?. In the continuous approximation, this is equivalent
k

to minimizing the corresponding integral [(£(t))? dt.

Limitations of the first idea. The above least-squares ap-

proach is indeed ubiquitous in data processing, but it has a

known problem: it is very vulnerable to outliers. For example,

if we simply estimate a constant value a based on several

repeated measurements aq,...,a,, then the least squares
n

2

methods means minimizing the sum Y (a; — a)*. If we

=1
differentiate this expression with respect to a and equate the
resulting derivative to 0, we get the usual arithmetic average

ar+...+apy
771 .

This estimate works well if all the measured values a; are
close to a, but sometimes, we get an outlier, a value that — due,
e.g., to some malfunction, is drastically different from a. For
example, if the actual value of the measured quantity is 10,



and we have nine very exact measurements a; = 10 and one
outlier a; = 1000, then the arithmetic average formula leads
to

104 ...+ 10 (9 times) + 1000 1090

= =1 10.
10 10 09> 10

How to decide which threshold selection is better: second
idea. An alternative idea is to use robust estimates, i.e.,
estimates that try to avoid the above sensitivity; see, e.g., [8].
Among the most widely used robust estimates are /P-estimates,
when instead of minimizing the sum of the squares, we
minimize the sum of the p-th degrees, for some p from the
interval [1, 2). In other words, we minimize the sum Y |e(¢x)|?

or the corresponding integral [ |e(¢)|? dt.

These methods are 1ndeed more robust: for example, for
p = 1, minimizing the sum Z |a; — a| leads to the median,

and the median is clearly much more robust than the arithmetic
mean — for example, in the above 10s and 1000 example, the
outlier does not affect the median at all.

Third idea: minimizing the number of bits. Since our objec-
tive is data compression, another natural idea is to minimize
the number of bits needed to describe all the thresholds. The
number of bits that we need to transmit each threshold depends
on how close it is to the next threshold.

For example, if the two neighboring thresholds differ by
0.1, then it does not make much sense to describe the second
decimal digit of the corresponding interval: using a subinterval
[1.201,1.302] leads, in effect, to the same results as the
subinterval [1.2,1.3], the difference is miniscule.

In general, if 2,41 — x; ~ 27°, then it is sufficient to
describe the first b binary digits of the corresponding interval.
This, the number of bits needed to store each threshold
is approximately equal to b ~ —logy(x;41 — ;). In this
arrangement, we minimize the average number of bits, i.e.,
the sum — Y log,(x;41 — ;) or the corresponding integral.

k

Towards formulating the corresponding optimization prob-
lems in precise terms. Since subintervals are small, the
probability density functions do not change much over this
subinterval, so we can safely assume that the corresponding
distributions are uniform on this subinterval.

On the unit interval around a value z, there are p;(x)
thresholds. Thus, the unit interval is divided into p;(z) subin-
tervals. Hence, the width w = ;41 — x; of each subinterval
can be estimated as the ratio

1
pe(z)
On this interval, as one can easily check, the absolute value

def
< |¢| of the difference ¢ between the midpoint and the
actual value is uniformly distributed on the interval

o, %} - {0, 2{)3(1)] .

This uniform distribution has a probability density
1 2

Thus, the average value of |¢|? on this interval is equal to

w/2 2 w/2 2 3 w/2
/ a2-p0(a)da:—-/ da=2. % _
0 w Jo w3,
2 1 3 f o w? . 1
— . — = const - w* = const - ——.
w 3 3 (pe(x))?

Each value = occurs with probability density p(z), so mini-
mizing the integral [(e(t))? dt is equivalent to minimizing the

integral .
[ o) G

Similarly, for every p € [1,2), the average value on |¢|P of
this interval is equal to

/ a? - po(a)da = —
0 w

wptl

w/2 2 p w/2
/ Pda=2. 2 =
0 w p+1],

= const - wP = const -

2 1
w p+1 p+1

1
(pe ()P
Each value z occurs with probability density p( ), SO mini-
mizing the integral [ |e(¢)[P dt is equivalent to minimizing the

integral .
[ o) o

For minimizing the number of bits, for each interval,

AR Pt(l’)’

SO
—logy(wi41 — ;) = —const - In(py(z)),

so the corresponding minimization is equivalent to minimizing
the integral

—/mwwmmm»m.

Let us solve the corresponding optimization problems. For
the least squares optimization, we need to minimize the integral

1
[ o) G

under the constraint
/ pt(x)de =m.

This is a constraint optimization problem, and such problems
can be solved by using the Lagrange multiplier method. For
this particular problem, the Lagrange multiplier method mean
optimization the following objective function:

/p(x)~(pt(1x))2d:£+)\-/pt(x)dx.



Differentiating this objective function with respect to each

unknown p;(z) and equating the resulting derivative to 0, we

conclude that ()
px

——= + =0,

(pe(x))?

i.e., that (p(z))® = const-p(z) and p;(z) = const-(p(x))

The corresponding constant can be found from the condition

that [ p(x) dz = m, thus,

—92.

1/3

(o) "
J(p))/? dy
In particular, when p(x) is a normal distribution with means

w and variance o2, the threshold distribution p;(x) is propor-
tional to thg: normal distribution with the same mean and the
o

pr(x) =

variance —.
3

For the ¢P-optimization, we need to minimize the integral

1
[ ot oy ™

under the same constraint

/pt(x) dx =m.

For this problem, the Lagrange multiplier method mean opti-
mization the following objective function:

/p(x)-mdx—i-)\-/pt(x)dx.

Differentiating this objective function with respect to each
unknown p;(x) and equating the resulting derivative to 0, we
conclude that

—p'ﬂ—l—)\:(),

(pe())P

i.e., that (p;(x))P*! = const - p(z) and

pe(x) = const - (p())"/ P+,

The corresponding constant can be found from the condition
that [ p;(z) dz = m, thus,
(p())/+D

Pi(®) = ) T gy @)

In particular, when p(x) is a normal distribution with means
w and variance o2, the threshold distribution p;(x) is propor-
tional to the normal distribution with the same mean and the

variance .
p+1

For the bit minimization, we need to minimize the integral

- [ o) 1n(pu(a)) da
under the constraint
/ pe(x) dx = m.

For this problem, the Lagrange multiplier method mean opti-
mization the following objective function:

i/m@wmm@»mww:/m@mx

Differentiating this objective function with respect to each
unknown p;(z) and equating the resulting derivative to 0, we
conclude that
_ p@)
pi()
i.e., that p;(z) = const - p(x). The corresponding constant can
be found from the condition that [ p;(z) dz = m, thus,

pi(x) = m - p(z). (3)

In particular, when p(x) is a normal distribution with means
u and variance o2, the threshold distribution p;(z) is propor-
tional to the this normal distribution, with the same mean and
the variance o2.

+A=0,

Comment. By definition of the threshold density, on each

subinterval, we have
Tit1
/ pt(x ) dr = ]-a

i

1
thus, since p(x) = — - p;(x), we conclude that the probability
m

Tit1
m:/ p(z) da

7

of being in the i-th subinterval is equal to

Tit1 Tit1 1
pi:/m p(x)da:z/m E-pt(x)da::

i

1 [on 1
—-/ pe(x)de = —.
mJ,,

m

Thus, indeed, we have an “equiprobable” division into subin-
tervals, when the probability p; of being in a subinterval is the
same for all the subintervals .

III. How TO OPTIMIZE THRESHOLD SELECTION WHEN
WE TAKE MEASUREMENT INACCURACY INTO ACCOUNT:
CASE OF INTERVAL UNCERTAINTY

Case of interval uncertainty. In the ideal world, for each mea-
suring instrument, we should know the probability distribution
of measurement errors. This distribution can be determined if
we compare the results of the given measuring instrument with
the result of a super-precise “standard” measuring instrument.

This “calibration” process is possible, but it is usually
very costly: sensors are cheap nowadays, but super-precise
measuring instruments are not. As a result, in many cases, all
we know is the upper bound A on the absolute measurement
error; see, e.g., [11].

How the measurement error affects threshold selection. In
the above analysis, the approximation error was equal to the
difference (t) = Z(t) — x(t) between the midpoint Z(¢) and
the measured value z(t). In the ideal-measurement case, any
deviation from xz(t) is an inaccuracy.

However, if we take measurement uncertainty into account,
then deviations not exceeding A are OK: the (unknown) actual
value of the measured quantity can be anywhere within the
interval [x(t) — A, z(t) + A], so if the midpoint Z(t) is within
this interval, it can still be exactly equal to the actual value.



Only when |e(t)| > A, we know that there is an approxi-
mation error. This error can be gauged as the distance

d((t), [x(t) = A, z(t) + A]) =
min{d(Z(t),z) : ¢ € [x(t) — A, z(t) + A]}

between the midpoint Z(¢) and the corresponding interval. One
can check that this difference is equal to

d(z(t), [x(t) — A, z(t) + A]) = max(|e(t)] — A, 0).

This distance is the value that we should take into account
(instead of |e(t)]) when we select the optimal thresholds.
Specifically, we should minimize either the sum of the squares
of these distances, or, if we want a robust approach, the sum
of their p-th powers.

Let us describe the average value of the corresponding
power. For the square, as we have mentioned earlier, the value
. . - . w
a = |e(¢)| is uniformly distributed on the interval [0, —] On
this interval, the distance is equal to max(a — A, 0)), so the
average value of the square of the distance is equal to

) w/2
— - / (max(a — A, 0))? da.
0

w

The value of max is non-zero only when a > A. So when
w/2 < A, the integral is simply equal to 0. When w/2 > A,
then the integral takes the form

9 w/2
— / (a —A,0))*da.
woJa

By introducing a new variable o’ = a — A, we get

—. / (a’)*da’ = const - — - (g - A) =
w Jo w 2

(w—2A)3

const -

Here, w = ——, so, in terms of the threshold density, the

. prix
integral takes the form

const - (pim) - QA)S ().

This expression corresponds to a given value x. To get an
overall average, we need to multiply this expression by the
probability density p(x) of different z-values, and integrate
over all possible x-values. Thus, we get

/ (pi) - zA)3 pula) - pla) da.

For the p-th powers, we similarly get

2 w/2
— - / (max(a — A,0))P da,
wJo

. /w/z(a —A,0))Pda

A

hence

2w

and
9 w/2—A 1 p+1
- / (a')? da’ = const - — - (ﬂ — A) =
w 0 w 2

(w —2A)P+L
" :

const -

Substituting w = ——, we get

pi(z)

const - <pt2x) - 2A>p+1 ().

So, we need to optimize the integral
1 p+1
—2A -pe(x) - p(z) da.
[ -22) om0

Let us solve the corresponding optimization problems. For
the least squares case, the Lagrange multiplier methods leads
to optimizing the expression

/(ptzx) _QA)3 pe(x) - p(z) dJ:+/\-/pt(g;) de.

Differentiating this objective function with respect to each
unknown p;(x) and equating the resulting derivative to 0, we
conclude that

B (Ptzx) N QA)Z

(pigg)_zA)B-p(x)H:o.

Moving the first two terms into the right-hand side and taking
into account that they have a common factor

1 2
—2A | - p(x),
(Pt(x) ) p(z)
we conclude that

1 2 ( 3 1 )
—— —2A) | ——=———=+2A) -p(z) = A\
o) G~ we @
Dividing both sides by p(x), we get

(Pt%ﬁﬂ) - A)Q. (pjﬂc) +2A> N P(>\$) )

In contrast to the previous case, where we had an explicit
solution, this is a generic cubic equation in terms of the

pi(z)

(pe())?

p(z)+

unknown ——; we can still solve it, but no longer with a

pr{x
simple formula. The parameter A needs to be determined from
the condition that the overall number of thresholds is equal to
m: [ pi(x)dz =m.

For the ¢P-case, the Lagrange multiplier methods leads to
optimizing the expression

/(piw) -

A)pH (@) - pl(x) d + A - /pt(x) da.



Differentiating this objective function with respect to each
unknown p;(x) and equating the resulting derivative to 0, we
conclude that

- N RPN NI
o0 (5 22) e

(pix) _ 2A)p+1 p(a)+ A = 0.

Moving the first two terms into the right-hand side and taking
into account that they have a common factor

1 p
—— —2A ) - p(x),
<Pt(x) > plz)
we conclude that

<Pt295) - 2A>p. (lﬂjt—(i—ﬂj - Ptzx) A

Dividing both sides by p(x), we get

1 P P A
—_— = A) -(+2A>:. (5)
<pt(w) pi(x) p(z)
The parameter A also needs to be determined from the con-
dition that the overall number of thresholds is equal to m:

[ pe(x) de = m.

(z)+

>.p(x):A.

What if we minimize the number of bits. So far, we have
described what will happen if we minimize the sum of the
squares or the sum of the p-th powers. What if we minimize
the number of bits?
In this case, the only restriction is that the width w = ——
P\
cannot be smaller than 2A, and thus, the threshold density

1 s
pt(x) cannot be larger than ——. Minimizing the number of
bits under this constraint leads to

pula) = C i () 55 ) (6)

The constant C' must also be determined from the condition
that [ p(x) dz = m.
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